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Adopting machine learning to automatically identify candidate
patients for corneal refractive surgery
Tae Keun Yoo 1,2, Ik Hee Ryu1, Geunyoung Lee3, Youngnam Kim3, Jin Kuk Kim1, In Sik Lee1, Jung Sub Kim1 and Tyler Hyungtaek Rim4,5

Recently, it has become more important to screen candidates that undergo corneal refractive surgery to prevent complications.
Until now, there is still no definitive screening method to confront the possibility of a misdiagnosis. We evaluate the possibilities of
machine learning as a clinical decision support to determine the suitability to corneal refractive surgery. A machine learning
architecture was built with the aim of identifying candidates combining the large multi-instrument data from patients and clinical
decisions of highly experienced experts. Five heterogeneous algorithms were used to predict candidates for surgery. Subsequently,
an ensemble classifier was developed to improve the performance. Training (10,561 subjects) and internal validation
(2640 subjects) were conducted using subjects who had visited between 2016 and 2017. External validation (5279 subjects) was
performed using subjects who had visited in 2018. The best model, i.e., the ensemble classifier, had a high prediction performance
with the area under the receiver operating characteristic curves of 0.983 (95% CI, 0.977–0.987) and 0.972 (95% CI, 0.967–0.976)
when tested in the internal and external validation set, respectively. The machine learning models were statistically superior to
classic methods including the percentage of tissue ablated and the Randleman ectatic score. Our model was able to correctly
reclassify a patient with postoperative ectasia as an ectasia-risk group. Machine learning algorithms using a wide range of
preoperative information achieved a comparable performance to screen candidates for corneal refractive surgery. An automated
machine learning analysis of preoperative data can provide a safe and reliable clinical decision for refractive surgery.
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INTRODUCTION
Recently, refractive surgery has produced excellent visual out-
comes, and the number of refractive surgeries has grown.1 It has
now become more important for the refractive surgeon to select
candidates to undergo corneal refractive surgery in order to avoid
complications.2 In order to minimize complications after surgery,
the surgeon has to accurately examine the patient’s eyes to
preoperatively identify cases with a likely poor outcome.
There are complicated relationships between optical para-

meters such as myopic level, pupil size, corneal radius, and
ablation zone.3 When a clinician considers the optical parameters
to improve visual quality, the preoperative corneal radius and
sphericity were used in a calculation formula to obtain the
postoperative corneal curvature.4 Age and refraction should also
be considered as predictors of refractive stability after surgery.5

Because surgeons may find it hard to calculate all nonlinear
relationships of optical variables to minimize the complication of
each patient, the clinical decision was made based on the
surgeon’s experience.
Ocular imaging technology has evolved in recent years to

address candidacy issues in the corneal refractive surgery.6 A
complete preoperative examination has to be performed, and the
refractive surgeon should review all examination results before
recommending a procedure. This can be a time-consuming
process, and it is possible to overlook a sign of surgery

contraindications. This is even more likely given the increasing
workload for the refractive surgeon with the rise in population
seeking refractive surgery. Up to now, there is still no definitive
screening method to confront the possibility of a misdiagnosis.
Machine learning, which is an area of artificial intelligence

research, has become popular in clinical medicine because of its
ability to handle big data and to classify cases with high accuracy.7

Support vector machines (SVM), random forests (RF), artificial
neural networks (ANN), AdaBoost, and least absolute shrinkage
and selection operator (LASSO) are widely used approaches in
machine learning.8 These techniques have been applied to many
tasks in medicine and bioinformatics to select informative
variables and predicting diagnoses more accurately.9 The current
machine learning technique classified Pentacam-based corneal
data with good performance for keratoconus diagnosis.10 A
random forest model using Pentacam measurement data showed
the good diagnostic accuracy to classify patients into stable cases
and clinical ectasia after refractive surgery.11 Random forest was
also used to combine the corneal biomechanical factors from
Corvis ST (Oculus, Wetzlar, Germany).12 However, to our knowl-
edge, the diagnostic value of the combination of all preoperative
data has not been previously emphasized in the literature
investigating patient selection using machine learning.
In our experience, surgeons or medical centers have slightly

different criteria for corneal refractive surgery. Based on a clinical
decision, refractive surgery can be performed in selected patients
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having a condition of relative contraindications, such as young
adults, unstable refraction, large pupil size, dry eye, and diabetes.
Moreover, surgeons should consider the nonlinear relationships of
optical parameters to minimize the complication of each patient.
Since all patient data and ocular measurements have been
digitalized, the current technology can analyze the database to
help refractive surgeons. For this study, we have built a machine
learning architecture with the aim of identifying candidates for
corneal refractive surgery to support clinical decision making (Fig. 1).
The machine learning model was trained using clinical decisions
of highly experienced experts. The employed architecture was
based on large-sized preoperative clinical and ophthalmometric
data and validated in a large Korean population indicated for
refractive surgery.

RESULTS
Characteristics of the study population
The background characteristics of the training and validation
datasets are presented in Table 1. Among 18,480 screened
subjects, a total of 1630 (8.8%) subjects were considered to have a
contraindication to corneal refractive surgery. The comparison
between the candidates and contraindication cases for surgery is
presented in Supplementary Table 2.

Parameter and feature selection
The optimal model of SVM was found using a Gaussian kernel
function with a penalty parameter C of 1.0 and a scaling factor γ of
0.1. In RF, the optimal number of trees was 100, and the number of
predictors for each node was 5. The optimal ANN was set with two
hidden layers (100 and 2 nodes). In LASSO, the optimal sparseness
parameter λ was 0.01. In AdaBoost, the decision tree was adopted
as a weak estimator and the optimal number of estimator was 50.
As shown in Fig. 2, the model with the highest performance was
the RF model with 20 predictors selected by Information Gain
(AUC= 0.981). As shown in Supplementary Fig. 1, Pentacam-based
keratometry data (Pentacam_Cornea_Back_K1_right) was the
highest ranked feature using Information Gain. Twelve of the
top 20 ranked features were from the Pentacam corneal
tomography.

Algorithm performance
Table 2 shows the prediction performance via tenfold cross-
validation of the machine learning and classic methods. After the
feature selection, we obtained the AUCs of SVM, ANN, RF,
AdaBoost, LASSO, and Ensemble of 0.963, 0.972, 0.981, 0.962,
0.938, and 0.983, respectively. The AUC of PTA (percentage of
tissue ablated) and Randleman ectatic score were 0.827 and 0.897,

Fig. 1 Schematic illustrating the purpose of this study

Table 1. Characteristics of the subjects in this study for training and validation data

Variable Training set (N= 10,561) Internal validation set (N= 2640) External validation set (N= 5279) P valuea

Age (years) 27.94 ± 6.12 27.89 ± 6.10 26.23 ± 6.51 <.001

Sex, female (%) 5609 (53.1) 1374 (52.0) 2879 (54.5) .081

Spherical equivalent (Diopter) −4.56 ± 2.24 −4.55 ± 2.20 −4.80 ± 2.28 <.001

CDVA (logMAR) −0.015 ± 0.042 −0.016 ± 0.043 0.001 ± 0.041 <.001

IOP (mmHg) 15.20 ± 4.81 15.25 ± 5.47 15.16 ± 3.06 .008

Central corneal thickness (μm) 541.86 ± 31.54 541.82 ± 31.93 542.80 ± 33.38 .070

NIBUT (seconds) 6.87 ± 6.60 6.90 ± 6.67 6.83 ± 5.93 <.001

Corneal refractive surgery

LASIK (%) 3630 (34.4) 914 (34.6) 1579 (29.9) <.001

LASEK (%) 2891 (27.4) 729 (27.6) 1273 (24.1) <.001

SMILE (%) 3036 (28.7) 746 (28.3) 2052 (38.8) <.001

Contraindication cases for surgery (%) 1004 (9.5) 251 (9.5) 375 (7.1) <.001

CDVA corrected distance visual acuity, IOP intraocular pressure, LASEK laser epithelial keratomileusis, LASIK laser in situ keratomileusis, NIBUT noninvasive break-
up time, SMILE small incision lenticule extraction
aComparison using the Kruskal−Wallis test and chi-square test
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Fig. 2 Heatmaps representing the predictive performance (AUC) of feature selection and machine learning methods to predict candidates for
corneal refractive surgery. This figure shows the results from the tenfold cross-validation procedure. a Support vector machine. b Artificial
neural networks. c Random forest. d Least absolute shrinkage and selection operator (LASSO). e AdaBoost

Table 2. Classification performance of machine learning models to predict candidates for corneal refractive surgery using the tenfold cross-
validation in the training set

AUC (95% CI) Accuracy (%)
(95% CI)

Sensitivity (%)
(95% CI)

Specificity (%)
(95% CI)

P valuea Duncan subgroupb

Without feature selection

SVM 0.612 (0.603–0.621) 55.2 (54.3–56.2) 54.7 (53.7–55.7) 60.8 (57.7–63.8) <.001 G

ANN 0.824 (0.818–0.833) 75.1 (74.2–75.9) 75.3 (74.4–76.2) 72.9 (70.0–75.6) <.001 F

RF 0.966 (0.963–0.970) 89.6 (88.9–90.1) 89.4 (88.8–90.0) 91.0 (89.1–92.7) <.001 B, C

AdaBoost 0.962 (0.958–0.965) 89.0 (88.4–89.6) 89.0 (88.4–89.6) 89.2 (87.2–91.1) <.001 B, C

LASSO 0.818 (0.811–0.825) 76.9 (76.1–77.7) 77.6 (76.7–78.4) 70.9 (68.0–73.7) <.001 F

With feature selection

SVM 0.963 (0.959–0.966) 90.1 (89.5–90.7) 90.2 (89.6–90.8) 89.6 (87.6–91.5) <.001 C

ANN 0.972 (0.969–0.975) 91.8 (91.2–92.3) 91.9 (91.3–92.4) 90.7 (88.8–92.5) .004 B

RF 0.981 (0.978–0.983) 92.7 (92.2–93.2) 92.6 (92.1–93.1) 93.6 (91.9–95.1) Reference A

AdaBoost 0.962 (0.958–0.965) 89.0 (88.4–89.6) 89.0 (88.4–89.6) 89.2 (87.2–91.1) <.001 B, C

LASSO 0.938 (0.932–0.941) 87.3 (86.7–88.0) 87.5 (86.8–88.1) 86.0 (83.7–88.1) <.001 D

Ensemble 0.983 (0.980–0.985) 94.3 (93.8–94.7) 94.5 (94.0–94.9) 92.5 (90.7–94.1) .579 A

PTA 0.827 (0.820–0.835) 74.6 (73.7–75.4) 74.6 (73.7–75.5) 74.2 (71.4–76.9) <.001 F

Randleman score 0.897 (0.892–0.903) 74.6 (73.7–75.4) 74.6 (73.7–75.5) 74.2 (71.4–76.9) <.001 E

ANN artificial neural networks, AUC area under curve, CI confidence interval, LASSO least absolute shrinkage and selection operator, PTA percentage of tissue
ablated, RF random forest, SVM support vector machine
aComparison of receiver operating characteristics curves with the single best technique (random forest with feature selection) according to the Delong test
bThe different letters (A, B, C, D, E, F, and G) indicate statistically different means according to Duncan’s multiple range test using the AUCs. The subgroup A
(ensemble and random forest with feature selection) was significantly superior to other subgroups. The machine learning techniques with feature selection (A,
B, C, and D) were significantly superior to the classic methods (E and F)
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respectively. The Delong test showed that RF outperformed SVM
(P < .001), ANN (P= .004), AdaBoost (P < .001), LASSO (P < .001),
PTA (P < .001), and Randleman ectatic score (P < .001). When the
machine learning methods were combined using weighted
majority voting, the performance was improved but it was not
statistically significant (P= 0.579). Duncan’s multiple range test
also showed that the machine learning methods with feature
selection performed better than the classic methods.
Figure 3 shows the ROC curves of machine learning models in

predicting candidate subjects for corneal refractive surgery in the
internal and external validation datasets. Supplementary Table 3
presents the detailed performance of the prediction models in the
internal and external validation. This result was consistent with the
cross-validation. The RF model was the single best discriminator
among all techniques investigated but the differences were not
statistically significant in comparison with other machine learning
models. By combining all techniques, the ensemble method
improved the performance in the internal (with the AUC of 0.983,
95% CI 0.977−0.987 and accuracy of 94.1%, 95% CI 93.2−95.0%)
and external (with the AUC of 0.972, 95% CI 0.967−0.976 and
accuracy of 93.4%, 95% CI 92.7−94.1%) validation, but the
differences were again not statistically significant. The attached
video shows the machine learning model as it appears during
analysis (online Supplementary Video 1).
The prediction performance in the high-risk subgroups is

presented in Fig. 4. The results show that ensemble, ANN, RF,
and AdaBoost performed robustly in all subgroup having high
myopia, high astigmatism, and thin central corneal thickness.
Duncan’s multiple range test shows that the machine learning
models with feature selection were superior to classic methods in
all high-risk subgroups.
Figure 5 presents the outcome value histograms of the

ensemble machine learning technique in the tenfold cross-
validation. The misclassified samples with opposite outcome
values showed that cases with forme fruste keratoconus not
detected in 4 Maps Refractive Display, Avellino corneal dystrophy,
and suspected Fuchs’ corneal dystrophy contributed to incorrect
classifications in the contraindication group. By contrast, measure-
ment errors in the pachymetry and corneal tomography

(reexamination data were confirmed by surgeon) as well as
operations confirmed by the surgeon despite a thin central
corneal thickness contributed to incorrect classifications of
candidates for surgery.
During the study period, post-LASIK ectasia was developed in

one patient among the development dataset with follow-up data.
The machine learning was able to reclassify this patient correctly
as an ectasia-risk group (Fig. 6). One patient with post-LASIK
ectasia, 108 patients diagnosed with keratoconus, and 44 patients
with forme fruste keratoconus were included in the ectasia-risk
group. The normal control group consisted of the subjects with
normal preoperative measurements except one patient with post-
LASIK ectasia. The ensemble machine learning model classified
the ectasia-risk patients with an AUC of 0.996.

DISCUSSION
The current study aimed to automatically screen candidates for
corneal refractive surgery using machine learning. The individual
analysis of visual characteristics of the patient is most important
for refractive surgery. Since we collected large cohort data, the
machine learning algorithms could find the pattern of clinical and
optical information. The machine learning architecture predicted
candidates with an accuracy of 93.4% and an AUC of 0.972 in
external validation. It combined the large multi-instrument data
from patients and clinical decisions of highly experienced experts.
These results show that the machine learning model performed as
well as experts with a consistent performance in the high-risk
subgroups with high myopia, high astigmatism, and thin central
corneal thickness.
Our study suggests that machine learning-assistance during the

preoperative evaluation will result in fewer missed contraindica-
tion cases. Nowadays, the gold standard to identify candidate
cases for refractive surgery is subject to each clinician, although
numerous articles described indications and contraindications to
refractive surgery.13 Previous machine learning studies have
focused patient data from one equipment.11 Our architecture
using large multi-instrument data is closer to clinicians and easier
to understand the outcome of the machine learning model.

Fig. 3 The ROC curves for the machine learning algorithms and classic screening methods. a The ROC curves of the internal validation set. b
The ROC curves of the external validation set. The machine learning classifiers include random forest (RF), AdaBoost, artificial neural networks
(ANN), and ensemble classifier. The classic methods include percentage of tissue ablated (PTA) and Randleman ectatic score
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Computer-aided decision making could potentially eliminate the
possibility of inter-clinician variability in selecting candidates for
surgery. However, the machine learning performance may vary
due to the reference decisions of the expert ophthalmologists in
the training dataset. Despite this limitation, the artificial intelli-
gence described in the present study could still be used to
support the clinical decisions because the models predict with an
objective and statistical background as a safeguard.
Although the machine learning models in this study were

trained to imitate the expert ophthalmologists, the preoperative
identification of forme fruste keratoconus is key for screening
candidates for surgery. Recently, identifying subjects with ectatic
predispositions has been crucial in corneal refractive surgery. The
classic methodology for screening uses corneal tomography and
central corneal thickness.14 Randleman et al. proposed an ectasia-
risk score system for LASIK candidates based on corneal
tomography, central corneal thickness, level of correction, residual
stromal bed, and age.15 However, there is an important limitation
related to the subjectivity for corneal tomography classification
included in the Randleman ectatic score.16 Recently, optical
coherence tomography was applied for a higher accuracy in the
diagnosis,17 and biomechanical properties measurement of the
corneal tissue using the Corvis ST has been adopted,18 but there is
still no definitive screening parameter using these methods.
Another potential solution to reduce both the interobserver
variability and the likelihood of a misdiagnosis without employing
newly developed devices is to apply a computerized analysis
using machine learning techniques.
Machine learning approaches have been developed by

incorporating preoperative information from different domains
including visual acuity, refractive, and corneal tomography. In this
study, machine learning models using decision trees including RF
and AdaBoost performed better than other complex methods. RF
was found to be a robust and accurate machine learning classifier
in the previous literature.19 As a nonparametric statistical method,
RF can deal with nonlinearity, interactions between predictors,
and heterogeneity of predictors.20 AdaBoost is also a very popular
technique and has been applied with great success in many
pattern classification problems.21 Although AdaBoost is limited by
combining weak learners, it can greedily select important features
and can take a complicated problem by building sparse
classification rules.8 We observed that the ensemble classifier
using a weighted majority vote successfully boosted the
performance in our study. The improvement was derived from
the fusion of heterogeneous classifiers that might complement
each other in an ensemble method.22

Differing from our comprehensive approach, several studies
have emphasized the optimization of specific postoperative
outcomes to improve visual quality.23,24 Previous researches have
tried to minimize differences between the real ablation and the
predicted one using a quadratic term in the formulae.25 The recent
study demonstrated that a surgeon should consider the nonlinear

Fig. 4 The classification performance of high-risk subgroups
according to the tenfold cross-validation results. The performance
was measured based on the average of the AUCs. The error bars
represent the 95% confidence intervals. a Performances in the high
myopia group. b Performances in the high astigmatism group. c
Performances in the thin corneal thickness group. Error bars indicate
the standard deviation of the mean

Fig. 5 Outcome value histograms of the ensemble machine learning technique in the tenfold cross-validation. The misclassified samples with
an opposite outcome value are shown
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relationships between optical variables using the Q-optimized
algorithm.26 We believe that the machine learning technique will
help specific problems in optimized refractive surgery, since it is
optimal to build a nonlinear pattern model.
Several limitations should be noted. First, our study did not

compare our proposed methods to the Belin−Ambrósio Enhanced
Ectasia Display (BAD-D) index, which has been widely used to
screen for keratoconus. The BAD-D was reported as a very
accurate index in predicting ectasia risk.27 In our B&VIIT Eye
Center, BAD-D was only calculated when a keratoconus was
suspected. Since a previous study showed that the combination of
BAD-D with other clinical measurements improves the accuracy,28

we expect that a machine learning model that includes BAD-D
may boost the performance to predict candidates for refractive
surgery. We also did not compare our methods to the
Topographic and Biomechanical Index (TBI), which is based on
random forest technique. The TBI measured using Corvis ST was
excluded because it was applied since 2017 in the B&VIIT Eye
Center. Second, the postoperative outcome data were not
analyzed in this study. In fact, expert ophthalmologists are unable
to forecast whether a complication will occur. We expect a
longitudinal study design that includes the postoperative data to
be a more powerful prediction tool to confidently differentiate
candidates for corneal refractive surgery. Third, the specular
endothelial cell count and the presence of corneal dystrophy were
not included in our analysis. A definite diagnosis of corneal
dystrophy needs slit-lamp examination and genetic evaluation.
Unfortunately, these data were not standardized in our electronic
health records, and they were, therefore, impossible to incorpo-
rate into our models. Our results demonstrate that Avellino and

Fuchs’ corneal dystrophy definitely contributed to incorrect
classifications. Fourth, this study was conducted in a single Asian
country. Generally, the incidence of keratoconus is influenced by
the genetic background.29 Therefore, it cannot be confirmed
whether our proposed model can be applied to other ethnic
groups or other eye clinics.
In conclusion, we have demonstrated that machine learning

algorithms using a wide range of preoperative information yielded
a performance comparable to that of screening for corneal
refractive surgery. Our proposed machine learning model is
expected to perform reliably, because it was trained by a large
population. An automated analysis of preoperative data can
provide a safe and reliable clinical decision for refractive surgery.
In the future, this approach will facilitate standardized and
automated selections of surgical choices.

METHODS
Data source
This retrospective study protocol was approved by the Institutional Review
Board of Korean National Institute for Bioethics Policy (KoNIBP, 2018-2734-
001), which waived the requirement for informed consent. This study
adhered to the tenets of the Declaration of Helsinki. This analysis included
18,480 healthy Korean subjects who intended to undergo refractive
surgery at the B&VIIT Eye Center from January 2016 to June 2018. All
patients underwent preoperatively measurements of best-corrected
distance visual acuity and manifest refraction, slit-lamp examinations of
the anterior segment, and dilated fundus examinations. Corneal tomo-
graphy was measured using a Pentacam Scheimpflug device (Oculus
Optikgeräte GmbH, Wetzlar, Germany). Pachymetry (NT-530P; Nidek Co.,
Ltd., Aichi, Japan) was used to evaluate the central corneal thickness. Pupil

Fig. 6 Machine learning technique performance in the ectasia-risk groups, including post-LASIK ectasia, keratoconus, and forme fruste
keratoconus patients. a Accuracy in each ectasia-risk group. b ROC curves for classification between the normal control (no postoperative
ectasia, N= 9556) and total ectasia-risk group (N= 153)

Fig. 7 An architecture of our proposed machine learning system to predict candidates for corneal refractive surgery
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size and noninvasive tear break-up time (NIBUT) were also determined.
Each subject was interviewed and asked to complete a split questionnaire
survey about his or her occupation, anticipated surgery option, anticipated
recovery period after surgery, and medical history. The detailed
questionnaires are presented in Supplementary Table 1.

Reference standard
All patients who had laser epithelial keratomileusis (LASEK), laser in situ
keratomileusis (LASIK), or small incision lenticule extraction (SMILE) were
considered as candidate subjects for corneal refractive surgery. General
criteria for consideration for surgery, which may vary in several items from
criteria used in other refractive practices, included the following parameter:
age 18 years or older; myopia spherical equivalent >−10.0 diopters (D);
hyperopia spherical equivalent <+4.50 D; central corneal thickness,
measured with pachymetry, >500 μm for LASIK and >480 μm for LASEK
and SMILE; residual corneal thickness > 380mm after surgery, NIBUT >
5 seconds for LASIK; and absence of corneal abnormalities suggestive of
keratoconus or other corneal ectatic diseases. These were not absolute
criteria, and expert ophthalmologists could recommend corneal refractive
surgery based on their clinical decision. A reference standard was assigned
based on the clinical decision obtained from a full evaluation by nine
experts. Basically, one surgeon was involved in the initial screening process
for each patient. Two surgeons were involved in the assessment of
complicated cases. Disagreement was resolved through discussion and
data review. All experts were board-certified ophthalmologists with an
average experience of 10 years in refractive surgery. An ophthalmologic
examination was performed on all patients at postoperatively at 1 week
and 1 month to screen postoperative ectasia.

Machine learning techniques
A flow diagram of our proposed method is shown in Fig. 7. The machine
learning models were designed to predict candidates for corneal refractive
surgery. SVM is based on mapping data to a higher dimensional space
through a kernel function and choosing the maximum-margin hyperplane
that separates training data.30 RF is an ensemble learning classification
method, which consists of a collection of decision trees and can deal in
training with high-dimensional data faster than other methods with a very
robust performance.31 ANN uses mathematical systems that mimic
biological neural networks. We employed a multilayer perceptron neural
network with back-propagation for nonlinear pattern classification.9

AdaBoost is a technique combining a set of weak learners to build a
strong classifier.32 It always chooses the weak classifier with the lowest
error, ignoring all others. LASSO is widely used as a sparse learning tool in
bioinformatics.33 It leads to a sparse solution of coefficients corresponding
to the most important predictors and has been known to show better
performance for the prediction model selection and better identification of
predictors than classical regression. Additionally, an ensemble classifier
with a combination of all the above-mentioned machine learning
techniques was built to improve the accuracy. We employed the weighted
majority vote ensemble which is the most intuitive and widely used
combiner.34

Feature selection
In this study, the wide range of clinical and measurement data provides a
highly redundant feature space. Supplementary Table 1 lists the 142
variables based on the demographics data, survey, corneal tomography,
and other ophthalmic examinations. Eighty features from the corneal
tomography on both eyes were automatically extracted from the 4 Maps
Refractive Display using an in-house developed optical character recogni-
tion algorithm, which simply converted digits in a Pentacam image into
text data. Therefore, we ranked features based on feature relevance and
found the optimal subset for each machine learning technique. Filtering
feature selection methods in this study were the t test,35 Gini index,36

Information Gain,37 Relief,38 DistAUC,39 and Signal to noise.40 For each
feature ranking method, we varied the selection size and fitted machine
learning classifiers on the selected feature subset using the training
dataset. The performance of each classifier was determined by measuring
the area under the receiver operating characteristic (ROC) curve (AUC).
Keratoconus, which is the most important status for refractive surgery,
present bilateral, but asymmetrically progressive thinning of the cornea.
Therefore, measurements of both eyes should be included in the analysis.

Model building and validation
A total of 13,201 subjects (71.4% of the enrolled subjects), who visited the
Eye Center between January 2016 and December 2017, were used as the
development dataset. The development dataset was separated randomly
into training and internal validation sets. The training set, comprised of
three fourths (10,561 subjects) of the entire development dataset, was
used to construct the prediction models. The internal validation set,
comprised of one fourth (2640 subjects) of the dataset, was used to assess
the ability to predict eligible patients for corneal refractive surgery. In order
to obtain an unbiased prediction, the performances of the prediction
models were evaluated in data collected between January and June 2018.
In this procedure, the external validation set comprised of a total
5279 subjects (28.6% of the enrolled subjects). In the training dataset,
we designed a tenfold cross-validation, which is currently the preferred
technique in data mining, not only to assess performance but also to
optimize the prediction models. To obtain the optimal result, we adopted a
grid search in which a range of parameter values was tested using the
tenfold cross-validation strategy.
To validate the proposed models in high-risk groups, additional analyses

were conducted in the high-risk subgroups, which included subjects with
high myopia (spherical equivalent <−6.00 D), high astigmatism (cylinder
diopter of refraction > 2.50 D), and thin central corneal thickness
(<500 μm).41 The performance based on the high-risk subgroups were
extracted from the tenfold cross-validation results. The developed model
was also validated in differentiating the ectasia-risk group from normal
controls with follow-up data. All patients with postoperatively diagnosed
ectasia, preoperatively diagnosed keratoconus and forme fruste keratoco-
nus were included in the ectasia-risk group.
In addition, the percentage of tissue ablated (PTA) and the Randleman

ectatic score were calculated for all subjects in the study.42,43 PTA has been
a simple and robust risk factor for ectasia after LASIK when corneal
tomography is normal. The Randleman ectatic score provides a discrete
risk scoring system with a comprehensive screening approach. Corneal
tomography classification in the Randleman ectatic score was conducted
subjectively by ophthalmologists according to the literature.15 For eyes
with asymmetrical scoring, the worst-affected eye was considered. These
classic screening methods were compared to our proposed prediction
models.

Statistical analysis
MATLAB 2017a (Mathworks, Natick, MA, USA) and R version 3.5.1 (The
Comprehensive R Archive Network; http://cran.r-project.org) were adopted
to perform the algorithms. MedCalc 12.3 (MedCalc, Mariakerke, Belgium)
was used to conduct analyses of the ROC curves. To generalize the
superiority of a classifier, inferential statistics should be conducted.
Therefore, the comparison between AUCs used the nonparametric
empirical method of Delong, which provides confidence interval and
standard error of the difference between two AUCs. When a cross-
validation was performed, Duncan’s multiple range test, which is a widely
used test for multiple mean comparisons, was adopted to obtain detailed
information about the differences between classifiers.44 This test identified
the subsets of adjacent means that are different within a given level of
significance (α < .05).45

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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