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Abstract

Allosteric interactions in DNA are crucial for various biological processes. These interactions are 

quantified by measuring the change in free energy as a function of the distance between the 

binding sites for two ligands. Here, we show that trends in the interaction energy of ligands 

binding to DNA can be explained within an elastic birod model, which accounts for the 

deformation of each strand as well as the change in stacking energy due to perturbations in 

position and orientation of the bases caused by the binding of ligands. The strain fields produced 

by the ligands decay with distance from the binding site. The interaction energy of two ligands 

decays exponentially with the distance between them and oscillates with the periodicity of the 

double helix in quantitative agreement with experimental measurements. The trend in the 

computed interaction energy is similar to that in the perturbation of groove width produced by the 

binding of a single ligand, which is consistent with molecular simulations. Our analysis provides a 

new framework to understand allosteric interactions in DNA and can be extended to other rod-like 

macromolecules whose elasticity plays a role in biological functions.
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INTRODUCTION

When a ligand binds to DNA, it induces conformational changes at the binding site, which 

could propagate to regions tens of base-pairs away, thereby encouraging or inhibiting the 

binding of a second ligand in those places. Such interactions between two binding agents are 

called allosteric interactions. Our focus here is on a mechanism for allostery based on the 

elasticity of long molecules. Although we will illustrate our theory using DNA as an 

example, long-range allosteric interactions have been documented in actin, microtubules, 

and helical peptide chains. For example, myosin binds to actin filaments leading to the 

suppression of the formation of cofilin clusters via allosteric signaling.1 Long-range 

structural changes induced by taxol binding to microtubules inside a cell prevents cell 

division, thus making it a potent antitumor agent.2 The transfer of chiral stimulus triggered 

by a binding agent across a helical peptide chain gives the molecule an overall chiral 

character and is yet another instance of allostery.3 Instances of allostery in DNA have been 

known for decades.4,5 Antitumor drug actinomycin D binds to DNA by intercalating 

between the adjacent base pairs5 containing a guanine base. However, in the presence of 

daunomycin, another antitumor drug, actinomycin, is observed to bind to poly(dAT) DNA 

oligomers too. This is due to the allosteric stabilizing influence exerted by the already bound 

daunomycin molecule near its binding site. We will analyze allostery in ds-DNA because 

detailed experimental and simulation results are available for it,6-8 thus allowing quantitative 

comparisons with our theory.

We define the allosteric interaction energy ΔG = E12
{0, p} − E1

0 − E2
p, where E12

{0, p} is the free 

energy of the protein–DNA complex consisting of two proteins separated by distance p and 

E1
0 and E2

p are the free energies of the protein–DNA complexes consisting of one protein. 

Kim et al.7 have conducted single-molecule experiments using fluorescence techniques to 

measure allosteric interaction energy ΔG between two proteins on a DNA oligomer. In their 
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paper,7 DNA-binding proteins are categorized as (a) proteins that bend DNA such as LacR 

and T7-RNAp and (b) proteins that bind to straight DNA such as GRDBD and BamHI. 

Here, we deal with the latter category.

We use the theory of elastic birods9 to develop a mechanical model for investigating 

protein–DNA interactions. A birod consists of two elastic strands joined by an elastic web. 

We represent the sugar-phosphate backbone of DNA using the outer strands and the 

complimentary base pairing is modeled using the elastic web. A birod model of DNA has 

different properties than a homogeneous rod model at short length scales; however, as the 

length of the birod increases, the elastic properties of both models become indistinguishable.
10

We discuss key features that distinguish our model from the state-of-the-art8 worm-like 

chain model for DNA allostery.

1. Helical geometry: Kim et al.11 discovered that the interaction energy ΔG 
between two proteins on DNA decays exponentially while oscillating with the 

periodicity of the DNA double helix. It is thereby imperative that we account for 

the double helical geometry of DNA, which is conveniently incorporated in a 

birod model,9 but is absent in a worm-like chain model of DNA.

2. Elasticity of base pairs: Proteins interact with DNA by altering the geometry of 

the double helix, such as changing the width of major/minor groove.6,12 The 

elasticity of the base pairs, represented by the elastic web in a birod model is 

essential to accurately model these local deformations.

3. Stacking energy: Stacking energy penalizes the change in orientations of the base 

pairs with respect to each other. We use a stacking energy quadratic in the twist 

and stretch of the DNA-double helix.

In an existing model8 of allostery, tension in the worm-like polymer chain to which the two 

proteins are bound plays an important role in the decaying oscillatory behavior of the 

interaction energy ΔG. However, in the experiments of Kim et al.7 and simulations of Dršata 

et al.,6 the oscillatory exponentially decaying allosteric interactions on DNA are present 

even in the absence of tension. Here, we use an analytical model to show that decaying 

oscillatory behavior of the interaction energy can arise from the interplay between the 

double helical geometry and the elasticity of the base pairs.

Our model provides key insights into the structural deformations of the DNA helix, changes 

in the groove width when a ligand binds to DNA, and the allosteric interaction energy ΔG 
between two proteins on DNA. We compute the correlations between the displacement 

variables at the two sites of protein binding and establish their connection to the interaction 

energy between the two proteins. Our results are in excellent quantitative agreement with the 

experimental data in Kim et al.7 and Kopka et al.12

Numerical simulations6,13 have been used to propose mechanical models for DNA allostery. 

These papers describe DNA using three sets of coordinates: intra-base-pair coordinates 

buckle, propeller, opening, shear, stretch and stagger, inter-base-pair coordinates tilt, roll, 
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twist, shift, slide, and rise, and major and minor groove widths. The DNA-binding protein 

fixes some (or all) of the degrees of freedom at the site of binding, resulting in deformations 

away from it. The energy of binding can therefore be computed. The approach is 

comprehensive, but computationally expensive. Drawing upon the know-how from Dršata et 

al.,6,13 we allow for the bending, twisting, stretching, and shearing of the base pairs. 

Furthermore, we go beyond their numerical models by considering the mechanics of the 

outer strands, which, as pointed out later, is crucial to getting the correct twist–stretch 

coupling for double-stranded DNA.

THEORY

DNA comprises of two helical strands held together via complementary base pairing. When 

a ligand, such as a protein or a drug, binds to DNA, it exerts forces and moments on the 

double helix14,15 causing deformations at the base-pair level. We use the theory of birods9 to 

investigate these deformations. A birod consists of two elastic strands that interact through 

an elastic web. This construction makes it suitable for investigating the deformations at the 

base-pair level in a DNA molecule, which a homogeneous rod model cannot capture.16 The 

latter ignores the double-helical structure and the elasticity of the base pairs, both of which 

are crucial to the problem under consideration. In the following (·)x denotes ∂( ⋅ )
∂x . Lower 

case letters such as a, r, β± are scalars, bold lower case letters such as t+, b− are vectors, 

whereas bold upper case letters such as R−, R0
+, Z are 3 × 3 tensors.

We assume the phosphate backbones comprising of phosphodiester bonds, represented by 

outer strands in our model to be inextensible and unshearable. Our assumption of 

inextensibility can be justified by examining the elastic properties of ssDNA. The stretch 

modulus of ssDNA, at high ion concentration, is about 1000 pN,17 which is about twice that 

of the largest modulus (Ke = 600 pN) used in our model. At low ion concentrations, under 

which the experiments reported in Kim et al. are conducted, ssSDNA shows an even stiffer 

response.18 The assumption of unshearability is justified if the cross-sectional dimensions 

are much smaller than the length of a rod,19 which is indeed true for DNA molecules. 

Because these backbones consist of consecutive single bonds that allow free rotation about 

the bond, we assume that they cannot resist twisting moments. The base pairing is 

represented by the elastic web, which is capable of extending, shearing, bending, and 

twisting. In addition to the elastic energy, we consider contributions from the stacking 

energy, which is associated with the change in orientations of the successive base pairs.

In this paper, we consider the proteins that do not bend DNA. Kim et al.7 report 

experimental data for allosteric interaction energy using a DNA-binding protein pair: 

GRDBD and BamHI, both of which do not bend DNA.20,21 Kim et al.7 have also 

experimented with proteins that bend DNA, and they have been theoretically treated 

elsewhere.22,23 We denote the helical strands as ±; their positions in the reference state are 

denoted by r0
±. We use arclength parameter x to parametrize the double helix (Figure 1). 

Thus,
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r0
+ = a(cos ωx e1 + sin ωx e2) + x e3,

r0
− = a(cos(ωx + α) e1 + sin(ωx + α) e2) + x e3

(1)

where a = 1 nm is the radius of the DNA helix, p = 3.4 nm is the pitch, ω = 2π
p , and α is the 

phase difference between the helices. Here, we assume α = π to make the computations 

analytically tractable. We consider a deformed configuration where the double helix extends 

and twists about e3, and its radius and phase angle also change due to binding of ligands. 

The deformed state of the ± strands is denoted by r±(x), where

r+(x) = (a + r)(cos(ωx + β+)d1 + sin(ωx + β+)d2)

+ (x + ∫
−∞

x
aξ+ dx)e3,

r−(x) = − (a + r)(cos(ωx + β−)d1 + sin(ωx + β−)d2)

+ (x + ∫
−∞

x
aξ− dx)e3

(2)

such that d1x = k3d2 and d2x = −k3d1. To gain a better physical insight, we give a visual 

representation of the deformation described in the above equation in Figure 2. We only show 

the deformation for the + strand for clarity and indicate the strain variables r (change in 

radius), β (change in phase angle), and ξ (stretch of the center-line). We assume all the 

displacement and strain parameters r, β±, and ξ± vanish at x = ±∞ because the deformations 

caused by the proteins are local. The change in radius r, change in the phase angle β±, 

stretches ξ±, and the twist k3 are assumed to be small (~O(ε)) such that second-order terms 

such as r2 and ξβ− are negligible. However, there could be finite rotations resulting from k3.

As shown in Figure 3, the birod consists of two elastic strands joined by an elastic web. We 

show a straight elastic ladder for easy visualization of the key forces and moments. The + 

strand exerts a body force l and a body moment c on the − strand via the elastic web. The 

balance laws for the two outer strands constitute the governing equations for the birod.9 The 

deformation of the elastic web can be calculated once the deformation of the outer strands is 

known. We need to solve the following balance equations for a helical birod,

nx
± ∓ f + l = 0,

mx
± + rx

± × n± + 1
2(r+ − r−) × f ∓ c + h = 0

(3)

where m± and n± are the contact moment and contact force, respectively, in ± strands. f and 

c are the distributed force and distributed moment exerted by the + strand on the − strand. l 
and h are the body force and body moment exerted by the base pairs onto both ± strands. In 
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what follows, we use the position vectors for the deformed helix r±(x) (eq 2) to compute 

these quantities. The constitutive relations for the forces n±, moments m±, and the force l 
and moment c transferred by the web, are discussed in the relevant subsections.

Contact Forces in the Outer Strands (n±).

The outer strands are inextensible, which means ∣ rx
± ∣ = ∣ r0x

± ∣ yielding

ω2r + aω(k3 + βx
±) + ξ± = 0 (4)

We use the above equation to eliminate ξ± from eq 2. Due to the constraint in eq 4, the 

contact forces n± enter as Lagrange multipliers.

Contact Moments in the Outer Strands (m±).

We attach a director frame R± = n0
±b0

±t0
±  to each cross section of the ± strands, where n0

±, 

b0
±, and t0

± are the normal, binormal, and tangent in the reference state to ± strand, 

respectively. n±, b0
±, t0

±, and the curvature in the reference configuration Ω0
± are computed 

using eq 1 as follows

t0
± =

r0x
±

∣ r0x
± ∣

= ± sin k( − sin ωxe1 + cos ωxe2) + cos ke3,

n0
± =

tx
±

∣ tx
± ∣

= ∓ (cos ωxe1 + sin ωxe2),

b0
± = t0

± × n0
±

= ∓ cos k( − sin ωxe1 + cos ωxe2) + sin ke3,

Ω0
± = Ω0 = (t0

± . t0
±)1 ∕ 2 = ω sin k

(5)

Similarly, we use eq 2 to compute the Frenet–Serret frame R± = [n± b± t±] and curvature Ω± 

in the deformed state. We neglect terms higher than first order, such as rβ+, ξ− r~O(ε2), and 

get
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R± = [n± b± t±] = ZR0
±(1 + Θ±),

Z = d1 ⊗ e1 + d2 ⊗ e2 + e3 ⊗ e3,

Θ± =

0 −θ3
± θ2

±

θ3
± 0 −θ1

±

−θ2
± θ1

± 0

θ1
± = rω + a(βx

± + k3), θ2
± = − rx cos k + β± sin k,

θ3
± =

−ωrx − a(βxx
± + k3x)

ω sin k −
(rx cos k − β± sin k)cos k

sin k

(6)

The bending moment in the outer strands m± is proportional to the change in curvature 

κ± = Ω± − Ω0
± and is directed along the binormal b± such that m± = EIκ±b±, where EI is the 

bending modulus of the strand. Note that the twisting moment is zero because the phosphate 

backbone consists of single bonds that permit free rotations.

Force and Moment Transferred by the Web (f, c).

Now, we compute the bending and twisting of the web, which represents base pairing. We 

attach a director frame Q0 to both + and − end of the base pair (Figure 1).

Q0 = [er eθ e3] (7)

where er = cos ωxe1 + sin ωxe2 and eθ = −sin ωxe1 + cos ωxe2. As the birod deforms, these 

frames respectively get mapped to Q±. We compute Q± using the deformation of R± from eq 

6 keeping in mind that the angles between the columns of R0
± and Q0

± should remain 

constant during deformation implying (R0
±TQ0 = R±TQ), thus

Q± = ZR0
±(I + Θ±)R0

±TQ0, Θ± ∼ O(ε) (8)
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Now, we can compute the rigid rotation Q and microrotation P for each base pair. The 

microrotation contains information about the “difference” between the rotations Q±.9 This is 

related to the moment transferred by the base pair c via an elastic constitutive relation for the 

web

P = (Q+Q−T)1 ∕ 2 = Z(I + Φc)ZT (9)

Here, Φc = R+Θ+R+T − R−Θ−R−T
2  is a skew symmetric tensor. The moment transferred by 

the base pair is directly proportional to the Gibbs vector of P . η = tan λ
2k is a Gibbs rotation 

vector for a rotation matrix T if Tk = k and 1 + 2 cos λ = tr T. In our case, the Gibbs vector 

of P is 2η = 2Zη‒ = Zϕc, where ϕc is the axial vector of skew symmetric tensor Φc. Note that 

in the reference state, η0 = 0 because P0 = (Q0QT)1/2 = I. The rigid rotation of the base pair 

Q = PQ−. Here,

Q = Z(1 + Φ)Q0 (10)

and Φ = R+Θ+R+T + R−Θ−R−T
2  is a skew symmetric matrix. The moment exerted by + 

strand on the − strand by means of the elastic web, c, is computed using c = QHQTη, where 

H = diag[H1, H2, H3] are the elastic moduli.9 Now, we shift our focus to the extension and 

shear of the web. In the reference configuration, the displacement between the two strands 

w0 =
r0
+ − r0

−

2 = aer, which, in deformed configuration, changes to w = r+ − r−
2 . The force f 

exerted by + strand on the − strand is computed using f = QL(QTw − Q0
Tw0), where L = diag 

[L1, L2, L3] are the elastic moduli, β = β+ + β−
2  and βc = β+ − β−

2 .

c = QHQTη

= H1( − ak3 − ωrx − aβx)f1 + H2
( − ak3x − ωrxx − aβxx)

ω f2

+ H3 βc − a cot k
ω βxx

c e3,

f = QL(QTw − Q0
Tw0)

= L1rf1 + aL2 cot k
ak3x + 2ωrx + aβxx

ω f2

− a2L3
ω2βc + βxx

c

ω e3

(11)
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Contributions from the Stacking Energy (l, h).

We now consider the contributions from the stacking energy. The center line of the double 

helix e3 undergoes both twist k3 and extension ξ = ξ+ + ξ−
2 . We associate a quadratic stacking 

energy Es = Kck3
2 + Ke

ξ+ + ξ−
2

2
 to penalize this change in the orientation of successive base 

pairs. Due to this energy, the base pairs exert a body force l and a body moment h on both ± 

strands, which are given by

l = Ke
ξ+ + ξ−

2 e3, h = Kck3e3 (12)

RESULTS

Now we have all the ingredients for solving the governing differential equations of a birod. 

Substituting these quantities in the balance laws (eq 3) gives us a set of 12 differential 

equations. The complete procedure for solving those equations is in the supplement; 

however, we highlight crucial points here. It follows from the governing equations that β+ = 

β− (= β, say), n3
c = n1 = n2 = 0. β+ = β− implies ξ+ = ξ− (= ξ, say), thereby reducing 12 

equations to 6 equations in 6 unknowns r, β, k3, n1, 2
c , n3. We look for solutions of the form

r(x) = r0 e−λx, β(x) = β0 e−λx, ξ(x) = ξ0 e−λx,
n1

c(x) = n10
c e−λx, n2

c(x) = n20
c e−λx, n3(x) = n30 e−λx

(13)

We substitute this form into the governing equations (eq 3) and obtain an eigenvalue 

problem in λ. To make further progress, we need the values of the elastic constants. We use 

Kc = 80 pNnm2, Ke = 600 pN, L1 = L2 = L3 = H1 = H2 = H3 = 10 pN. In the supplement, we 

show that these values yield the correct twist, stretch, and twist–stretch coupling moduli for 

double-stranded B-DNA.24 Solving for the eigenvalues, λ we get

λ = ± ζ ± iω, ζ = 0.32 nm−1 (14)

and the solution for the strain parameters y1 = r, y2 = k3, and y3 = β is of the form

yi(x) = A1V1(i) e( − ζ − iω)x + A2V2(i) e( − ζ + iω)x

+ B1V3(i) e(ζ − iω)x + B2V4(i) e(ζ + iω)x
(15)

where Vj(i) is the ith component of the eigenvector corresponding to the eigenvalue j in the 

exponent. Clearly, the decay length ζ is only a function of the elastic parameters of ds-DNA, 

in agreement with the conclusion of Kim et al.7 Note that the strain parameters are 

Singh and Purohit Page 9

J Phys Chem B. Author manuscript; available in PMC 2020 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exponentially decaying while oscillating with the period ω of the double helix. We impose 

the boundary conditions on r and β, remembering that the displacements of the strands must 

be continuous. For a protein binding at x = p

as x ± ∞, r(x), β(x) 0
at x = p, r(0) = r0, β(0) = β0

(16)

We present the variation of r, k3, and β for a protein binding at x = 0 for two different sets of 

boundary conditions in Figure 4. Notice the sinusoidal correlation between the local 

deformation of base pairs that is in agreement with earlier work that used Monte Carlo 

simulations.22,23

We show the deformed shapes of the helices in Figure 5 for three cases: first when one 

protein binds at x = 0, second when two proteins bind at x = ±1.5 nm, and third when two 

proteins bind at x = ±3.5 nm. The boundary condition for each protein is r0 = 0.2 nm, β0 = 0. 

We deliberately choose large values for r0 and β0 to distinguish the deformed shape from the 

reference shape. The large configuration changes near the site of protein binding (x = 0) 

decay exponentially with distance. Note, there is a strong overlap in the deformation fields 

when the distance between two proteins is 3 nm compared to 7 nm. This overlap results in 

an interaction energy between the two proteins, which we subsequently quantify using eq 

18.

We now compute the interaction energy ΔG for two proteins. The energy functional of the 

double-helical rod is

E[r, β, k3] = 1
2EI(κ+)2 + 1

2EI(κ−)2 + ∑
i = 1

3 1
2(LiΔwi

2

+ Hiηi
2) + Kck3

2 + Keξ
2

(17)

where η = QTη and Δ w = QTw − Q0
Tw0. Consider two proteins, P1 and P2 binding at x = 0 

and x = p. The interaction energy ΔG is defined as

ΔG(p) = E12
{0, p} − E1

0 − E2
p (18)

where E12
{0, p} = E r12, β12, (k3)12  is the energy of two proteins binding onto DNA at x = 0 

and x = p, whereas E1
0 = E r1, β1, (k3)1  and E2

p = E r2, β2, (k3)2  are the energies of a single 

protein binding at x = 0 and x = p, respectively. We linearly superimpose the strain fields 

from each protein (r1 and r2, etc.) to get the resultant strain field (r12, etc.) caused by two 

proteins simultaneously binding to DNA.
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r12(x) = r1(x) + r2(x − p) (19)

We obtain β12 and (k3)12 similarly. We compute the interaction energy ΔG(p) as a function 

of the distance between two proteins p and plot it in Figure 6 together with experimental 

data from Kim et al.7 In excellent agreement with experiment7 and numerical simulations,22 

ΔG decays exponentially while oscillating with the period of the double helix (~10 bp).

We justify this variation of interaction energy for a simple case as follows. Consider a strain 

parameter δ(x) and the associated quadratic energy potential ε[δ(x)] = ∫ −∞
∞ δ2(x)

2 dx. Similar to 

our strain parameters in eq 15, let us assume δ(x) = A e−bx cos(μx), then

ℰ[δ(x)] = ∫
−∞

∞ δ2(x)
2 dx = A2(2b2 + μ2)

4b(b2 + μ2)
(20)

ℇ[δ(x – p)] = ℇ[δ(x)]. Now, the strain obtained by superposing two strain sources a distance 

p apart are δ2(x) = δ(x) + δ(x – p). The energy functional corresponding to δ2(x) is

ℰ[δ2(x)] = A2(2b2 + μ2)
2b(b2 + μ2)

+ A2c1 e−bp sin(μp)

+ A2c2 e−bp cos(μp)

= ℰ[δ(x)] + ℰ[δ(x − p)] + ΔG

(21)

where c1 = b3

2bμ(b2 + μ2)
, and c2 = μ(μ2 + 2b2 + pb3 + pbμ2)

2bμ(b2 + μ2)
. It is notable how the decaying 

sinusoidal behavior of the interaction energy ΔG follows naturally from the functional form 

of the strain parameters and their eventual superposition. A cartoon illustrating this key point 

is presented in Figure 7.

Next, we focus on the width of the groove because many proteins are known to change the 

width of the major/minor groove of DNA.7,12,25 We define the width of the groove, g(x), as 

follows (we do not have a major/minor groove because α = π for simplicity):

g(x) = r− . e3 x + π
2ω − r+ . e3 x − π

2ω (22)

Note that in the reference configuration, the groove width g0 = π
ω = p

2 . We consider a protein 

binding at x = 0 and compute the change in groove width ρ(x) = g(x) – g0 for two sets of 

boundary conditions, r0 = 0, β0 = 0.02 and r0 = 0.02 nm, β = 0 (see Figure 6). The groove 
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width ρ decays exponentially with increasing distance from the binding site while oscillating 

with the periodicity of the double helix. This characteristic decaying sinusoidal oscillation is 

documented in refs 22, 23 and is also observed experimentally.7 It has been proposed that 

this change in groove width could explain the sinusoidally decaying interaction energy 

(notice the similarity of the two panels in Figure 6) between two proteins bound to DNA 

because the binding energy of a protein binding to DNA could potentially depend on the 

groove width.22,23 However, we have arrived at the decaying sinusoidal variation of the 

interaction energy by computing the elastic energy stored in the birod without assuming any 

connection to the groove width. Thus, we argue that the characteristic variation in groove 

width and the characteristic variation of the interaction energy have the same underlying 

cause—the geometry and elasticity of helical DNA at the base-pair level.

To make the above point more concrete, we give another analytical argument. Consider two 

proteins P1 and P2 binding at x = 0 and x = p, respectively. Kim et al.7 argue that when a 

protein binds to DNA, it alters the groove width, which leads to ΔG ∝ ρ0
1ρ0

2 + ρp
1ρp

2, where ρp
1

is the change in the groove width caused by protein P1 at x = p, and so on. On the other 

hand, we assume that the protein binds to DNA by fixing the radius r and phase angle β at 

the binding site. Let us examine whether ΔG ∝ α1r12(p) + α2β12(p), where 

r12(p) = r0
1r0

2 + rp
1 rp

2, β12(p) = β0
1β0

2 + βp
1βp

2, for some constants α1 and α2. Here, r0
1 is the 

change in radius caused by protein P1 at x = 0. Other quantities (r0
2, rp

1, rp
2, β0

1, β0
2, βp

1, βp
2) are 

defined similarly. For simplicity, assume α1 = α2 and define q(p) = r12(p) +β12(p). We plot 

Δ Gn = ΔG
∣ ΔG ∣max

 and qn = q(p)
∣ q(p) ∣max

 versus the distance between the two proteins p in Figure 

8a. We observe that while the location of peaks and valleys for ΔGn and q(p)n coincides, the 

magnitudes are not identical.

Our next step is to relate the magnitudes of two quantities ΔGn and qn. Assume an empirical 

relation ΔGn = y(qn). We plot ΔGn versus qn in Figure 8 and find that the resultant profile 

looks akin to y(x) = tanh(ax), a ≈ 3.0 gives the best fit. Thus, ΔGn ≈ tanh(3qn). Note that for 

large values of p (p > 10 nm), the correlation function qn is small, thence tanh(3qn) ≈ 3qn, 

and we recover the form similar to that used in Kim et al.7 (but with different strain 

variables) ΔGn ∝ qn. Note that we used a particular set of boundary conditions to extract the 

relation ΔGn ≈ tanh(3qn). Now, we test this relation to compute interaction energies for other 

sets of proteins, which apply different boundary conditions in Figure 8b. We observe a 

remarkable agreement with the free energies computed using eq 18. Thus, we have shown 

that the correlation function q(p) can be used as a surrogate for the interaction energy as Kim 

et al.7 did. Evaluating the correlation function q(p) involves measuring displacement 

variables at two binding sites, which can in turn be related to the free energy using the above 

scheme.

To conclude, we have demonstrated that the theory of elastic birods can provide useful 

insights into the allosteric interactions between two proteins binding to a DNA molecule. 

Our analysis ties together the continuum theory,9 experiments,7 and numerical simulations.
6,22 Our computations indicate that the interaction energy (eq 18) for two proteins bound to 

DNA decays exponentially while oscillating with the period of the DNA double helix. The 
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decay length depends only on the elastic characteristics of the web, whereas the oscillatory 

behavior is inherited from the underlying doublehelical geometry. We have shown that the 

strong correlation of interaction energy with the changes in groove widths caused by the 

proteins are rooted in elasticity and geometry of DNA. However, our model suffers from 

some shortcomings. Existing models6,23 rely on numerical simulations, possibly accounting 

for the stacking energy in a more comprehensive way compared to our approach, which 

assumes it is quadratic in the twist and stretch of the centerline. Also, these models6,23 can 

account for a wider variety of boundary conditions applied by a protein, owing to more 

variables describing the DNA structure. Besides, we made various simplifying assumptions 

such as assuming the outer strands to be inextensible and unshearable. These assumptions 

could break down close to the binding site where DNA structure might be drastically altered. 

Some studies12 shed light on the kinematics of a protein binding to DNA, but an analysis of 

the deformations at the binding site is beyond the scope of our model. While the results from 

our model agree with the experimental observations, the outcomes from the existing models 

in literature such as22,23 agree as well. The main strength of our model compared to the 

existing models is twofold: (i) we account for the mechanics of the outer strands and (ii) our 

model provides useful insights into the phenomenon at a modest computational cost. Our 

techniques based on a helical birod model could potentially be applied to other molecules, 

which have a double helical geometry such as dsRNA, and coiled-coil intermediate 

filaments.
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Figure 1. 
Birod model of DNA. The angle between the tangent t+ and e3 is k. A base pair in reference 

and deformed state is shown. The director frames attached to ± ends of the base pair change 

from Q0 to Q±, respectively. The rigid rotation of the strand Q = (Q+Q−T)1/2Q− and 

microrotation P = (Q+Q−T)1/2.
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Figure 2. 
Distortions to the helical geometry of the + strand. We assume that the DNA remains 

straight after the binding of proteins. Therefore, the axis e3 remains undisturbed. The radius 

of the helix a changes to a + r, the phase angle ω x changes to ω x + β, and the length of the 

infinitesimal element dx, shown in black, changes to (1 + ξ) dx.
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Figure 3. 
Free-body diagrams that establish the connection between an elastic rod and an elastic birod. 

We deliberately show a straight ladder instead of helical birod to illustrate the mechanics. An 

elastic birod comprises two elastic rods + and −. The + strand exerts a moment c and force f 
on the − strand through an elastic web. This transfer of moment and force leads to 

deformation of the web. In the figure, r± denotes the position vector for ± strands and n± and 

m± denote the contact forces and contact moments in ± strands, respectively. The force and 

moment balance for + and − strand constitute the governing equations (eq 3) for the elastic 

birod. For further discussion, see Moakher and Maddocks.9
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Figure 4. 
Variation of r, k3, ξ, and β+ = β− = β for a single protein. The red curve corresponds to the 

boundary conditions β0 = 0, r0 = 0.05 nm, and the green curve to r0 = 0, β0 = 0.05. Even if r0 

= 0, i.e., the protein does not change the radius of the molecule at the binding site, a change 

in the phase angle β0 ≠ 0 can cause the radius to change at locations away from the binding 

site. Similar coupling exists among other strain parameters. The magnitudes r0 and β0 

chosen here ensure that the change in the groove width, a parameter whose magnitude is 

known,12 is in the correct range (3 Å). The decay length is ld = ζ−1 ≈ 10 bp, which is close 

to the one documented in literature.7,23
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Figure 5. 
We show the deformed configuration of the double helix, with red and green colors 

corresponding to + and − strand, respectively. In the first figure, one protein binds at x = 0 

with r0 = 0.2 nm and β0 = 0. The magnitudes are chosen to be artificially large to make the 

deformations discernible in the figure. In the second figure, two proteins bind at x = ±1.5 

nm. In the third figure, two proteins bind at x = ±3.5 nm. Notice the overlap of deformations 

in the second figure, which is absent in the third one. We use eqs 19, 20, and 21 to 

demonstrate how this overlap leads to an interaction energy between the two proteins. The 

dotted lines denote the corresponding undeformed configuration.
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Figure 6. 
The first figure shows the variation of interaction energy ΔG with distance p between the 

two proteins P1 and P2. The boundary conditions r1 = 0.001 nm, β1 = 0.0045 for P1 and r2 = 

0.001 nm, β2 = −0.0045 for P2 give the best fit to the experimental data for ΔG.7 In the 

second figure, we show the variation of change in groove width ρ(x) = g(x) − p
2  when a 

protein with boundary conditions r0, β0 binds at x = 0. The decaying sinusoidal character is 

documented in previous work.7,22 The magnitude of the change in groove width (~3 A) is 

consistent with estimates in ref 12.
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Figure 7. 
Equation 15 shows that the strain parameters r, β, and ξ decay exponentially while 

oscillating with the periodicity of the double helix. Let us assume that the protein binding at 

x = 0 increases the radius of the double helix from a to a + r0. This change in radius at x = 0 

decays exponentially while oscillating with the periodicity of the double helix, away from 

the binding site. Similar behavior is observed for other strain parameters, β and ξ. Due to 

this sinusoidal modulation of the geometry, the binding of the second protein is facilitated at 

some locations, while inhibited at others; this manifests as an exponentially decaying 

oscillatory behavior observed in the allosteric interaction energy (ΔG).
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Figure 8. 
Consider two proteins P1 and P2 binding at x = 0 and x = p, respectively. The first figure 

shows the variation of normalized free energy ΔG(p)n = ΔG
∣ ΔG ∣max

 and correlation function 

q(p)n = q(p)
∣ q ∣max

 with the distance between the two proteins p. The correlation function 

q(p) = (r0
1r0

2 + rp
1rp

2) + (β0
1β0

2 + βp
1βp

2) where rp
1 is the change in radius caused by protein P1 at 

x = p. The boundary conditions for the two proteins are given in the figure. We find that the 

peaks and valleys of ΔGn and qn coincide; however, the magnitudes are not identical. We 

find that the magnitudes are related as ΔGn ≈ tanh(3qn), as shown in the inset. We test this 

empirical relation for two different sets of boundary conditions and find a remarkable match. 

The diamonds denote the free energies computed using eq 18 and the solid line denotes the 

free energy computed using the normalized correlation function q(p)n. This exercise shows 

that the correlation functions can be used as a surrogate for free energies.
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