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To explore the use of five meandering dipole antennas in a multi‐transmit setup, com-

bined with a high density receive array for breast imaging at 7 T for improved pene-

tration depth and more homogeneous B1 field. Five meandering dipole antennas and

30 receiver loops were positioned on two cups around the breasts. Finite difference

time domain simulations were performed to evaluate RF safety limits of the transmit

setup. Scattering parameters of the transmit setup and coupling between the anten-

nas and the detuned loops were measured. In vivo parallel imaging performance

was investigated for various acceleration factors. After RF shimming, a B1 map, a T1‐

weighted image, and a T2‐weighted image were acquired to assess B1 efficiency, uni-

formity in contrast weighting, and imaging performance in clinical applications. The

maximum achievable local SAR10g value was 7.0 W/kg for 5 × 1 W accepted power.

The dipoles were tuned and matched to a maximum reflection of −11.8 dB, and a

maximum inter‐element coupling of −14.2 dB. The maximum coupling between the

antennas and the receive loops was −18.2 dB and the mean noise correlation for

the 30 receive loops 7.83 ± 8.69%. In vivo measurements showed an increased field

of view, which reached to the axilla, and a high transmit efficiency. This coil enabled

the acquisition of T1‐weighted images with a high spatial resolution of 0.7 mm3 isotro-

pic and T2‐weighted spin echo images with uniformly weighted contrast.
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1 | INTRODUCTION

Imaging of the breast at 7 T is of interest due to the increased spectral and spatial resolution, enabling characterization of breast cancer and

monitoring of treatment. However, breast imaging at 7 T is challenging mainly due to severe non‐uniformities in RF transmit (B1
+) fields1-3

and limited penetration depth. A homogeneous B1
+ field is particularly important for MR sequences such as turbo spin echo (TSE), which can
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still not compete with the clinical standard at 3 T.4 One approach to overcome B1 inhomogeneity is forced current excitation as demonstrated in

previous studies.5-7 Another approach is the use of a multi‐transmit setup where RF shimming can be used to improve transmit uniformity for

every subject.1,8

A wide variety of breast MRI studies at 7 T have been presented with various RF coil setups.7,9-17 Although imaging performance in the ante-

rior part of the breast is generally good, clinical usability might be impeded by limited penetration depth towards the pectoral muscle, which is a

frequently occurring challenge. To our knowledge, previous work on 7 T breast imaging has not shown bilateral T2‐weighted imaging or a field of

view (FOV) reaching the axillary lymph nodes; two important measures that are essential for translation of the 3 T clinical exam to 7 T. Next to a

uniform B1
+, B1

+ efficiency is important for dynamic contrast enhanced (DCE) MRI, where short but high flip angles are needed. Next to this, T2

relaxation time in breast tissue is short, so shorter 180° pulses are needed. Moreover, the bandwidth, for example, of pulses in MRS will be

affected by the B1
+ efficiency causing chemical shift displacements.

It has been demonstrated that dipole antennas18 have enhanced field uniformity and penetration depth compared with loop coils,19 which are

often used in other breast coil designs. Since these are the main issues with breast imaging at 7 T, we explored whether the use of five meandering

dipole antennas20,21 (based on fractionated dipole antennas) in combination with 30 receive loops helps to improve the transmit efficiency, B1
+

homogeneity and penetration depth. Specific absorption rate (SAR) and B1
+ simulations are performed and compared with in vivo measurements

to evaluate RF safety limits of this design.
2 | SUBJECTS AND METHODS

2.1 | Hardware

Five meandering dipole antennas were connected to five transmit channels of an eight channel multi‐transmit setup (8 × 2 kW peak power

amplifiers, CPC, New York, USA) on a 7 T MR system (Philips, Cleveland, OH, USA). The design of the meandering dipole antenna was modified

to tune the dipole antennas to resonance at a length of 20 cm, in order to fit next to the cups around the breasts and to match the geometry of the

previous in‐house built coil14 so associated pillows and pads could be reused. Figure 1 shows the electrical circuit of the meandering dipole anten-

nas (Figure 1A), which was identical for all antennas and the receive loops (Figure 1B). The dipole legs have a meandering geometry (Figure 1A), in

order to maintain resonance in a loaded situation for the given length and to reduce SAR levels.20-22 The antenna and the positioning of the anten-

nas are schematically shown in Figure 2A and 2B. The dipole antennas were manufactured on printed circuit boards from the material FR‐4

(Eurocircuits, Mechelen, Belgium). Ideally, the position of the antennas should be parallel to the receive loops to minimize coupling; however,

due to the geometry of breast this was not possible for all coils. The chosen solution is a tradeoff between practical geometric position and

minimized coupling.

Thirty receiver loops were tuned at 298 MHz and positioned on two cups around the breasts: 15 receivers with a diameter of 7.6 cm for

each cup. To protect the volunteers from potential electric hazards, a 1 cm layer of electrically isolating material is placed between the receive

circuitry and the volunteers. Each loop is individually shaped to match the geometry of the cups (Figure 2C). Decoupling of the loops was per-

formed by overlapping of the adjacent loops and by preamplifier decoupling. Each receiver loop was actively detuned during the transmit phase

using a parallel trap circuit with a PIN diode. The scattering parameters of the dipole antennas were measured with directional couplers during

scanning.23 Coupling between the antennas in the presence of the detuned receiver loops as well as coupling between the antennas and 30

receive loops was measured on the bench. Proper functioning and isolation of the receive loops was determined from the noise correlation

matrix.
FIGURE 1 Electric circuitry of a meandering
dipole antenna (A) and the electric circuitry of
the receive loops (B). The black dots indicate
the points where the lumped elements are
soldered onto the printed circuit boards



FIGURE 2 Setup of the breast coil. A, One of the five meandering dipole antennas used in the breast coil. B, Oblique and front views of the
schematic design of the breast coil, where the placement of the dipole antennas is shown in green. C, Different views (top, cup and side view)
of the hardware inside the coil
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2.2 | Simulation

Finite difference time domain simulations (Sim4Life, Zurich Med Tech, Zurich, Switzerland) were performed to evaluate transmit efficiency and RF

safety limits of the setup assuming full decoupling to the receiver coils (see Supplementary File CoilModel.smash). These simulations were also

performed on three adjusted human models of Ella of the virtual family,24 where the breasts were replaced by breast models to better correspond

to the breast shape in prone position.14,25 The breast models were segmented fromT1‐weighted scans performed at 7 T with and without fat sup-

pression from three volunteers with different breast sizes (small/medium/large) to account for differences in coil loading. Scan parameters were

FFE, TR = 4.4 ms, TE = 1.91 ms, flip angle = 8°, sensitivity encoding (SENSE26) 4 × 2 (right–left, RL, × feet‐head, FH), FOV = 160 × 350 × 160 mm3

and voxel size = 0.7 × 0.7 × 0.7 mm3. For the fat‐suppressed image the same parameters were used, including a 1–3–3‐1 binomial spectral spatial

RF pulse for fat suppression. Glandular tissue and fat tissue were segmented using iSeg (Medical Image Segmentation Tool Set, Zurich Med Tech)

and the corresponding dielectric permittivity and conductivity were assigned. The worst‐case SAR was calculated as the maximum sum of the

modulus of all quality matrix (Q‐matrix) entries,27 yielding the worst‐case SAR for an equal input power of 1 W on every channel. This value

was used to derive average power limits per transmit channel for imaging applications, based on a 10 g averaged SAR limit of 20 W/kg in the trunk

for the first level controlled mode.28 Safety simulations performed for this coil are validated by means of comparing measured and simulated B1
+

maps. Worst‐case SAR values are used to determine safe power limits resulting in conservative SAR estimates.

2.3 | Measurements

Safe average power limits were derived from simulations. Several safety measures are implemented on the scanner system in order to assure a

duty cycle in which the defined average power is never exceeded. A safety check is executed before every scan, checking theTR and the necessary

peak power and comparing the resulting average power against the power limit that is set in the software. Additionally, continuous power mea-

surements are conducted during the scan with the directional couplers to ensure that average power limits are not exceeded. RF pulse width and

duty cycle differ per sequence, but are forced to never exceed the average power limit.

After informed consent, two healthy female volunteers were scanned. For both volunteers, the phases and amplitudes of the individual trans-

mit channels were optimized to obtain a uniform signal in the breast (RF shimming).1,29 For this purpose, spoiled gradient echo images were

acquired at a low flip angle for every single transmit channel. Magnitude and phase results were exported to a post‐processing tool (MATLAB,

MathWorks, Natick, MA, USA). This tool is used to combine the single transmit channel images into a “shimmed” combined image using different

amplitudes and phases for every transmit channel. A region of interest (ROI) was drawn in the breast, after which a constrained minimization was

used to optimize the channel weights. The goal of this procedure was to minimize the coefficient of variation in the ROI, while maintaining a

minimum threshold of 40% and a maximum threshold of 100% for the drive amplitude. To assess the B1
+ performance of the coil, a B1

+ map

was acquired using the dual refocusing echo acquisition mode method (DREAM30) with a nominal B1 of 12 μT. For the B1
+ map acquisition, RF

shimming resulted in a peak input power of 710 W per channel except for Channel 3 (middle antenna), which was driven at 126 W. Additional

scan parameters were TR = 7.0 ms, TE = 1.97 ms and 2.4 ms, flip angle = 10° and 60°, slice spacing = 21 mm, and FOV = 320 × 520 × 60 mm3

with a resolution of 3.0 × 5.0 × 6.0 mm3. The acquired B1 map was compared with a simulated B1 map with identical excitation phase and ampli-

tude per channel to validate the EM simulations. The mean B1
+ and coefficient of variation (=standard deviation/mean) has been calculated in two

ROIs: the first (ROI1) includes both breasts to the pectoralis muscle boundary, and the second (ROI2) has been set for the entire FOV measured,

including the pectoral muscle and reaching into the axilla.
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Parallel imaging performance was investigated for the SENSE algorithm26 and represented by geometry factor (g‐factor) maps. ReconFrame

(Gyrotools, Zürich, Switzerland) was used to calculate g‐factor maps for different acceleration factors from R = 1 to R = 4 in the RL direction and

R = 1 to R = 3 in the anterior–posterior (AP) direction by reconstructing the image undersampling in k‐space. SNR maps were calculated in SNR

units.31,32

To demonstrate clinical feasibility, a 3D T1‐weighted image was acquired (FFE, TR = 7.14 ms, TE = 3.23 ms, flip angle = 8°, nominal B1 = 9 μT,

SENSE 4 × 2 (RL × FH), FOV = 160 × 351 × 160 mm3, resolution = 0.7 × 0.7 × 0.7 mm3) using a water selective 1–4–6‐4‐1 spectral spatial RF pulse

for fat suppression in 111 s. Also, a single sliceT2‐weighted TSE image (TR = 10 000ms; TE = 90ms; echo‐spacing = 10ms; flip angle = 90°; refocusing

flip angle = 180°; nominal B1 = 12 μT; FOV = 250 × 421 mm2; resolution = 0.7 × 0.7 × 3 mm3; TSE factor = 17) was acquired in 2 min 30 s.
3 | RESULTS

3.1 | Hardware

Inter‐element coupling between the dipole antennas is generally low. The maximum coupling of the transmit dipole array was −14.2 dB between

Elements 4 and 5, while maximum reflection was −11.6 dB in Element 3 (Figure 3A) for a representative subject. The maximum coupling of the

transmit dipole with the receive loops without preamp decoupling occurred between Element 2 and Receive Loop 1 from the left cup and was

−18.2 dB (Figure 3B). The noise correlation matrix of the 30 receive loops has a mean of 7.8 ± 8.7% with a maximum correlation of 52.9%

(Figure 3C).
3.2 | Simulation

The maximum achievable local SAR value is 7.0 W/kg for 5 × 1 W accepted power (Figure 4) in the adjusted Ella model of the Virtual Family in

prone position. Considering the local SAR limit of 20 W/kg in the trunk in first level controlled mode, an average power of 2.9 W/channel can be

used at maximum.
FIGURE 3 A, Inter‐element coupling of the transmit dipole array with a maximum inter‐element coupling of −14.2 dB. B, Coil coupling matrix of
the five dipole antennas with the receive loops of both cups with a maximum coupling of −18.2 dB. C, Noise correlation matrix of the 30 receive
loops with a mean of 7.83 ± 8.69% and a maximum correlation of 52.9%

FIGURE 4 Simulation of maximum possible SAR distribution on Ella (Virtual Family) of the transmit elements with adapted breast models with
different sizes (small/medium/large). The breast models were segmented from T1‐weighted scans performed at 7 T with and without fat
suppression with a previously built bilateral breast coil. The color bar indicates the local 10 g averaged SAR (W/kg)



KRIKKEN ET AL. 5 of 8
3.3 | Measurements

The acquired DREAM B1
+ map (Figure 5) shows that, with successful RF shimming, the transmit fields of the antennas penetrate through the

breasts completely. The magnitude of the transmit field also remains relatively homogeneous throughout the breast: within ROI1 a mean B1
+

of 0.12 μT/√W, coefficient of variation 20%, and in ROI2 a mean B1
+ of 0.11 μT/√W, coefficient of variation 27% (Figure 5). Good correspon-

dence between the measured B1
+ and the simulated B1

+ was found, with a mean root mean square (RMS) of 14.2% (Figure 5).

The g‐factor maps for different acceleration factors for the receive loops are displayed in Figure 6A. High g‐factors (g‐factor ≥ 2.0) start to

appear for acceleration factors higher than R = 4 in the RL direction and R = 3 in the AP direction. However, the average g‐factor is only 1.11 when

moving to an acceleration factor of R = 4 × 3, with a maximum g‐factor of 1.87 near the heart. SNR decreases with increasing acceleration factor

(Figure 6B).

We were able to acquire ultra‐high resolution 3D fat‐suppressed T1w images in 111 s (Figure 7A). Good fat suppression is achieved through-

out the whole breast. A very high acceleration factor of R = 8 was used, compromising the SNR achieved in the axilla, yet high detail can be

observed in the glandular tissue. Moreover, aT2‐weighted TSE image (Figure 7B) was acquired with clear contrast between fat tissue and glandular

tissue. Note that the lymph nodes in the axilla can be observed as hypo‐intense spots.
4 | DISCUSSION

We have demonstrated a new breast coil design using a multi‐transmit system and five meandering dipole antennas around the breasts in combina-

tion with 30 receive loops. With this setup we were able to achieve a relatively homogeneous B1
+ throughout the breast. However, the assessment

of homogeneity in the superior–inferior direction can be improved, as only three slices were obtained around the center of the breasts. Previously

presented coils7,9-14 show that penetration depth is often limited to the pectoral muscle. However, it is important for clinical breast imaging that

lymph nodes inside the axilla are visible on the images as well. With the use of meandering dipole antennas in this setup, we were able to acquire

images with a large FOV due to the high penetration depth of the antennas. The achieved B1
+ and homogeneity allowed us to acquire bilateral

T2‐weighted images of the breasts, which has been impossible with other bilateral designs at 7 T so far, yet crucial for clinical practice. Only a single

slice for the T2‐weighted image could be acquired within the SAR limits in this study. Future work will include an optimization of the T2‐weighted

sequence in terms of TR and RF pulses in order to acquire more slices in the same time, which has already been shown in the prostate.33

Simulation of the breast coil ensured patient safety; however, worst‐case SAR values were used to determine safe power limits, resulting in a

conservative SAR estimate. Future work will focus on the application of more realistic SAR levels, which will require a study of the inter‐subject

variability and further validation efforts using deep learning.34

In this study, the worst‐case SAR assessment assumes equal and unitary input power on every transmit channel. In our current safety proce-

dure, power limits are defined on a per channel basis. In the case where amplitude shimming is applied, the drive amplitude of a single channel will
FIGURE 5 Three transversal slices of the measured B1
+ map (same volunteer as ‘small’ in Figure 4) compared with the simulated B1

+ map with the
same shim settings, resulting in the absolute difference map with a mean RMS of 14.2%. The measured B1

+ map was acquired with the DREAM
method (TR = 7.0 ms; TE = 1.97 ms and 2.4 ms; flip angle = 10° and 60°, FOV = 320 × 520 × 60 mm3 with a resolution of 3.0 × 5.0 × 6.0 mm3 and a
nominal B1 of 12 μT). The mean B1

+ has been measured in two ROIs in the measured B1 map, where ROI1 includes both breasts to the pectoralis
muscle boundary (shown in red) and ROI2 has been set for the entire FOV shown (including the pectoral muscle and reaching into the axilla). Within
ROI1 a mean B1

+ of 0.12 μT/√W, coefficient of variation 20%, was measured, and in ROI2 a mean B1
+ of 0.11 μT/√W, coefficient of variation 27%



FIGURE 6 A transversal slice of g‐factor
maps with different acceleration factors in RL
direction and AP direction for the receive
chain (A) and the corresponding SNR maps in
SNR units (B)

FIGURE 7 Examples of clinical scans acquired with the coil. A, A transversal slice of a fat‐suppressed T1‐weighted image (TR = 7.1 ms;
TE = 3.2 ms; flip angle = 8°; resolution 0.7 mm3; SENSE 4 × 2 (RL × FH), 1–4–6‐4‐1 spectral spatial RF pulse for fat suppression). A total
acceleration of R = 8 was used, compromising the SNR achieved in the axilla, yet high detail can be observed in the glandular tissue. B, A transverse
T2‐weighted TSE image (TR = 10 000 ms; TE = 90 ms; flip angle = 90°; resolution = 0.7 × 0.7 × 3 mm3; TSE factor = 17) . Note the lymph nodes in
the axilla depicted as hypo‐intense spots indicated by the white arrows
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be scaled down but the power limit will stay the same. This ensures conservative setting for the power limits, in which SAR can never exceed the

SAR as calculated in our models.

After impedance matching of the antenna array, a worst‐case inter‐element coupling of −14.2 dB and a worst‐case reflection coefficient of

−11.7 dB are demonstrated. Although it is possible to improve the worst‐case reflection coefficient for a single subject, a tradeoff between robustness
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to load and an excellent reflection coefficient had to be chosen, leading to the current performance. Themeasured noise matrix showed good isolations

between the receiver array channels, and the measured g‐factor maps showed the feasibility of parallel imaging with the developed RF array system.

High acceleration factors, up to an acceleration of R = 4 × 3 (RL × AP directions) were achieved while preserving image quality, as no unfolding artifacts

within the breast were observed (Figure 5). The g‐factor maps do show higher g‐factors appearing in the axilla and in the arms of the volunteer. This is

due to the fact that the receive loops are located around the breasts and do not receive signal originating from beyond the breast, while themeandering

dipole antennas have a much larger penetration depth. The optimal way to avoid signal loss is to combine the signals from loops and antennas in recep-

tion, resulting in a total of 35 receive elements. Unfortunately, the MR system architecture currently does not allow more than 32 element receive.

The currently proposed transmit setup places five dipole antennas on the anterior side of the subject. Commonly used 7 T body transmit

setups use eight elements placed concentrically around the subject. It would be possible to place additional transmit elements on the posterior

side of the subject. However, it is demonstrated in this work that the current setup has sufficient penetration depth to cover the entire breasts.

Adding more antennas on the posterior side of the subject could result in SAR peaks in the back muscles, and would add to the overall complexity

of the setup, so this was not considered for this coil array.

The decoupling value between the transmit antennas and the receive loops of −18 dB is measured without the presence of pre‐amplifier

decoupling. Therefore, the actual decoupling is estimated to be below −25 dB, which is sufficient to protect the preamplifiers during transmit.

All scattering parameters remain well below −10 dB, indicating that more than 90% of the emitted power is accepted and therefore 95% of

the potential B1
+ is reached. Additional reduction in reflection may be obtained, but would provide at maximum only a few percent additional

B1
+ and was therefore left for a future improvement cycle.

An often occurring challenge with breast imaging at 7 T is dealing with the inhomogeneity of B1
+, decreasing from the nipple towards the pec-

toral muscle. In our bilateral coil setup, the position and the penetration depth of the antennas creates a homogenous B1
+ in the AP direction

throughout the breasts (coefficient of variation 20% within the breasts; ROI1 in Figure 5). Though hard to compare with other work, Kim et al.10

reported a coefficient of variation of 22% for one transversal slice and 31% in the entire volume, and Brown et al.15 reported a coefficient of

variation of 24% in one transversal slice. The observed inhomogeneity in the RL direction is probably due to interference of the B1
+ fields of the

different antenna elements. We have observed this asymmetry in all the volunteers and therefore we think this is independent of the breast size.

To achieve a more homogeneous B1
+ throughout both breasts, more advanced calibration of the transmit fields is necessary, yet RF shimming only

cannot solve this problem. Adding more antennas to the coil array may help to increase uniformity in the RL direction. Next to this, tailored RF pulses

may be able to compensate for the B1
+ inhomogeneity: for example, tilt optimized flip uniformity pulses35 or tailored excitation in 3D with spiral

nonselective (SPINS) RF pulses.36 A next step in breast imaging at 7 T would be to incorporate tailored RF pulse designs into the clinical protocol.
5 | CONCLUSION

Weconstructed a new breast coil with fivemeandering dipole antennas and 30 receive loops for 7 T. The coil can generate sufficient B1
+ over a larger

FOV in the breasts, which makes it possible to acquireT2‐weighted images and to image the axillary lymph nodes. This is an important step towards

translating routinely used breast imaging protocols from 3 T to 7 T, whilst benefitting from the increased spectral and spatial resolution at 7 T.
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