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Could exotic mosquito-borne diseases emerge in 
Canada with climate change?
V Ng1*, EE Rees1, LR Lindsay1, MA Drebot1, T Brownstone1,2, T Sadeghieh1,3, SU Khan1,3

Abstract

Of the 3,500 species of mosquitoes worldwide, only a small portion carry and transmit the 
mosquito-borne diseases (MBDs) that cause approximately half a million deaths annually 
worldwide. The most common exotic MBDs, such as malaria and dengue, are not currently 
established in Canada, in part because of our relatively harsh climate; however, this situation 
could evolve with climate change. Mosquitoes native to Canada may become infected with 
new pathogens and move into new regions within Canada. In addition, new mosquito species 
may move into Canada from other countries, and these exotic species may bring exotic MBDs 
as well. With high levels of international travel, including to locations with exotic MBDs, there 
will be more travel-acquired cases of MBDs. With climate change, there is the potential for 
exotic mosquito populations to become established in Canada. There is already a small area 
of Canada where exotic Aedes mosquitoes have become established although, to date, 
there is no evidence that these carry any exotic (or already endemic) MBDs. The increased 
risks of spreading MBDs, or introducing exotic MBDs, will need a careful clinical and public 
health response. Clinicians will need to maintain a high level of awareness of current trends, 
to promote mosquito bite prevention strategies, and to know the laboratory tests needed for 
early detection and when to report laboratory results to public health. Public health efforts will 
need to focus on ongoing active surveillance, public and professional awareness and mosquito 
control. Canadians need to be aware of the risks of acquiring exotic MBDs while travelling 
abroad as well as the risk that they could serve as a potential route of introduction for exotic 
MBDs into Canada when they return home.
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Introduction

Mosquitoes cause approximately half a million deaths annually 
through the transmission of a range of mosquito-borne diseases 
(MBDs) (1). The majority of MBDs, including malaria, dengue, 
chikungunya virus (CHIKV) and Zika virus (ZIKV), are transmitted 
to humans by mosquitoes that are not currently established in 
Canada (2–4). Most of the important vectors are mosquitoes 
from the Aedes and Anopheles genera. These mosquitoes are 
exotic to Canada because our cooler climate and particularly 
our harsh winters, prevent these mosquitoes from becoming 
established here. In contrast, mosquitoes that are endemic to 
Canada, including Culex pipiens, Cx. restuans and Cx. tarsalis, 
which are the primary vectors for West Nile virus in Canada, can 
survive over winter by entering diapause and, in general, have 
lower developmental temperature thresholds than tropical/
subtropical species (5). Accordingly, MBDs transmitted by exotic 
mosquitoes are restricted to being acquired abroad, while MBDs 
transmitted by endemic mosquitoes are acquired both abroad 

and locally in Canada during the warmer months of the year 
(6–10). 

It is well known that MBDs are sensitive to climate, and 
that climatic conditions set the limits on the geography and 
seasonality of transmission; this is reflected in the distinct and 
often predictable seasonal distribution of MBDs (11). A question 
that is often asked is: might climate change enable exotic MBDs 
to emerge and become established in Canada? The objectives 
of this paper are to identify the following: the exotic mosquitoes 
that carry pathogens causing human diseases; travel-acquired 
cases of exotic MBDs that have been reported in Canada; the 
climatic changes that could create local ecosystems in Canada 
that are conducive to the survival of exotic mosquitoes and the 
transmission of exotic MBDs; the potential routes of introduction 
of exotic MBDs into Canada as a result of climate change; and a 
summary of the clinical and public health implications. 
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Exotic mosquitoes that carry pathogens 
that cause human diseases
There are approximately 3,500 known species of mosquitoes 
worldwide, but only a small number can carry and transmit 
pathogens that cause illness in humans. The most prolific carriers 
and transmitters of exotic diseases to humans are Aedes genus 
mosquitoes. These mosquitoes, in particular Ae. aegypti and Ae. 
albopictus, have the potential to transmit over 20 pathogens 
that are infectious to humans including dengue, CHIKV, ZIKV and 
yellow fever (12,13). Aedes aegypti and Ae. albopictus are more 
widely distributed globally than any other mosquito species that 
are known to transmit diseases to humans (2,3). Collectively, 

their impact is far-reaching: between 1952 and 2017, the overall 
numbers of countries/territories reporting autochthonous 
mosquito-borne transmission of dengue, CHIKV, ZIKV and yellow 
fever were estimated to be 111, 106, 85 and 43, respectively 
(14). The highly anthropophilic behaviour of Ae. aegypti and Ae. 
albopictus makes them two of the most medically-important 
mosquito species worldwide (15). 

The Anopheles genus of mosquitoes also carry and transmit 
pathogens that cause diseases of importance to humans; these 
include malaria and lymphatic filariasis (Table 1). Up to 41 
Anopheles species have been identified as vectors for malaria 
(4); three of these are co-carriers of parasites causing lymphatic 

Mosquito 
genus

Mosquito species or species 
complex Global distribution Main disease/s carried References

Aedes

Ae. aegypti
North and South America, Middle 
East, Africa, India/Western Asia and 
Southeast Asia and the Pacific

CHIKV, dengue, YF and ZIKV (2,3,14)

Ae. albopictusa
North and South America, Europe and 
Middle East, Africa, India/Western Asia 
and Southeast Asia and the Pacific

CHIKV, dengue and ZIKV (to a lesser 
degree than Ae. aegypti) (2,3,14,20)

Ae. polynesiensis South Pacific Islands LF (W. bancrofti) and dengue (12)

Ae. scapularis North and South America LF (W. bancrofti) (12)

Ae. pseudoscutellaris South Pacific Islands LF (W. bancrofti) and dengue (12,21,22)

Anopheles

An. albimanus, An. albitarsis, 
An. aquasalis, An. darlingi, 
An. freebornib, An. marajoara, 
An. nuneztovari, An. 
pseudopunctipennis, An. 
quadrimaculatusb

North and South America Malaria (4,19)

An. atroparvus, An. labranchiae, 
An. messeae, An. sacharovi, An. 
sergentii, An. superpictus

Europe and Middle East Malaria (4)

An. arabiensis, An. funestusc, An. 
gambiaec, An. melas, An. merus, 
An. moucheti, An. nili

Africa
Malaria

Malaria and LF (W. bancrofti)c
(4,12,23)

An. culicifacies, An. stephensi, An. 
fluviatilis India/Western Asia Malaria (4)

An. aconitus, An. annularis, An. 
balabacensis, An. barbirostrisd, 
An. culicifacies, An. dirus, An. 
farauti, An. flavirostris, An. 
fluviatilis, An. koliensis, An. 
lesteri, An. leucosphyrus/latens, 
An. maculatus, An. minimus, An. 
punctulatus, An. sinensis, An. 
stephensi, An. subpictus, An. 
sundaicus

Southeast Asia and the Pacific
Malaria

Malaria and LF (B. timori)d
(4,12)

Culex
Cx. tritaeniorhychus Southeast Asia and the Pacific, Africa, 

Middle East
JE, Rift Valley fever, Murray Valley 
encephalitis virus (24,25)

Cx. quinquefasciatus North, Central and South America, 
Southeast Asia LF (W. bancrofti) (12,23)

Mansonia Various species Asia and the Pacific LF (B. malayi) (12,23)

Table 1: Common vectors of exotic mosquito-borne diseases in humans and the main diseases they carry

Abbreviations: Ae., Aedes; An., Anopheles; B., Brugia; CHIKV, chikungunya virus; Cx., Culex; JE, Japanese encephalitis; LF, lymphatic filariasis; W., Wuchereria; YF, yellow fever; ZIKV, Zika virus
ª Species that have recently established in Canada (20)
b Species that are established in Canada (19)
c Species (An. funestus and An. gambiae) that transmit both malaria and LF (W. bancrofti)
d Species (An. barbirostris) that transmit both malaria and LF (B. timori)
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filariasis (12). Each vector has a distinct geographic dominance 
with multi-species coexistence, and distribution is generally 
worldwide across the tropics and subtropics (4,16). Globally, 
they are responsible for autochthonous malaria transmission in 
87 countries, with a concentration of cases in Africa and India 
(17). Concomitantly, over 70 countries in sub-Saharan Africa, 
Southeast Asia and the Pacific Islands report local lymphatic 
filariasis transmission (18). Of the most common mosquitoes 
carrying diseases exotic to Canada, only two are established here 
(Table 1); An. freeborni and An. quadrimaculatus, the principal 
vectors for malaria. Additionally, Ae. albopictus, a principal 
vector for dengue, CHIKV, ZIKV and yellow fever, appears to have 
emerged and established in a very limited part of Southwestern 
Ontario in 2017 (19,20). Other mosquitoes that carry diseases 
exotic to Canada include Culex and Mansonia species. Diseases 
that are carried by these mosquitoes include lymphatic filariasis, 
Japanese encephalitis, Rift Valley fever and Murray Valley 
encephalitis (12). 

Travel-acquired exotic mosquito-borne 
diseases
International travel is very common; approximately 4.75 million 
Canadian residents returned from abroad each month between 
2014 and 2018; 3.77 million (82%) from the United States (US) 
and 985,000 (21%) from elsewhere (26). The most common 
destinations outside of the USA are Mexico, Western Europe 
and the Caribbean (including Cuba, Dominican Republic and 
The Bahamas) (27). It is, therefore, not surprising that Canadian 
residents often return with sporadic travel-acquired exotic 
MBDs; the most common being malaria and dengue (9,28,29). 
Each year, approximately 500 cases of travel-acquired malaria 
are reported in returned travellers (30). While dengue is not 
a notifiable disease in Canada, the National Microbiology 
Laboratory identified over 250 cases between 2012 and 2017, 
and a significant number of additional cases were documented 
by provincial public health laboratories in the same time period 
(unpublished data, Michael Drebot, National Microbiology 
Laboratory, Winnipeg, Canada). Dengue is currently considered 
one of the most critical MBDs worldwide and is of concern 
for Canadian residents given the 30-fold increase in global 
incidence over the past 50 years (31,32). The recent incursion of 
CHIKV and ZIKV into the western hemisphere and subsequent 
epidemic in the Caribbean and the Americas demonstrate the 
potential for exotic MBDs to spread extensively and rapidly 
across large vulnerable populations (33,34). As a result of the 
presence of MBDs worldwide, including in countries frequented 
by Canadian travellers, hundreds of residents returned to 
Canada with travel-acquired CHIKV and ZIKV between 2013 
and 2017 (7,8,10,35). Other common MBDs of concern for 
returned travellers include yellow fever, Japanese encephalitis 
and lymphatic filariasis. The recent outbreaks of yellow fever 

in Brazil and parts of Africa are a threat for Canadian residents 
travelling in those regions (36–38), although confirmed cases 
in returned travellers remain low (14 cases between 2008 and 
2016) (30) possibly due to the highly effective yellow fever 
vaccine recommended for Canadian travellers (39,40). The 
number of travel-acquired Japanese encephalitis and lymphatic 
filariasis cases is unknown as these diseases are not notifiable in 
Canada, but it is expected to be considerable given their high 
annual incidence globally (1). Collectively, exotic MBDs result 
in thousands of travel-acquired infections annually in returned 
travellers.

Climate changes may create ecosystems 
for exotic mosquitoes
All parts of Canada are expected to experience climate change, 
but the impact will vary across regions, with the highest impact 
expected in the north (41). A global warming of approximately 
2°C is expected to bring milder temperatures, increased 
precipitation and humidity and more frequent extreme heat 
and precipitation events. As a result, winters are expected 
to be milder and shorter, while summers will be warmer and 
longer. A global warming of approximately 4°C is very likely 
to cause even greater changes, with extreme heat events, 
daily-scale precipitation extremes and a further increase in annual 
precipitation across most parts of Canada, but particularly in the 
north (41). There are many ways in which these climate changes 
are expected to facilitate the emergence and transmission of 
exotic MBDs in Canada. Warmer temperature, higher humidity 
and increased precipitation will facilitate the lifecycle of exotic 
mosquitoes by supporting larval development and survival and 
extending adult lifespan, thus increasing overall population size 
(42–45). Climate change is also expected to influence disease 
transmission via several mechanisms: 
• Reducing egg development time in recently-fed adult 

female mosquitoes, thus reducing the time between blood 
meals and increasing feeding frequency (42,43,46)

• Shortening the extrinsic incubation period, thereby allowing 
mosquitoes to become infectious faster (42,43,45–48)

• Increasing mosquito longevity, enabling infectious 
mosquitoes to bite more people (44)

 
As temperatures in Canada become milder and humidity and 
precipitation increase, larger parts of Canada will become 
climatically suitable for the establishment of some exotic 
mosquitoes that are currently limited to the tropics and 
subtropics (3,49,50). Furthermore, as the winters become shorter 
and summers become longer, the duration of climatic suitability 
for disease transmission will increase, allowing autochthonous 
transmission of exotic MBDs for a limited period in some 
regions of Canada (49). For exotic MBDs that are zoonoses and 
require an animal reservoir that is currently present in Canada 
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(e.g. Japanese encephalitis), climate change could have further 
impact on the reservoir such as maintaining and supporting the 
expansion of natural habitats and prolonging the availability of 
food sources, thus increasing population size (51,52). Extreme 
weather events, such as droughts and heat events, can bring host 
reservoirs searching for water sources and mosquito breeding 
grounds together (53–55).

Introduction of exotic mosquito-borne 
disease pathogens into Canada
For exotic MBD emergence, a competent mosquito vector, an 
appropriate reservoir host (if any) and the exotic pathogen must 
be brought together in a suitable habitat. While climate change 
can create additional habitats for mosquitoes and reservoir 
hosts, the pathogen needs to be introduced into Canada either 
via infected mosquitoes, viraemic humans and/or viraemic 
reservoirs (56,57). Pathogen introduction can occur either locally 
or globally. 

Local introduction can occur during short-distance movement 
of mosquitoes/reservoirs/humans from a neighbouring endemic 
region into Canada. Exotic MBDs that may emerge through 
local introduction include Saint Louis encephalitis virus and 
La Crosse encephalitis virus because their vectors are already 
present in Canada and endemic in the US (58–60). If climate 
change influences or leads to increased seasonal abundance and 
expansion of specific mosquito vectors (e.g. Ae. triseriatus), there 
is a higher risk for the spread of these pathogens to additional 
geographic regions in the country. Locally-acquired cases of 
exotic MBDs will likely emerge, with a high possibility of these 
diseases becoming endemic over time. 

Global introduction can arise from long-distance movement 
(international travel, migration or trade/transportation of goods) 
of mosquitoes/reservoirs/humans from a distant endemic region 
into Canada. There are two global introduction scenarios in 
which vectors are either present or absent in Canada (Table 2). 
When the vector is present, climate change will likely increase 
travel-acquired cases of exotic MBDs by amplifying the natural 
transmission cycle and the likelihood of contact between vectors/
reservoirs/humans in the country of origin, permit short-lived 
autochthonous transmission in Canada (as observed for CHIKV 
and ZIKV elsewhere) (61–66) with the possibility of becoming 
endemic over time (as demonstrated by West Nile virus) 
(6,67–69). Diseases that may emerge under this scenario include 
malaria and CHIKV, because established or recently-emerged 
vector populations of these diseases are already present in 
Canada (19,20). When the vector is absent, and restrictions 
in the ecological niche of vectors may prevent establishment 
even with climate change, the impact of climate change will be 
limited to an increase in travel-acquired cases with no further 
local mosquito-borne transmission. While some types of global 
movement are linked to climate change [e.g. climate refugees 

(70) and changes in travel patterns (71)], many are not; however, 
global movement is increasing (72) and Canadians are avid 
travellers (26), so even without the influence of climate change, 
global movement will continue to support emergence of exotic 
MBDs in Canada.

Clinical and public health implications 

As climate change is anticipated to increase the risks for 
introduction of exotic MBDs into Canada and travel- and 
locally-acquired exotic MBDs in Canadian residents, vigilant 
clinical and public health response is essential. Clinicians 
should maintain a high level of awareness of current exotic 
MBD trends, promote mosquito bite prevention strategies by 
travellers, be aware of the laboratory tests needed for early 
detection and report notifiable diseases to public health. Public 
health professionals should focus on supporting ongoing active 
surveillance of exotic mosquitoes and pathogens, promoting 
public and professional awareness of exotic MBDs and mosquito 
control, including bite prevention. Canadian travellers need to be 
more aware of the risks that they could be acquiring exotic MBDs 
while travelling abroad as well as the risk that they could serve 
as a potential route of introduction for exotic MBDs into Canada. 
They can do this by seeking advice from local travel medicine 
clinics or by reviewing the travel health and safety sections of the 
government website (travel.gc.ca) prior to leaving the country.

Discussion

The most common travel-acquired exotic MBDs in Canada 
are malaria, dengue, CHIKV and ZIKV (7–10,28,29). Exotic 
mosquitoes that carry and transmit these diseases to humans are 
from the Anopheles and Aedes genera (12). Currently, most of 
these mosquitoes are not present in Canada, but An. freeborni 
and An. quadrimaculatus (principal vectors for malaria) are 
widespread. Small numbers of Ae. aegypti and Ae. albopictus 
(principal vectors for dengue, CHIKV, ZIKV and yellow fever) have 
been introduced into parts of Canada and populations of the 
latter have recently established in a very limited region in Canada 
(19,20). 

Climate change is expected to create and expand suitable 
habitats for exotic and endemic mosquitoes and their host 
reservoirs (3,42,50–52,74,75) and allow for establishment of 
exotic MBDs. Physiological changes in mosquitoes would 
increase their survival and ability to transmit diseases to 
humans (42–48). In addition, lengthening the duration of 
climatic suitability for disease transmission (49,76) could occur 
simultaneously both in Canada and in countries where exotic 
MBDs are already circulating. Climate change will also have an 
impact on the movement of vectors/reservoirs/humans and thus 
influence the introduction of exotic MBDs into Canada (70,71).
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The relationship between climate and MBDs is not linear. For 
example, temperatures above a certain threshold may reduce 
mosquito survival or slow pathogen replication in mosquitoes 
(77,78). Thus, climate change can have an opposing effect 
on disease transmission such as supporting reservoir hosts 
while reducing pathogen and mosquito survival. There are 
other factors that will have a profound impact on exotic MBD 
emergence, including demographic changes (immigration 
and population growth) (79–82), increased mobility and 
interconnectivity (79–81,83), urbanization and land use 
(79,80,82), and socioeconomic factors (79–82,84,85); and some 
of these factors will also be influenced by climate change. 

While the short-term risk of exotic MBD incursion and 
establishment in Canada, facilitated or exacerbated by climate 
change, is very low (49), it is feasible. The establishment of a 
new MBD has already been seen historically with West Nile virus 
(6,67,69,86,87). Malaria is of particular concern given that it 
was once endemic in Canada (88), a suspected autochthonous 
case was reported in 1996 (89) and two dominant vectors are 
widespread in Canada (19). Exotic MBDs transmitted by Ae. 
albopictus are also of concern, with the recent incursion of this 
species into temperate regions elsewhere that are climatically 
similar to parts of Canada (61,64,65,90) and the emergence of 
one small region in Canada where Ae. albopictus appears to 
have become established (20). Range expansion of this species 
within Canada will need to be monitored closely.

Consideration Local movement Global movement, vector/s 
present Global movement, vector/s absent

Emergence arising from 
local or global movement

Short-distance movement at the 
local scale

Long-distance movement at the 
global scale

Long-distance movement at the global 
scale

How geographic emergence 
may occur in Canada

Natural and regular movements 
of vectors/reservoirs/humans 
from a neighbouring endemic 
region

International travel, trade/
transportation and migration of 
vectors/reservoirs/humans from a 
distant endemic region

International travel, trade/transportation 
and migration of vectors/reservoirs/
humans from a distant endemic region

Pathogen
Present in a neighbouring 
endemic region (i.e. bordering a 
US state) but not in Canada

Present in a distant endemic region 
but not in Canada

Present in a distant endemic region but 
not in Canada

Vector mosquitoes present Yes Yes No

Impact of climate change on 
emergence

Amplify the natural transmission 
cycle and increase the likelihood 
of contact between vectors/
reservoirs/humans in Canada 

Amplify the natural transmission 
cycle and increase the likelihood of 
contact between vectors/reservoirs/
humans in Canada and in the country 
of origin

Pathogen must be imported into 
Canada via infected mosquitoes or 
viraemic humans/reservoirs (driven 
primarily by global movement and 
partially by climate change)

Amplify the natural transmission cycle 
and increase the likelihood of contact 
between vectors/reservoirs/humans in 
Canada and in the country of origin

Pathogen must be imported into Canada 
via infected mosquitoes or viraemic 
humans/reservoirs (driven primarily by 
global movement and partially by climate 
change)

Current disease presentation 
in Canada

Travel-acquired cases from the 
US

Travel-acquired cases from the US 
and globally

Travel-acquired cases from the US and 
globally

Diseases that may emerge in 
Canada with climate change

SLEV and LCEV virus via 
established Cx. tarsalis/pipiens/
restuans (SLEV) and Ae. 
triseriatus (LCEV) populations 
[73]

CHIKV via the emergence of Ae. 
albopictus in Canada (20) or malaria 
via established An. freeborni and An. 
quadrimaculatus populations (19)

JE, Rift Valley fever and other exotic 
MBDs where a natural competent vector 
is not present in Canada (Table 1) 

Anticipated disease 
emergence in Canada with 
climate change

Locally-acquired cases 

High possibility of becoming 
endemic over time

Increase in travel-acquired cases

Autochthonous cases or short-lived 
autochthonous outbreaks transmitted 
by emerging or established vector 
populations 

Possibility of becoming endemic over 
time

Increase in travel-acquired cases, 
but no further local mosquito-borne 
transmission

Table 2: Three routes of introduction of exotic mosquito-borne pathogens into Canada

Abbreviations: Ae., Aedes; An., Anopheles; CHIKV, chikungunya virus; Cx., Culex; JE, Japanese encephalitis; LCEV, La Crosse encephalitis virus; MBD, mosquito-borne disease; SLEV, Saint Louis 
encephalitis virus; US, United States
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Conclusion
The exact impact of climate change on exotic MBD emergence 
in Canada is difficult to quantify but there are expected to be 
more travel-acquired cases, a higher potential for short-lived 
autochthonous outbreaks of exotic MBDs and a higher risk 
for exotic MBDs to become endemic, particularly if the 
vectors are already present in Canada. Overall, there is a risk 
of establishment of exotic mosquitoes and MBDs in Canada 
with climate change, especially those transmitted by Aedes 
albopictus mosquitoes. Some of these impacts can be mitigated 
by adopting clinical and public health measures, including 
promoting awareness and use of mosquito bite prevention 
strategies, early detection and prompt response, ongoing active 
surveillance and mosquito control. Canadians need to be aware 
of the exotic MBDs that they are at risk for while travelling 
abroad as disease risk will only increase with climate change. 
Further, Canadians returning home serve as a potential route of 
introduction for exotic MBDs, making the need for awareness 
even more urgent.
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