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Introduction

Summary

Regulatory T (Treg) cells play a crucial role in maintaining self-tolerance
and resolution of immune responses by employing multifaceted
immunoregulatory mechanisms. However, Treg cells readily infiltrate into
the tumor microenvironment (TME) and dampen anti-tumor immune
responses, thereby becoming a barrier to effective cancer immunotherapy.
There has been a substantial expansion in the development of novel
immunotherapies targeting various inhibitory receptors (IRs), such as
CTLA4, PD1 and LAG3, but these approaches have mechanistically
focused on the elicitation of anti-tumor responses. However, enhanced
inflammation in the TME could also play a detrimental role by facilitating
the recruitment, stability and function of Treg cells by up-regulating
chemokines that promote Treg cell migration, and/or increasing inhibitory
cytokine production. Furthermore, IR blockade may enhance Treg cell
function and survival, thereby serving as a resistance mechanism against
effective immunotherapy. Given that Treg cells are comprised of function-
ally and phenotypically heterogeneous sub-populations that may alter
their characteristics in a context-dependent manner, it is critical to iden-
tify unique molecular pathways that are preferentially used by intratu-
moral Treg cells. In this review, we discuss markers that serve to identify
certain Treg cell subsets, distinguished by chemokine receptors, IRs and
cytokines that facilitate their migration, stability and function in the
TME. We also discuss how these Treg cell subsets correlate with the clini-
cal outcome of patients with various types of cancer and how they may
serve as potential TME-specific targets for novel cancer immunotherapies.

Keywords: chemokine/chemokine receptors; cytokines; inhibitory/activat-
ing receptors; regulatory T cells; tumor immunology.

metabolic regulation, direct cytolysis, regulation of antigen-
presenting cells, and secretion of inhibitory cytokines.”

Regulatory T (Treg) cells are a subset of CD4" T cells char-
acterized by their expression of a key transcription factor
forkhead box P3 (FoxP3).'! Treg cells play a crucial role in
the maintenance of self-tolerance and resolution of inflam-
mation.” Mutations within the Foxp3 gene result in defective
Treg cell development, leading to lethal systemic auto-im-
mune diseases in both humans® and mice.* Treg cells regu-
late immune responses through four major mechanisms:

232

However, Treg cells play a detrimental role in the con-
text of cancer. Treg cells readily infiltrate into the tumor
microenvironment (TME) and play a significant role in
suppressing anti-tumor immune responses,” making
them a barrier to effective cancer immunotherapy. Indeed,
an increase in intratumoral Treg cells has been correlated
with poor patient prognosis in many cancer types, includ-
ing ovarian carcinoma.” However, there have been reports
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Subsets of intratumoral Treg cells

suggesting that the infiltration of FoxP3" Treg cells can be
a favorable prognostic marker for certain types of cancer,
such as colorectal cancer,” although this may also be an
indirect consequence of enhanced overall T-cell infiltra-
tion. Importantly, while Foxp3 expression is a faithful mar-
ker to identify Treg cells in mice, human FoxP3" CD4" T
cells are not necessarily a homogeneously immunosuppres-
sive population. Human FoxP3" CD4" T cells can be strati-
fied into three subsets: CD45RA" FoxP3'® (resting Treg
cells), CD45RA™ FoxP3M (activated Treg cells) and
CD45RA~ FoxP3' subsets,'” with the latter representing
recently activated effector T cells with up-regulated expres-
sion of pro-inflammatory cytokines.'' Indeed, enrichment
of the CD45RA™ FoxP3' subset in the TME has been asso-
ciated with long-term disease-free survival of patients with
colorectal cancer,® suggesting that previously reported ben-
eficial prognostic correlation with intratumoral FoxP3" T
cells may have been due to a CD45RA™ FoxP3' effector
subset. Hence, activated Treg cell infiltration may be detri-
mental across all types of cancer.

Treg cells are functionally and phenotypically heteroge-
neous, altering their ‘flavor’ in a context-dependent man-
ner,'! and it is unclear which suppressive mechanism(s)
plays a dominant role in the TME. Furthermore, it
remains elusive whether distinct subsets of Treg cells
exist, or if there is phenotypic plasticity that is modulated
based on the microenvironment. It is also unclear if the
same or different subpopulations differentially use these
regulatory mechanisms. In this review, we focus on key
cell surface markers or secreted proteins that have a key
impact on the identity and function of different Treg cell
subsets, facilitating their infiltration, stability and/or regu-
latory functions in the TME. We will also discuss correla-
tions between these Treg cell subsets and patient clinical
outcome, as well as the development of therapeutic
approaches targeting these key cell surface markers or
secreted proteins.

Chemokine receptors

Although Treg cells prevent catastrophic systemic autoim-
munity,* their migratory capacity is a key factor impact-
ing their ability to regulate tissue-restricted inflammation.
Targeting chemokine receptors that are preferentially used
by tumor-infiltrating Treg cells may therefore be an
attractive approach to elicit beneficial anti-tumor immune
responses in patients. In this section, we review Treg cell
subsets characterized by selective upregulation of C-C
chemokine receptors and potential therapeutic opportuni-
ties to target these Treg cell subsets (Fig. 1).

C-C chemokine receptor 2
C-C chemokine receptor 2 (CCR2) plays a critical role in

the migration of Ly6C" inflammatory monocytes through
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interaction with its ligands C-C motif chemokine ligand 2
(CCL2) and CCL7.!? However, recent studies have demon-
strated a chemotactic role for CCR2 in T cells during
inflammation."? Interestingly, a subset of CCR2" Treg cells
was enriched in both tumor and draining lymph nodes of
mice bearing transplantable OVA-expressing murine sar-
coma (MCA-OVA), but CCR2-deficient Treg cells failed to
infiltrate the TME.'* Furthermore, CCR2-deficient Treg
cells resulted in reduced CD25 expression, rendering them
less suppressive,15 suggesting an alternative non-chemotac-
tic role for CCR2 in Treg cells. CCR2 expression has also
been positively correlated with increased expression of
inhibitory cytokine interleukin-10 (IL-10) in Treg cells.'®
These observations suggest that CCR2 may play a dual role
in tissue-infiltrating Treg cells by facilitating their migra-
tion to the inflammatory site and promoting their func-
tional fitness to maintain tissue homeostasis.

The importance of the CCL2-CCR2 axis in tumor
development and progression has been reported in vari-
ous cancer types, such as clear-cell renal cell carcinoma'’
in which high CCL2 and/or CCR2 expression was
strongly correlated with poor patient prognosis. These
observations suggest that targeting CCR2 may be a practi-
cal therapeutic approach to prevent Treg cell infiltration
and intrinsically impair their suppressive function in the
TME (Table 1).

C-C chemokine receptor 4

C-C chemokine receptor 4 (CCR4) is a high-affinity
receptor for CCL17 and CCL22 that is elevated in
inflamed tissues and plays a robust chemotactic role on
activated T cells."® Although only a small fraction of naive
Treg cells express CCR4, activated effector Treg cells
residing in non-lymphoid tissues, such as skin and lungs,
or peripheral activated effector Treg cells show enhanced
expression of CCR4," suggesting that CCR4 plays a dual
role in directing activated effector T cells while recruiting
Treg cells to the site of inflammation to maintain
immune homeostasis. Indeed, CCR4-deficient Treg cells
were unable to infiltrate localized tissue inflammation
and failed to control immune responses in various mod-
els of inflammatory disease.'>"

Consistent with these observations, infiltration of CCR4 "
T cells in the TME has been reported in various types of
cancer including lung adenocarcinoma®® in which
increased CCR4" tumor-infiltrating lymphocytes (TILs)
was correlated with poor patient prognosis,® suggesting a
pro-tumor role of CCR4" TILs. Administration of an afu-
cosylated humanized anti-CCR4 monoclonal antibody
(mAb) (Mogamulizumab; Table 1), which has enhanced
capacity for antibody-dependent cellular cytotoxicity due
to removal of N-glucan attachment sites in the Fc region,
in patients with NY-ESO-1-positive adult T-cell leukemia-
lymphoma selectively depleted CD4" FOXP3™ CD45RA ™
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Figure 1. Subset stratification of intratumoral regulatory T (Treg) cells. Heterogeneous intratumoral Treg cells can be characterized based on
their expression pattern on functional surface molecules or secretion of inhibitory cytokines. Activated Treg cells up-regulate various chemokine
receptors in a context-dependent manner to home to the site of inflammation. Some chemokine receptors, such as CCR8, have been shown to
also support Treg function and stability in addition to providing chemotactic navigation to guide Treg cells to the tumor microenvironment
(TME). Furthermore, Treg cells also up-regulate numerous inhibitory receptors (IRs), including PD1 and LAG3. Although many of these IRs
have been associated with dysfunctional, exhausted CD8" tumor-infiltrating lymphocytes (TILs), the exact cell-intrinsic role(s) of IRs in intratu-
moral Treg cells have not been fully elucidated. Some IRs, such as TIGIT, maintain and promote the suppressive function of Treg cells, whereas
other IRs, including PD1 and LAG3, have been associated with a reduced suppressive activity of Treg cells. Lastly, there are divergent subpopula-
tions of intratumoral Treg cells secreting different inhibitory cytokines, such as transforming growth factor-fi (TGF-f), interleukin-10 (IL-10)

and IL-35.

activated Treg-subset and subsequently increased inter-
feron-y (IFN-y)/tumor necrosis factor-oo production by
NY-ESO-1-responsive CD8" T cells.”' In addition, given
that CCR4 is also highly up-regulated on tumor cells,** the
mechanism underlying CCR4-targeting clinical efficacy
may be through dual-depletion of CCR4" tumor cells and
CCR4" TILs including Treg cells.

C-C chemokine receptor 8

Early studies identified C-C chemokine receptor 8
(CCR8) as a marker of CD4" type 2 helper T (Th2)
cells.?? However, CCR8 was later found to be expressed
on human peripheral Treg cells, and its ligand CCL1 was
able to induce their migration in vitro.** CCR8-deficient
Treg cells showed increased susceptibility to cell death
upon allogeneic adoptive transfer and were unable to
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prevent T cell-induced graft-versus-host disease in lungs
and colon,” indicating an essential role of CCR8 in pre-
serving long-term fitness and functionality of Treg cells in
non-lymphoid organs. Indeed, recent studies have shown
that intratumoral Treg cells or normal adjacent tissue-res-
ident Treg cells selectively up-regulate CCR8 expression
compared with their peripheral counterparts or other T-
cell subsets.?® In addition, the CCRS expression within
CD45" intratumoral immune cells was almost exclusively
on Treg cells in breast cancer;** and the enrichment of
CCRS expression has been correlated with worse progno-
sis in patients with various types of cancer including
breast cancer and melanoma.*

Interestingly, stimulation with its cognate ligand CCL1,
but not other CCRS8 ligands such as CCL8, CCL16 and
CCL18, enhanced suppressive capacity of human Treg
cells in vitro in a signal transducer and activator of

© 2019 John Wiley & Sons Ltd, Immunology, 157, 232-247
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transcription 3 (STAT3)-dependent manner.”” Moreover,
CCR8" Treg cells up-regulate CCL1 expression, thereby
possibly promoting a positive paracrine feedback loop to
sustain their suppressive potential in situ.”’ Targeting
CCR8" Treg cells through either anti-CCR8 mAb or anti-
CCL1 neutralizing mAb drastically reduced tumor-infil-
trating Treg cells while robustly enhancing the anti-tumor
immune response against murine tumor models such as
colorectal adenocarcinoma.”® Although there are currently
no known CCR8-targeted therapeutics in clinical trials
(Table 1), targeting CCR8 may be a highly selective thera-
peutic strategy sparing the peripheral Treg cells that do
not express CCRS.

Inhibitory receptors

Inhibitory receptors (IRs), such as cytotoxic T-lympho-
cyte-associated protein 4 (CTLA4, CD152) and pro-
grammed cell death protein 1 (PD1, CD279), have been
extensively investigated in the context of effector T-cell
exhaustion,” but their impact on Treg cells is less well
defined despite their up-regulation in the TME.'® In this
section, we review the impact of IRs on intratumoral Treg
cells and their contribution to regulating anti-tumor
immunity (Fig. 1).

Cytotoxic T-lymphocyte-associated protein 4

Regulatory T cells constitutively express CTLA4 as its
expression is controlled by Foxp3.' Although CTLA4 is
often retained intracellularly in circulating Treg cells, a
subset of Treg cells up-regulates surface CTLA4 expres-
sion in the TME.”® CTLA4 binds to and blocks CD80/
CD86 with a significantly higher affinity than its co-stim-
ulatory counterpart CD28.'" Strikingly, CTLA4 can also
physically remove CD80/CD86 from the surface of anti-
gen-presenting cells by trans-endocytosis.”’ In addition,
dendritic cells up-regulate indoleamine-2,3-dioxygenase
(IDO) upon CTLA4-binding and convert tryptophan to
kynurenine in the local microenvironment.”> A recent
study demonstrated that kynurenine induces T-cell recep-
tor (TCR)-independent up-regulation of PD1 in CD8"
TILs through activation of aryl hydrocarbon receptor,
leading to CD8" T-cell exhaustion.” It is possible that
Treg cells regulate anti-tumor immune responses via a
CTLA4-IDO-kynurenine axis.

Consistent with these observations, the enrichment of
CTLA4" TILs or Treg cells was associated with poor
prognosis in patients with various types of cancer includ-
ing non-small cell lung cancer.”* Furthermore, the finding
that administration of anti-CTLA4 blocking antibody
resulted in effective anti-tumor immunity and protection
against a secondary tumor challenge in murine cancer
models® led to the development of two mAbs against
CTLAA4, (MDX-010)>®  and

human ipilimumab

© 2019 John Wiley & Sons Ltd, Immunology, 157, 232-247
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tremelimumab (CP-675206)%" (Table 1). After successful
clinical trials demonstrating an improved overall survival
rate (20% after 4 years),”® ipilimumab was approved by
the US Food and Drug Administration for treating
patients with unresectable or metastatic melanoma in
2011, with other CTLA4-targeted therapeutics in clinical
trials (Table 1). In addition, a recent study has shown
that blocking CTLA4 on both effector T cells and Treg
cells was required for maximal enhancement of anti-tu-
mor immunity.” Hence, CTLA4 blockade not only inhi-
bits CTLA4" Treg-mediated inhibition of T-cell activation
but it also improves effector T-cell activity in a cell-in-
trinsic manner.

Programmed cell death protein 1

Although effector T cells up-regulate expression of PD1
upon TCR stimulation, PD1 is constitutively expressed on
a small proportion of peripheral Treg cells,*® which is fur-
ther up-regulated in the TME.*' However, the cell-intrinsic
impact of PD1 expression on intratumoral Treg cells has
not been fully elucidated. Despite the excitement around
the success of anti-PD1 checkpoint blockade for cancer
immunotherapy [Nivolumab** and Pembrolizumab,* with
many others in clinical trials (Table 1)], there remains a
large proportion of patients who do not respond or who
develop resistance overtime.** It is therefore crucial to
understand the potential impact of PD1 blockade on other
intratumoral immune cells.

PD1 plays a crucial role in Treg cell homeostasis and
survival as IL-2 stimulation with PD1 blockade or genetic
deletion of PD1 resulted in an overt proliferation of Treg
cells followed by a rapid contraction due to increased
apoptosis.*” A recent study reported that apoptotic intra-
tumoral Treg cells express a low level of PD1 (PD1")
whereas viable intratumoral Treg cells showed enhanced
PD1 expression (PD1™). Interestingly, apoptotic PD1'
Treg cells displayed superior suppressive capacity in an
adenosine/A,5-dependent manner through sustained
expression of CD39 and CD73,” indicating that PD1
expression on Treg cells may not positively correlate with
their functionality. Consistently, PD1™ Treg cells isolated
from blood or tumor of patients with glioblastoma multi-
forme have been characterized as a dysfunctional, effector
T-cell-like population with inferior suppressive capacity.*!
Further investigation is warranted to understand whether
and how PD1™ and PD1' Treg cells may be involved in
the development of resistance to immunotherapy.

Lymphocyte-activation gene 3

Lymphocyte-activation gene 3 (LAG3), like other IRs, is
transiently expressed on effector T cells upon TCR stimu-
lation and cell-intrinsically regulates proliferation and
survival.***” LAG3 is highly up-regulated on exhausted
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CD8" T cells,”® and increased expression of LAG3 on
TILs has been associated with poor patient survival in
various cancer types including non-small cell lung can-
cer.*® Currently, there are at least 10 LAG3-targeted ther-
apeutics in clinical trials (Table 1).* However, the impact
of LAG3 blockade on LAG3" intratumoral Treg cells has
not been fully elucidated.

Unlike effector T cells, a subset of peripheral Treg cells
constitutively expresses a low level of LAG3, which is fur-
ther up-regulated upon activation.”” LAG3" Treg cells are
highly enriched in the TME as well as in the circulation
of individuals with cancer.”® Early studies have suggested
that the expression of LAG3 is required for the maximal
suppressive activity of Treg cells, as an antibody-mediated
blockade or genetic deletion of LAG3 severely impaired
their function both in vitro and in vivo.***’ Moreover,
recent studies demonstrated that human Treg cells iso-
lated from individuals with head and neck squamous cell
carcinomas (HNSCC) showed enhanced suppressive func-
tion compared with Treg cells from matched patient
peripheral blood mononuclear cells or healthy donors.*
Although the exact role of LAG3 on intratumoral Treg
cells remains unclear, a recent study using a mouse model
of autoimmune diabetes has shown that LAG3 intrinsi-
cally limits Treg cell function and survival, while LAG3-
deficient Treg cells substantially delayed the disease
onset.”’ Hence, it is possible that LAG3 blockade may
limit or augment anti-tumor immunity depending on the
ratio of LAG3" intratumoral Treg cells versus T effector
cells as well as the severity of inflammation in the
microenvironment.

T-cell immunoreceptor with immunoglobulin and
ITIM domains

T-cell immunoreceptor with immunoglobulin and ITIM
domains (TIGIT) is a recently discovered IR that belongs
to the poliovirus receptor (PVR) family.”> The expression
of TIGIT is highly restricted to the lymphocyte compart-
ment, such as T cells and natural killer cells.”> Although
TIGIT expression is up-regulated upon TCR stimulation,>*
a relatively large proportion of human Treg cells constitu-
tively expresses TIGIT, which is further enhanced in the
TME.” TIGIT regulates effector T-cell activation by com-
petitively binding to its receptor PVR on antigen-present-
ing cells with approximately 100-fold higher affinity than
its co-stimulatory counterpart CD226.>> TIGIT can bind to
both PVR and CD226, and prevention of CD226-dimeriza-
tion on the T-cell surface is one of the key cell-intrinsic
regulatory mechanisms of TIGIT.”>* In addition, TIGIT is
co-expressed with PD1 on exhausted CD8 T cells, and
TIGIT™ CD8" T cells present a severely dysfunctional state
with diminished cytokine production and prolifera-
tion.”*> Preclinical studies with Tigit '~ mice or anti-
TIGIT mAD treatment have been shown to greatly improve
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anti-tumor immune responses in a CD8" T-cell-dependent
manner.”* Hence, TIGIT has been implicated as one of the
potential cancer immunotherapeutic targets to elicit effec-
tive anti-tumor immunity (Table 1).

However, recent studies have revealed previously unap-
preciated intrinsic roles of TIGIT in Treg cells. Despite
previous observations that TIGIT expression marks a
highly suppressive population of Treg cells,”® the exact
underlying mechanisms and the potential roles of intrin-
sic TIGIT-signaling in Treg cells have not been fully eluci-
dated. Whereas effector T cells up-regulate both CD226
and TIGIT upon activation, Treg cells preferentially up-
regulate TIGIT over CD226.°® CD226-signaling detrimen-
tally impacts Treg cell stability and function, and TIGIT—
PVR interaction was required to maintain the suppressive
function of Treg cells.”® Furthermore, a recent study has
demonstrated that TIGIT-signaling repressed the PI3K-
Akt axis in an inositol polyphosphate-5-phosphatase D-
dependent manner leading to sustained nuclear localiza-
tion of Foxol, which was required to rescue Treg cells
from an IFN-y-secreting effector Thl-like Treg phenotype
induced by IL-12 in a highly inflammatory environment,
such as multiple sclerosis.”” These observations suggest
that unlike LAG3, TIGIT is a selective IR that represses
effector T-cell function while enhancing Treg cell stability
and function. Consistently, increased infiltration of
TIGIT" Treg cells has been correlated with poor progno-
sis of patients with melanoma.” Interestingly, CD8" T-
cell-restricted TIGIT deletion did not improve anti-tumor
response in a Ragl - adoptive transfer sys‘[em,S > suggest-
ing that preclinical efficacy observed with TIGIT blockade
and Tigit~'~ mice may have been due to functional desta-
bilization of intratumoral Treg cells.

T-cell immunoglobulin and mucin-domain
containing-3

T-cell immunoglobulin and mucin-domain containing-3
(TIM3) was first discovered and characterized as a marker
for Thl cells and type 1 cytotoxic CD8" T cells.”® Interest-
ingly, chronic T-cell activation is required for sustained
TIM3 expression on Thl-polarized CD4" T cells, implying
a role for TIM3 during late-stage T-cell differentiation.®®
TIM3 was subsequently characterized as one of the key
markers associated with exhausted CD4" and CD8" T cells
in the context of both chronic viral infection® and can-
cer.”” However, TIM3 lacks known inhibitory signaling
motifs (ITIM or ITSM) around cytoplasmic tyrosine resi-
dues,” so the TIM3-signaling pathway has not been fully
understood.

Similar to PD1, TIM3 is expressed by a small fraction
of peripheral Treg cells, whereas a large proportion of
intratumoral Treg cells express TIM3.”*°' However,
unlike PD1*™ Treg cells, TIM3" intratumoral Treg cells
showed enhanced suppressive capacity due to increased

© 2019 John Wiley & Sons Ltd, Immunology, 157, 232-247
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expression of CTLA4 and CD39.>®°! Increased infiltration
of TIM3" CD4" T cells or TIM3" Treg cells is associated
with poor prognosis of patients with various malignancies
including non-small cell lung cancer.®* Given the preclini-
cal observations that TIM3-blocking mAbs could reinvig-
orate anti-tumor immunity,*’ several clinical trials are
actively examining the safety and efficacy of TIM3 block-
ade therapy in both solid tumors and lymphomas
(Table 1). However, as with PD1- and LAG3-targeted
therapies, further investigation of the impact of TIM3 on
intratumoral Treg cells is warranted.

Markers for stability and enhanced function

Neuropilin 1

Neuropilin 1 (NRP1) is a type 1 transmembrane protein,
first characterized as a receptor for a neural chemorepel-
lent Semaphorin 3a (Sema3a).®* However, an early study
demonstrated the role of NRPI in priming T-cell activa-
tion through a T cell-dendritic cell interaction-dependent
mechanism.®®  Furthermore, NRP1 is constitutively
expressed on murine Treg cells°® and has been defined as
a discriminatory marker between thymically derived Treg
cells and peripherally induced Treg cells.®”*®

Our recent study demonstrated that NRP1 expressed on
the surface of murine Treg cells is constitutively associated
with phosphatase and tensin homolog (PTEN) and
Semada-mediated NRP1 signaling is required to potentiate
the immunoregulatory function of Treg cells by nuclear
retention of Foxo3a through the PTEN-Akt axis at the
immunological synapse (Fig. 1).°* Mice with a Treg-re-
stricted deletion of NRP1 exhibited an enhanced anti-tu-
mor response comparable to the Treg-depletion model
without succumbing to autoimmunity.®® These findings
suggest that the NRP1-PTEN—Akt-Foxo3 axis is required
for the functional stability of Treg cells in an inflammatory
environment. Although conventional Treg instability is
marked by a loss of Foxp3 expression,”® Treg cells with
functional instability induced through the loss of NRPI
maintain the expression of Foxp3 while ectopically up-reg-
ulating effector T-cell-like gene signature such as IFN-y;*¢°
hence, this unique state is referred to as Treg fragility.®
Strikingly, Treg fragility was required for the effective PD1-
blockade immunotherapy on established transplantable
mouse adenocarcinoma (MC38) in an IFN-y-dependent
manner as Treg-restricted deletion of IFN-yR resulted in
the diminished therapeutic efficacy of anti-PD1 treatment.®

Unlike murine Treg cells, human Treg cells do not consti-
tutively express NRP1. Instead, NRP1 is induced upon TCR
stimulation, and perhaps other factors.”" Some studies have
reported that a subset of Treg cells up-regulate NRP1 expres-
sion in various types of cancer such as melanoma,® consistent
with the notion that the physiological role of NRP1 in Treg
cells is restricted to inflammatory sites. In addition, increased

© 2019 John Wiley & Sons Ltd, Immunology, 157, 232-247
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infiltration of NRP1" Treg cells in the TME has been associ-
ated with poor prognosis in patients with melanoma and
HNSCC.? Furthermore, tumor-derived vascular endothelial
growth factor (VEGF) has been shown to promote Treg cell
infiltration into the TME in an NRP1-dependent manner,””
suggesting a migratory role of NRP1 in Treg cells. The thera-
peutic targeting of NRP1 should provide insight into the
impact of NRP1 blockade on the fragility and infiltration of
human intratumoral Treg cells (Table 1).

Inhibitory cytokines

Secretion of inhibitory cytokines is one of the primary
mechanisms used by Treg cells to regulate immune
responses.” Increased intratumoral expression of inhibi-
tory cytokines is associated with poor prognosis in vari-
ous cancer types.”” > In this section, we discuss our
current understanding of the role played by transforming
growth factor (TGF)-f", IL-10" and IL-35" Treg subsets
in the TME (Fig. 1).

Transforming growth factor-f

Transforming growth factor-f plays a pleiotropic role in
the immune system and is also involved in thymic devel-
opment of all T-cell subsets. The absence of TGF-f-sig-
naling results in defective thymic Treg cell development
during the first 3-5 days of murine development.”® In
addition, TGF-f promotes the differentiation of induced
Treg cells in vitro,>’® demonstrating its broad
immunoregulatory functions in controlling inflammation.
Furthermore, Treg-derived TGF-f plays a crucial role in
regulating immune responses. Recent studies have
reported the enriched presence of TGF-f-producing
intratumoral Treg cells in various types of cancer, such as
HNSCC,”” and their enhanced suppressive potential com-
pared with peripheral Treg cells,’”® indicating that TGF-f
is one of the major regulatory mechanisms that Treg cells
employ in the TME. Indeed, elevated TGF-f has been
correlated with poor prognosis in patients with pancreatic
cancer’’ and breast cancer.”* However, TGF-f-signaling
blockade had no impact on intratumoral Treg cell accu-
mulation or epigenetic status in a murine mammary
gland tumor model.* In addition, intratumoral effector T
cells and Treg cells showed minimal TCR repertoire over-
lap,®' suggesting that thymically derived Treg cells may be
the dominant intratumoral population and not intratu-
morally converted peripherally induced Treg cells.

These observations led to an increasing interest in target-
ing TGF-$ as a therapeutic approach (Table 1).** For
instance, a preclinical study using a mouse model of trans-
plantable lung cancer (AG104L?) demonstrated that block-
ing TGF-f with a neutralizing mAb (clone A411) achieved
tumor rejection comparable to transient Treg cell depletion
with anti-CD25 mAb (clone PC61) administration.®®
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In addition to its impact on the immune infiltrate,
TGEF-f also directly supports tumorigenesis by promoting
(i) angiogenesis in concert with VEGF, (ii) fibrosis and
(iii) metastasis by promoting cancer cell motility and
epithelial-to-mesenchymal transition.” Further investiga-
tion is warranted to understand how many of these pro-
tumor factors are directly contributed by Treg-derived
TGF-f in order to rationally design effective therapy
against individual cancers that may present varying
degrees of TGF-f-mediated pathophysiology in the TME.

Interleukin-10

Interleukin-10 was initially characterized as a Thl-regulat-
ing factor produced by Th2 cells.** Later studies demon-
strated that its predominant suppressive mechanism is the
regulation of the immunostimulatory potential of antigen-
presenting cells, resulting in impaired production of the
pro-inflammatory cytokine IL-12, as well as expression of
major histocompatibility complex class IT and CD86.%>%¢
Although many different cell types produce IL-10,* dele-
tion in Treg cells was sufficient to induce spontaneous col-
itis,* highlighting the physiological importance of Treg-
derived IL-10. Although TCR stimulation is sufficient to
induce the secretion of IL-10 by Treg cells, co-culturing in
the presence of other immune cells, such as effector T cells,
further enhanced the production of IL-10 in vitro.®?® A
large proportion of intratumoral Treg cells show up-regu-
lation of IL-10 in both humans and mice,”””" and in some
tumor models, Treg cells are the predominant source of
IL-10.*” In addition, the enriched IL-10 expression in the
TME has been associated with poor prognosis in patients
with HNSCC.”” We have recently demonstrated that intra-
tumoral Treg-derived IL-10 directly modulates the
BLIMP1 expression in CDS8" TILs, which in turn further
promotes IR expression and T-cell exhaustion.”’ Treg-re-
stricted deletion of IL-10 resulted in an altered myeloid
compartment in the TME by upregulating T cell stimula-
tory molecules, such as major histocompatibility complex
class II and CD80, on intratumoral dendritic cells, suggest-
ing that Treg-derived IL-10 alters the TME, which can
indirectly provide additional regulation of T-cell-mediated
anti-tumor immune responses.”’

However, there has been increasing evidence that IL-10
may also play an anti-tumor role.”> For instance, early
administration of IL-10 impaired the dendritic cell vac-
cine-mediated anti-tumor response,93 consistent with the
conventional inhibitory function of IL-10. However, IL-
10 administration at a later time-point, 7 days post-vacci-
nation, resulted in tumor regression as well as the expan-
sion of antigen-specific memory CD8" T cells.”?
Consistent with these observations, a recent study demon-
strated that Treg-derived IL-10 was required during the
resolution phase of inflammation to promote CD8" T-cell
memory development by modulating the maturation
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status of dendritic cells.”* Furthermore, PEGylated IL-10,
which has enhanced in vivo stability, elicited increased
activation of intratumoral CD8" T cells with heightened
IFN-7y production, resulting in a remarkable rate of tumor
regression and survival of mice with established large
tumor burdens.”” However, given the enrichment of IL-
10" Treg cells in progressively growing and established
tumors,”® it appears that the outcome of anti-tumor
responses depends on the balance between immunostimu-
latory and immunoregulatory roles of Treg-derived IL-10.
Further investigation is warranted to determine potential
biomarkers that help to identify patients with cancer who
may benefit from IL-10 blockade or exogenous IL-10
administration, especially given that PEGylated IL-10 is in
clinical trials (Table 1).

Interleukin-35

Interleukin-35 is a member of the IL-12 cytokine family
and is composed of p35 (encoded by Il12a) and Ebi3 (en-
coded by Ebi3).”® Although IL-35 was initially reported to
be preferentially expressed by activated Treg cells,”” two
studies have shown that regulatory B cells can also express
IL-35.%%° The IL-35 receptor (IL-35R) on T cells consists
of two shared subunits, IL-12Rf2 (encoded by I112rb2) and
gp130 (encoded by Il6st), which can be expressed as a het-
erodimer or homodimers of either chain. However, it has
been suggested that the receptor on B cells may differ and
consist of an IL-12Rf2 (encoded by I112rb2)/WSX1 (en-
coded by I127ra) heterodimer,”® highlighting the variability
and promiscuity of the IL-35R.%

Interestingly, the up-regulation of IL-35 expression in
Treg cells required activation in the presence of cell—cell
contact with effector T cells.*” This observation suggested
that effector T cells provide positive feedback to enhance
Treg cell functions, leading to the discovery of the NRP1—
Semada axis®’ as discussed above.

We have previously demonstrated that IL-35" Treg cells
were highly enriched in the TME, comprising approxi-
mately 50% of intratumoral Treg cells in BI6F10 tumor
model” and they promoted the expression of multiple IRs
on CD4" and CD8" TILs.” We have recently reported that
one of the underlying mechanisms of Treg-derived IL-35-
mediated regulation of anti-tumor responses was through
direct modulation of BLIMP1 expression through IL-35R-
signaling in CD8" T cells, which in turn promoted IR
expression and limited differentiation of central memory
CD8" T cells.”" Interestingly, Treg-restricted single-dele-
tion of IL-35 or double-deletion of both IL-10 and IL-35
resulted in a comparable reduction of tumor burden and
enhanced central memory T-cell differentiation.”’ These
observations suggest that Treg-derived IL-35 may play a
dominant immunoregulatory role over other inhibitory
cytokines. Furthermore, enhanced expression of IL-35 in
the TME, by use of an IL-35-B16F10 transfectant,
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accelerated tumor growth by enhancing the accumulation
of myeloid-derived suppressor cells and promoting angio-
genesis.'” These observations indicate that Treg-derived
IL-35 actively contributes to the immunosuppressive
TME. There are currently no IL-35-targeted therapeutics
in the clinic (Table 1), but systemic neutralization of IL-
35 has resulted in increased proliferation and inflamma-
tory cytokine production by CD8" TILs and reduced
tumor growth in a preclinical murine tumor model.” This
may be a potent immunotherapeutic approach that pro-
motes the anti-tumor response of effector T cells while
preventing IL-35-mediated pro-tumor tissue remodeling.

Conclusion

Targeting immunoregulatory mechanisms, such as CTLA4
and PD1, have successfully provoked long-term anti-tu-
mor immune responses in patients with advanced cancer,
such as unresectable metastatic melanoma.’®*>*> This has
led to an exponential growth of clinical trials investigating
the efficacy of new cancer immunotherapies targeting
additional immunoregulatory mechanisms. However,
there remains a large proportion of cancer patients who
do not Dbenefit from checkpoint-blockade cancer
immunotherapy. Although these therapeutic approaches
have been focused on the elicitation of inflammatory
responses against cancer, enhanced inflammation could
also play a detrimental role by facilitating the recruitment
of Treg cells through chemokines such as CCL1 and
CCL22, resulting in a dampening of the anti-tumor
responses. In addition, as demonstrated by the paradoxi-
cal functions of Treg-derived IL-10, the timing of thera-
peutic administration may also be critical.

Furthermore, although there is a largely overlapping list
of effector molecules that Treg cells up-regulate in the
TME, intratumoral Treg cells may be highly heteroge-
neous, using distinct transcriptional programs to support
their survival and functions. In addition, it is still unclear
whether these Treg subsets represent distinct and stable
lineages. For instance, intratumoral Treg cells seem to
preferentially express IL-10 or IL-35, rarely both.”" It has
been suggested that IL-10" or IL-35" Treg cells represent
stable subsets,”® but we have found that the expression
pattern of IL-10 and IL-35 can be altered upon TCR
stimulation in vitro, indicating that this may instead rep-
resent transitional states of activated Treg cells in the
TME.”! To effectively target intratumoral Treg cells, fur-
ther investigation is warranted to fully understand the
phenotypic and functional plasticity of Treg cell subsets
that may potentially play a role in resistance to
immunotherapy. Hence, to rationally design effective can-
cer immunotherapies, the next generation of cancer
immunotherapies must consider: (i) appropriate combi-
nation of targets that augment effector responses, (ii)
block Treg cell infiltration or function specifically in the

© 2019 John Wiley & Sons Ltd, Immunology, 157, 232-247
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TME, and (iii) determine the correct sequence of thera-
peutic administration to maximize beneficial impact,
thereby also minimizing detrimental adverse effects.
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