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Abstract: Despite the increasing volume of available data,
the proportion of experimentally measured data remains
small compared to the virtual chemical space of possible
chemical structures. Therefore, there is a strong interest in
simultaneously predicting different ADMET and biological
properties of molecules, which are frequently strongly
correlated with one another. Such joint data analyses can

increase the accuracy of models by exploiting their
common representation and identifying common features
between individual properties. In this work we review the
recent developments in multi-learning approaches as well
as cover the freely available tools and packages that can be
used to perform such studies.

Keywords: Multi-task learning · transfer learning · neural networks

1 Introduction

Nowadays, the volume of data that can be generated and
processed when modelling tasks has increased dramati-
cally.[1] Machine Learning (ML) techniques, notably Deep
Neural Networks (DNNs)[2] are becoming indispensable as a
tool for managing and using these vast amounts of
generated and measured data effectively. However, data
measurement is still a difficult and time-consuming task,
and there is a strong interest in how to make the best use
of all available data. Biological data, such as ADMETox
properties, are highly interrelated. For example, the lip-
ophilicity of compounds is, in one way or another, very
important for the majority of these properties. Thus learning
several ADMETox properties simultaneously can result in
better models. Moreover, some types of data produced with
different methods can have different experimental accuracy
and/or refer to related but not identical properties. For
example, kinetic water solubility is the concentration of a
compound in solution at the time when an induced
precipitate first appears. This type of solubility can be easily
automatized for use in High Throughput Screening (HTS)
settings and is actively used in industry due to this. The
more biologically relevant solubility is thermodynamic
solubility, which is the concentration of a compound in a
saturated solution when excess solid is present, and
solution and solid are at equilibrium.[3] The co-modelling of
both types of solubility simultaneously could potentially
develop better models for each of them. This can be
achieved with the help of multi-task learning,[4] which can
be applied to an arbitrary combination of regression and
classification tasks (so called heterogeneous multi-tasks).

These multi-learning approaches belong to so-called
transfer learning,[5] a technique where knowledge gained in
one or several (source) tasks is used to improve the target
task. The transfer learning approaches differ with respect to
whether the source and/or target tasks have labelled data.
Thus, they can be classified as semi-supervised or “self-
taught” learning (no labelled data in the source domain),
transductive learning (labelled data are only in the source
domain), unsupervised transfer learning (no labelled data
are available)[5] as well as methods which use labelled data
for both source and target tasks, which include multi-
learning approaches.

The ability to infer relevant knowledge is very important
for intelligence. For example, humans, who can draw on
vast amounts of previously-learned information, can be
trained on a new task with a relatively tiny number of
examples. In contrast, traditional machine learning algo-
rithms, which usually learn from scratch, and require large
example sets to do so. Therefore, there is active develop-
ment and interest in machine learning to design new
methods having the same speed and accuracy as humans.
Early examples of such types of learning have been
successfully reported since the mid-1990s, e. g. the use of
neural network weights trained with one task as a starting
point for new ones to increase the development speed and
the accuracy of models.[4] A Library model of Associative
Neural Networks[6] is another example, which applied on-the
fly correction of predictions for new data by using the errors
of the nearest neighbours of the target sample.[7] Transfer of
information was also done by developing models for
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individual properties, and then using those model predic-
tions as additional descriptors for the target property,
known as the feature net approach.[8] In the case that the
target and source properties are very similar or identical
(e. g., measured for different species or at different con-
ditions), one can encode different targets by using addi-
tional descriptors (e. g., conditions of experiments) and
model all properties simultaneously. Figure 1 schematically
illustrates single task as well as several multitask modelling
approaches using an example of neural networks. Some of
these approaches, such as the feature net, use sequentially-
ordered learning.

In our review we will cover new developments in the
field, which have appeared during the recent years. Also,
we will mainly focus on the methods where the analysed
properties are simultaneously modelled within a single
model, which corresponds to Figure 1b.

Multi-task Learning (MTL) is a technique which aims
improve ML efficacy by simultaneously co-modelling multi-
ple properties within a single model. A lot of developments
in this field were done in in 1990s by Rich Caruana,[4] who
investigated how to improve related task performance by
leveraging domain-specific information, and inductively
transferring it between the tasks. In comparison to the
other transfer learning approaches, which use labelled data

for both source and target tasks, the aim of MTL is to
improve the performance of all tasks with no task
prioritised.

MTL trains tasks in parallel, sharing their representation
internally. As a result, the training data from the extra tasks
serve as an inductive bias, acting in effect as constraints for
the others, improving general accuracy and the speed of
learning. Caruana noted mechanisms by which MTL may
show improvement over Single Task Learning (STL) to be a)
amplification of statistical data; b) attention focusing
(finding a better signal in noisy data); c) eavesdropping
(learning “hints” from simpler tasks); d) representation bias
and feature selection and e) regularisation (less over-
fitting).[4]

As MTL implies sharing information between all tasks, it
is possible to define three main types of MTL based on the
type of data sharing: feature, instance and parameter-
based.[9] Feature-based MTL models learn a common feature
representation among all the tasks by assuming that such a
representation can increase the performance of the algo-
rithm vs. single-tasks. Parameter-based approaches explore
the similarity between target properties and include task
clustering, learning of task relationships, as well as multi-
level hierarchical approaches. Instance-based MTL identifies
individual data within a task, which can be effectively used

Sergey Sosnin is a Ph.D. student in the Center
for Computational and Data-Intensive Science
and Engineering in Skolkovo Institute of
Science and Technology. He gained his Mas-
ter’s degree in Bioorganic chemistry from
Moscow State University. His main research
interests are chemoinformatics, computational
methods of drug discovery, QSAR/QSPR.

Pavel Karpov obtained his PhD in organic and
medicinal chemistry from Moscow State Uni-
versity, Russia. His main research interests lie
in the development of new machine-learning
approaches for drug discovery. Now he is
working as a postdoctoral fellowship in the
Institute of Structural Biology in Helmholtz-
Zentrum Munchen.

Michael Withnall is a doctoral student at the
Technical University of Munich, studying ma-
chine learning in chemoinformatics, and is
industrially partnered with AstraZeneca. He
has a Master’s degree in Chemistry from the
University of Nottingham where he worked on
OF-DFT. His main research interests are che-
moinformatics, quantum chemistry, and deep
learning.

Mariia Vashurina is a junior researcher at the
Research Institute of Agricultural Microbiology
of Russian Academy of Sciences. She was
working under supervision of Dr. Tetko in
Helmholtz Zentrum München and obtained
her Master’s degree in Chemoinformatics from
both Strasbourg University (France) and ITMO
University (Russia). Currently she is working on
the transmembrane molecular modeling and
has a strong interest in machine learning
methods.

Professor Maxim Fedorov is Director of the
Centre for Computational and Data-Intensive
Science and Engineering (CDISE) at Skolkovo
Institute of Science and Technology. He holds
a PhD degree in Biophysics and DSc in
Physical Chemistry (both degrees from the
Russian Academy of Sciences). His current
research is mainly focused on applications of
artificial intelligence, data analysis and high-
performance computing in molecular sciences
and biomedicine.

Igor Tetko is Coordinator of Marie Skłodowska-
Curie Innovative Training Network European
Industrial Doctorate Horizon2020 project “Big
Data in Chemistry” and CEO of BIGCHEM
GmbH (http://bigchem.de), which offers inno-
vative solutions for Big Data analysis. His
research interests include (Q)SAR/QSPR, devel-
opment and application of machine learning
approaches to predict physico-chemical prop-
erties and biological activities of molecules.

Minireview www.molinf.com

© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA Mol. Inf. 2019, 38, 1800108 (3 of 11) 1800108

www.molinf.com


1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

in other tasks for information sharing.[10] However, we did
not find applications for the latter in chemoinformatics and
thus will not cover them in our review. Let us consider
some examples of the other two MTL approaches and their
combination.

2 Feature Based Approaches

Neural networks are the primary platform for multi-learning.
Rich Caruana was one of the first to develop multi-task
learning using backpropagated neural networks. He found
out that four separate neural networks performing only one
task can be reduced to one network with multiple outputs
that performs the tasks simultaneously. As a result, he
created a multi-task neural network able to perform parallel
learning. One should also mention the earlier work of
Suddarth and Kergosien,[11] who used an additional layer to
inject rule hints and to guide the neural network as to what
should be learned.

The network forms a set of features on the hidden layer
(s), which can fit several tasks simultaneously. Moreover, the
activation patterns of neurons in neural networks with
several hidden layers contribute to the formation of
features, which are known to be important for the analysed
type of properties, e. g. toxicophores for the prediction of
toxicological end-points.[12]

One of the first successful applications of MTL in
chemoinformatics was done by Varnek et al.,[8] who demon-
strated that learning several tissue/air partitioning coeffi-
cients by using Associative Neural Networks provided
models with statistically-significantly higher accuracy com-
pared to the respective single task models. The neural
network models analysed by Varnek et al. were examples of
so-called “shallow” neural networks since they included only
one hidden layer. The appearance of new training algo-
rithms and in particular GPU-accelerated computing has

brought about the rise of Deep Neural Networks,[2] which
incorporate multiple hidden layers with much larger
numbers of neurons. This greater flexibility of DNN net-
works allows them to learn more complex relationships and
patterns in the data.

Regarding multi-learning one can distinguish two
primary architectures with respect to the sharing of
parameters: hard and soft. “Hard” parameter sharing is
similar to that of shallow neural networks and implies the
sharing of hidden layers between all tasks, except some
task-specific output layers. “Soft” parameter sharing gives
each task its own model with its own parameters, where
these model parameters have a regularized distance to
facilitate the sharing of learning.[13] Soft parameter sharing
has not yet received sufficient attention in chemoinfor-
matics and will be briefly outlined in the section “Simulta-
neous Feature and Task similarity learning”.

J. Ma et al.[14] performed several experiments on STL and
MTL neural networks. They found out that in some cases
multi-task learning deep neural networks (MTL DNN) are
better than single task learning deep neural networks (STL
DNNs). The authors suggested that better performance of
MTL DNN is based mainly on the size of data sets: MTL
DNNs are useful for small and mixed (small and large)
datasets and STL DNNs are good for large data sets.

Multi-task learning provided the best model according
to the ROC AUC (Receiver Operator Characteristic Area
Under Curve) metric for the Tox21 challenge.[12] The authors
showed that such networks learned on their hidden layers
chemical features resembling toxicophores identified by
human experts. The networks used these features to classify
active and inactive (toxic and nontoxic) compounds. It is
also of note that the second best approach was based on
“shallow” STL associative neural networks.[15]

In another comprehensive study the authors compared
the performance of MTL and STL approaches in predicting
the toxicity of chemical compounds from the Registry of

Figure 1. a) Single Task learning; b) Multi-task learning; c) Multi-task learning by property encoding as descriptors; d) Feature net. Adapted
with permission from ref. [8]. Copyright (2009) American Chemical Society.
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Toxic Effects of Chemical Substances (RTECT) database
totalling 29 toxicity end-points and more than 120 k
measurements.[16] MTL significantly outperformed STL thus
showing the utility of this approach to model complex
in vivo endpoints.

Xu et al.[17] investigated why an MTL DNN can outper-
form separate STL DNNs and under what scenarios the
multi-task approach is advantageous. The result of this
study lead to two main findings regarding the efficacy of
multi-task deep neural networks:
* Similar molecules modelling correlated properties will

boost the predictive performance of the DNN, and
likewise uncorrelated properties will degrade perform-
ance.

* Structurally dissimilar molecules have no influence on the
predictive performance of the MTL DNN, regardless of
whether or not tasks are correlated.

Their conclusions are important for the identification of
strategies for designing datasets for MTL learning.

MTL can be used to simultaneously learn both regres-
sion and classification in one model, as was demonstrated
by Xu et al.[18] for the prediction of acute oral toxicity. The
authors used convolutional neural networks and reported
that their model provided higher accuracy compared to
conventional methods.

Human cytochrome P450 inhibition for 5 kinases were
predicted using a pre-trained autoencoder-based DNN.[19]

On the pre-training stage, the first layers were trained to
reconstruct the original input layer on the whole database.
The authors proved that an autoencoder-based DNN can
achieve better quality than other popular methods of
machine learning for cytochrome P450 inhibition prediction,
and a multi-target DNN approach can significantly outper-
form single-target DNNs. The flexibility of neural networks
makes it possible to use them not only with descriptors
derived from chemical structures in the traditional way, but
also apply them to directly analyse chemical structures
represented as SMILES or chemical graphs. We will review
several approaches in the “Implementations of multi-
learning approaches” section below.

Multi-task feature learning for sparse data using other
methods. The problem of feature-selection has an exact
mathematical formulation and an analytical solution for
linear methods. For example, Varnek et al.[8] compared the
performance of neural networks with Partial Least Squares
(PLS). PLS could also provide multi-task learning by
identifying common internal representations, so called
latent variables, for several analysed properties simultane-
ously. In addition to the PLS method, there are other
approaches for identifying sparse features or to perform
multi-feature selection as comprehensively analysed in a
recent review.[9] These methods can be used directly with
linear or kernel methods, or to provide features for training
other methods.

One such method is Macau.[20] It is based on Bayesian
Probabilistic Matrix Factorisation (BPMF). After BPMF was

used to win the Netflix prize for predicting film recommen-
dation, the interest in this method notably increased. One
of the problems during multi-learning are missing values;
frequently not all measurements are available for all targets.
For some other tasks the matrix of responses can be
extremely sparse, e. g. only 1.2 % of all users-combinations
were available for the Netflix competition. Some methods,
such as neural networks, can naturally work with missing
values by ignoring the error contribution from missing
values when calculating the loss for backpropagation. The
BPMF allows imputing missing values in the matrix thus
enabling the application of standard techniques, such as
singular value decomposition and principal component
analysis. In contrast to classical algorithms of matrix
factorization, Macau is able to handle side relations i. e.
fingerprints of chemical compounds or phylogenetic dis-
tance between protein targets. Another useful feature of
Macau is the ability to work with multi-dimensional data
and perform tensor decomposition. The capacity to deal
with multi-dimensional biological sparse data was studied
by de Vega et al.,[21] who applied this technique to inhibition
activities of 15073 compounds for 346 targets extracted
from ChEMBL. The authors showed that Macau provided
performance similar to that of neural networks methods but
did not require GPU-accelerated computing.

3 Task Learning Approaches

Task learning explores task relationships to better learn
common parameters of models as overviewed below.

Metric-learning algorithms. k-Nearest Neighbour ap-
proaches provide predictions for new samples based on
their nearest neighbours. Usually, it uses a Mahalanobis
distance, which is defined as:

dM xi; xj

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj

� �T M xi � xj

� �q
ð1Þ

where and xi and xj are two samples and M is a matrix,
which acts as a global linear transformation of the input
space. The M matrix is thus an optimizable parameter of the
method. The most straightforward way is to use the same
metric to model all tasks simultaneously. However, better
performance can be expected by using different matrices,
which are optimised to each individual class. If tasks are
correlated, the matrix M can be decomposed into a
common M0 and individual task-specific Mt parts, as

dt xi; xj

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj

� �T M0 þMtð Þ xi � xj

� �q
ð2Þ

where M0 and M1; ;MT are the global matrix and task-
specific additional matrices respectively. The larger the
similarity is between the tasks, the larger the determinant of
matrix M0 relative to those of individual tasks Mt . This idea
was first applied to multi kNN by Parameswaran et al.[22]
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Since that time many different algorithms have been
developed for metric learning, as overviewed by Yang
et al.[23]

Similarity learning. Metric learning, in contrast to
feature selection, directly optimises the parameters of the
method itself. The main idea is that similar tasks can provide
better generalization by using similar parameters. For
example, when classifying several related properties one
can identify a common separation hyperplane given by a
vector w0, which will be only slightly different for separation
hyperplanes wi for individual properties

wi ¼ w0 þ vi ð3Þ

where vi accounts for features specific for property i. This
separation is thus similar to that used for global and task-
specific matrices in eq. (2) where w0 and vi correspond to
matrices M0 and Mt respectively. Figure 2 exemplifies the
intuition underlying this idea used to develop the Multi-Task
Least Square Support Vector Regression (MLS-SVR) ap-
proach.[24]

One of the promising current approaches in the field is
based on MTL networks with “soft” parameter sharing (see
Figure 3). The network facilitates multi-task learning by
regularising weights as well as features (which are defined
as neural network activation patterns at the last layers)
across the networks.[25] The regularisation of weights
corresponds to the sharing of model parameters while the
regularisation of learning features across the last networks’
layers corresponds to feature regularisation. The algorithm
can also be applied if no measurements are available for
one of the tasks.

The information about task dependency can be used as
a priori information and an example of multi-task learning
with the integration of taxonomy information has been
presented by Rosenbaum et.[26] The authors used a dataset
of 112 human kinases extracted from ChEMBL. The Graph-
regularized multi-task (GRMT) Support Vector Machine
Regression and Top-Down Multi-task SVR were used to
consider the relationship between these targets during
modelling. The authors showed that hierarchical learning
provided significantly better results compared to base
models, as developed using STL approaches such as STL, or
a model, which combined all data and ignored the kinases’
types.

Similarity learning is also a feature of Generative Topo-
graphic Mapping (GTM),[27] which can be used both for
visualization and molecular property prediction.[28] GTM
constructs a projection from a high-dimensional descriptor
space into a latent (usually 2D) space. Probabilities of the
latent representations of molecules can be regarded as GTM
descriptors and be used to build classification or regression
models. Gaspar et al.[29] proposed the Stargate GTM method,
which projects both descriptors and multi-target activity
spaces into corresponding latent spaces and iteratively
optimizes the joint probability distribution between the two
mappings. The authors compared the method on data
extracted from ChEMBL and showed that the Stargate GTM
slightly outperformed conventional GTM but had a lower
accuracy than Random Forest. It was also stressed that the
model can act as a “gate”, which both predicts the activity
profiles for a compound and finds areas in a descriptor
space that are likely to have the desired activity profile. The
latest feature is a particular advantage of Stargate GTM.

In machine learning there are a number of other
approaches that can explore task similarity, including task

Figure 2. Multi-task learning in Least Square Support Vector
Regression (MLS-SVR) identifies a common hyperplane w0, which
carries the information of the commonality and wi ¼ w0 þ vi , where
the vector vi carries the information of the specialty. (Reprinted
from Pattern Recognition Letters, vol. 34, Xu, S.; An, X.; Qiao, X.; Zhu,
L.; Li, L., Multi-output least-squares support vector regression
machines, Copyright (2013), with permission from Elsevier).

Figure 3. An example of neural network model using “soft parame-
ter” sharing. Two networks are trained in parallel for each individual
task. The soft parameter sharing is done by introducing a penalty
function, which prevents neural network weights in both models
from differing greatly, as well as by regularising neural network
features at the last layer. Reprinted from ref. [25] under the Creative
Commons license CC-BY 4.0.
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clustering or multi-level approaches as reviewed else-
where.[9]

4 Simultaneous Feature and Task Similarity
Learning

As it was aforementioned, networks with soft parameter
sharing can provide a richer variety of network architectures
(for review see[13]). Such networks can be used to simulta-
neously provide feature selection and task similarity learn-
ing. Let us show how this method could potentially be used
to address domain adaptation. This problem is well known
in the chemical industry and has been deeply studied by
Sheridan,[30] who demonstrated a loss of prediction accuracy
in models for prospective validation of compounds, due to
a time shift in chemical diversity. The problem of prospec-
tive validation can be easily cast to the multi-learning
domain by considering two tasks (prediction of past and
new data, for which one may have just a few measure-
ments) as two separate tasks.

5 Implementations of Multi-Task Learning
Approaches

Multiple software packages exist and are available in the
computer science field, which provide tools for multi-
learning. As a rule, many articles are published by the
authors together with their source code, which is frequently
deposited on online repositories such as GitHub, allowing
wide and immediate dissemination of information. The use
of these software tools in chemoinformatics is not necessa-
rily straightforward due to the need to make an interface
with chemical structures. However, several efforts to port
these packages to chemoinformatics are currently on-going.
In Table 1 we review several complete packages, which
were developed to bring multi-learning approaches to
analyse chemical structures.

Chainer Chemistry (ChemChainer) ports several neural
network architectures, which were recently introduced to
work with graphs, to chemical structures. DeepChem
supports the majority of ChemChainer methods as well as
providing several other approaches, some of which were
originally developed by the authors of the toolbox. Deep-
Chem also provides a port of machine learning methods
from the Scikit-learn python package. Since the latter
methods support only single-task learning, DeepChem uses
an embedded wrapper to calculate models for each task,
and provides a combined result of STL models in way
similar to that of MTL, thus allowing an easy comparison of
STL and MTL models. Thus, the user can apply both types of
methods to datasets containing several properties using a
similar interface. ChemChainer and DeepChem are based on
Python and are built around Chainer and TensorFlow
frameworks, respectively. Both packages use the RDkit
library,[31] which provides a framework to translate chemical
structures to graphs and the required representation for
both packages.

OCHEM provides[32] a uniform interface to methods from
both of these packages as well as several other methods
supporting multi-task learning, such as Associative Neural
Networks, an implementation of Deep Neural Networks, a
GPU implementation of Least Squares Support Vector
Machines[33] and several other approaches. An example of
simultaneous prediction of tissue/air partitioning coeffi-
cients from Varnek et al.[8] by different methods is shown in
Figure 4.

Below we overview several methods implemented in
these packages. The majority of these methods are neural
networks that operate on chemical graphs. Thus, these
approaches are different from traditional ones that analyse
molecules by converting them to a set of descriptors. The
first publication about the direct application of neural
networks to graphs was proposed as an extension of
recurrent neural networks in 2005.[34] Interestingly, the first
models based on chemical graphs were presented in the
field of chemoinformatics about eight years earlier by
Baskin et al.[35]

Neural Network Fingerprints (NNF). The method shows
that the representation of chemical structures as circular
fingerprints (e. g. Morgan fingerprints or Extended Connec-
tivity Circular Fingerprints (ECFP)) can be extended with a
more advanced method based on neural networks.[36]

Weave network.[37] This network was developed as an
inspiration of convolutional neural networks. This network
recreates atom and pair features on each layer based on the
information in the previous layer, which resembles a
weaving propagation of information through the network.
The multiple layers (“weaves”) can be stacked to produce
networks with more complex architectures.

Renormalized Spectral Graph Convolutional Network
(RSGCN).[38] This network was developed to learn large
graph-structured networks, where the classification informa-
tion is only available for a small number of samples but

Table 1. “Chemistry aware” multi-task learning approaches.

Package Examples of supported
algorithms

Availability

Chainer
Chemistry

NFP, GGNN, RSGCN,
WeaveNet, SchNet

https://github.com/
pfnet-research

DeepChem DAG, NNF, MPNN,
TEXTCNN, WEAVE,
IRV

https://github.com/
deepchem

OCHEM The methods from Chainer
Chemistry, DEEPCHEM,
DNN, MLS-SVM as well
as MTL by property
encoding as descriptors
and feature net

http://ochem.eu
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valuable additional information can be derived from the
data graph structure of a much large number of unlabeled
data points.

A continuous-filter convolutional neural network for
modeling quantum interactions (SchNet)[39] was devel-
oped to overcome the limitations of using grid-based
approaches, which work with discretized signals such as
image pixels. The Comparative molecular field analysis
(CoMFA)[40] represents another example of a similar grid-
based approach coupled with PLS.

Gated Graph Neural Network (GGNN). This network
was specifically developed to predict sequences of outputs,
allowing better predictions of their relationships.[41] This
algorithm was introduced by testing its performance on the
bAbI suite tasks where it demonstrated a remarkable
performance over existing algorithms. The bAbI tasks were
specifically developed to test the reasoning capabilities of

artificial intelligence systems, such as Path Finding and
Shortest Path Finding, or automatic program verification.

Message Passing Neural Networks (MPNN)[42] are a
generalisation of neural network architectures, which oper-
ate on graphs and update their node states using message
passing. Examples of such networks are the NNF, GGNN,
Weave and RSGCN networks considered above. The
developed network was based on the GGNN architecture
and had several improvements to decrease the computa-
tional cost and increase performance, e. g. optimisation of
the final layers of the network (readout function which
maps the whole graph to a feature vector), improvement of
the scalability of training, etc. This allowed the authors to
achieve superior results for 13 targets when co-modelling
electronic and energetic properties of molecules.

Directed Acyclic Graphs (DAG)[43] (or DAG Recursive
Neural Network) consider molecules as directed graphs by

Figure 4. Example of MTL and STL using the comprehensive-modelling view of the OCHEM platform. The RMSE of models on the left-side
columns (MTL) provide a higher squared correlation coefficient, R2, than models developed for each analysed property regardless of the
descriptor set or method used. The models developed using DEEPCHEM and ChemChainer are based on chemical graphs. The values in
parentheses indicate the average value or R2 for each analysis. ASNN – Associative Neural Networks;[6] DNN – Deep Neural Network;[16] DAG –
Directed Acyclic Graphs;[43] TEXTCNN – Text Convolutional Neural Network;[45] NFP – Neural Network Fingerprint;[36] GGCN – Gated Graph
Neural Network.[41]
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iteratively taking each atom as a central one and defining
the directions of all other bonds as outgoing from the
central atom. The algorithm uses the atoms and their
atomic features to propagate information through the
graph to calculate properties. This operation is repeated for
all atoms in a molecule and the result is used to train a
neural network.

Influence Relevance Voters (IRV)[44] is a variation of a
metric-learning algorithm applied to molecular graphs. The
motivation of this algorithm was to simulate the ability of
humans to learn using just few examples or in a limit with a
single example.

Text Convolutional Neural Networks (TEXTCNN)[45]

uses neural network vectors trained on billions of words
from Google News. These pre-trained vectors serve as
“universal” feature extractors that can be used to achieve
excellent results for various problems. The method was
adapted to work with SMILES by the developers of DEEP-
CHEM.

The variety of powerful and freely accessible methods
will enable their wide use to address various multi-learning
tasks.

6 Open Issues

Despite the promising performance of MTL there are several
issues, which either have not been properly addressed or
remain open. Surprisingly, there is no good understanding
as to which tasks are considered similar and could thus
profit from multi-learning.[13,46–48] The main outstanding issue
being that some tasks help each other and some do not;
some compete for network capacity so that training them
together actually worsens performance. Chen et al.[47]

stressed that, in general, multi-learning neural networks can
be rather hard to train because different tasks bring
imbalances in the gradient calculations. The authors
proposed an adaptive algorithm to estimate the weights of
tasks dynamically during the training to improve prediction
accuracy. Much remains to be explored in the design of
neural network architectures, especially in the area of DNNs.
A recent publication by Sturm et al.[49] analysing the
performance of DNNs on the ExCAPE-DB of 70 million SAR
datapoints, demonstrated a large dependency of the
performance upon the hyperparameter choices. Optimising
such parameters can be a costly operation, so determining
general guidelines for estimating initial settings should be a
point of future investigation. However, one can also
formulate an even broader question: “Can we derive non-
linear dependences between tasks from data and use them
to improve multi-task learning?” Zamir et al. (a best paper
award at the CVPR2018 conference)[48] provided a method
for automatic creation of taxonomy graphs for tasks. This
approach has great prospects in chemoinformatics, e. g., for
deriving and using the taxonomy of protein targets, viruses,
toxicity endpoints, etc. in a fully data-driven mode.

7 Summary

The multi-task learning approaches are gaining popularity
in various fields of science, including chemoinformatics.
Successful use of these methods can result in models with
higher prediction accuracies compared to the development
of models for each individual property. The conditions
when MTL can provide better results over STL are clearly
formulated by Xu et al.[17] As concluded by the authors MTL
should be used for modelling correlated properties, but will
degrade performance for uncorrelated properties. Structur-
ally dissimilar molecules have no influence on the predictive
performance of MTL, regardless of whether or not tasks are
correlated. While these recommendations were for deep
neural networks, they are likely to be valid for other multi-
learning approaches too and should be considered before
deciding whether an MTL method can be employed. Finally,
the development of a single MTL model is much faster and
such a model occupies less memory and disk space
compared to multiple single task models. This feature
becomes important when increasing the number of simulta-
neously analysed properties. Examples of data sets that
could potentially benefit from transfer learning and MTL
with regards to QSAR modelling are given by Simoes
et al.[50] and include a) similar compounds measured under
different experimental conditions; b) antimicrobial activities
against genetically similar microorganisms; c) compounds
with the same mechanism of action in homologous targets
and high degrees of similarity in the binding pocket; d)
non-specific endpoints such as toxicity. When the endpoint
has been measured exactly, but under different conditions
or on e. g. different but correlated target organisms, one
can also encode conditions as input descriptors. The
availability of tools to perform multi-learning is important
for the widespread adoption and use of these methods by
the scientific community.

8 Outlook

Both industrial and academic partners share high expect-
ations from “Big Data” in chemistry, which is a new
emerging area of research on the borders of several
disciplines.[1] Transductive learning in general, as well as
multi-learning approaches, will help to fully exploit the
potential of such data by contributing models with higher
prediction ability and coverage. These approaches will be
important within the new federated learning project, a call
for which was recently launched by the IMI. The future
developments in this area should accommodate different
data precision and accuracy from different sources, unbal-
anced datasets as well as sound calculation of the
applicability domain and accuracy of predictions of multi-
models, which will be important for the use of these
methods. Moreover, MTL can be combined with other types
of networks, such as Recurrent Neural Networks (RNNs), to
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automatically design new chemicals with desired predicted
properties.[51]
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