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Abstract
Quantitative evaluation of binding affinity changes upon mutations is crucial for protein engi-

neering and drug design. Machine learning-based methods are gaining increasing momentum in

this field. Due to the limited number of experimental data, using a small number of sensitive pre-

dictive features is vital to the generalization and robustness of such machine learning methods.

Here we introduce a fast and reliable predictor of binding affinity changes upon single point

mutation, based on a random forest approach. Our method, iSEE, uses a limited number of inter-

face Structure, Evolution, and Energy-based features for the prediction. iSEE achieves, using

only 31 features, a high prediction performance with a Pearson correlation coefficient (PCC) of

0.80 and a root mean square error of 1.41 kcal/mol on a diverse training dataset consisting of

1102 mutations in 57 protein-protein complexes. It competes with existing state-of-the-art

methods on two blind test datasets. Predictions for a new dataset of 487 mutations in 56 protein

complexes from the recently published SKEMPI 2.0 database reveals that none of the current

methods perform well (PCC < 0.42), although their combination does improve the predictions.

Feature analysis for iSEE underlines the significance of evolutionary conservations for quantita-

tive prediction of mutation effects. As an application example, we perform a full mutation scan-

ning of the interface residues in the MDM2–p53 complex.
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1 | INTRODUCTION

The affinity between proteins and their binding partners is a funda-

mental property that governs their function in cells. Mutations in pro-

teins can induce changes in the binding affinity for their interaction

partners, altering their functioning by perturbing their communication

network. Missense mutations are often linked to various human

diseases,1 such as cancer. Quantitative characterization of binding

affinity changes can therefore shed light on the relation between cod-

ing variations and disease phenotypes, and guide the design of effec-

tive therapeutics for genetic disorders. It can also be particularly

useful for engineering protein–protein interactions with modulated

binding affinity.

Various experimental methods can be used to quantitatively mea-

sure binding affinities,2,3 each with their own limitations and precision.

Although they provide valuable information, experimental methods

can be labor-intensive and time-consuming, and, as a consequence,

lag behind the rapid advances of sequencing technologies, which are

generating a huge amount of data on disease-causing mutations. This

calls for the development of reliable and fast computational methods

for estimating the mutation effects on binding affinity (ie, the binding

free energy change between a wild type and mutant complex, ΔΔG).
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Computational methods for ΔΔG prediction can be largely

grouped into three main strategies: (1) Rigorous methods, such as

thermodynamic integration and free energy perturbation,4,5 (2) empiri-

cal energy-based methods, based for example on classical mechanics

or statistical potentials6–10 (typically in linear forms), and (3) machine

learning-based methods which can exploit a large variety of energetics

and non-energetics (eg, geometric, evolutionary) features.11–13 The

rigorous methods can be accurate but they are computationally highly

demanding. Their application is, therefore, limited to mainly low-

throughput and small system ΔΔG calculations. The empirical energy-

based methods are much faster and more broadly applied. They usu-

ally take a form of linear functions, often with only energy-based

terms, and fail to exploit evolution information, which can limit their

ability to capture mutation effects on binding affinity. Insufficient con-

formational sampling, especially for mutations in flexible regions, can

limit the accuracy of energy-based methods. In contrast, machine

learning-based methods are potentially less sensitive to this since they

can model mutation effects using not only potentials or energies but

also other relevant features, such as, sequence, structure, and evolu-

tion. Machine learning approaches typically aim to model the intrinsic

relationship between features of a mutation site and the response var-

iable (eg, the binding affinity change) by training statistical models

from mutation datasets with experimentally determined ΔΔG. Due to

the data-driven essence of machine learning, the availability of a large

amount of reliable experimental data and the construction of features

that can reflect structural and physico-chemical changes caused by

mutations are crucial factors in the success of this type of methods. It

is therefore not surprising that the publication of the SKEMPI data-

base14 (version 1.1, which was in the past 6 years the largest mutation

ΔΔG dataset for protein–protein complexes containing 3047 muta-

tions in 85 complexes) quickly promoted the emergence of several

machine learning-based ΔΔG predictors.11–13 However, the SKEMPI

1.1 dataset is still rather limited in size and one has to be careful not

to use too many features to train a model to avoid overfitting

problems. It is therefore important to design fast and reliable ΔΔG

predictors that exploit only a limited number of sensitive and relevant

features. Very recently, an update of SKEMPI was published, version

2.0,15 which provides a much extensive dataset and gives us the

opportunity to test various predictors on data none of them has

previously seen.

Residue conservation plays a central role in determining the bind-

ing affinity. It has been verified that the binding energy is not evenly

distributed among the interfacial residues. Instead, some residues

(hot-spots) contribute most to the binding affinity.16–18 Such residues

are often highly conserved. Interface conversation has been used in

several of the best performing ΔΔG predictors.13,19 However, since

the conservation measure they used is structure-based, relying on the

availability of structural homologs,13,19 the application and prediction

of these ΔΔG predictors are largely limited by the availability and the

number of such homologs. By contrast, conservation from Position

Specific Scoring Matrix (PSSM) is sequence-based and thus better

applicable. The PSSM value is a log likelihood ratio between the

observed probability of one type of amino acid appearing in a specific

position in the multiple sequence alignment (MSA) and the expected

probability of that amino acid type appearing in a random sequence.20

Thus, each position of a protein can be represented as a 20 by 1 PSSM

profile (or vector), which captures the conservation property of each

amino acid type at a specific position.

Here we present a machine learning-based method named iSEE

(interface Structure, Evolution and Energy-based ΔΔG predictor),

which combines HADDOCK21 structure and energy terms of wildtype

and mutant complexes as well as PSSM conservation profiles before

and after mutations (Figure 1). HADDOCK21 is our in-house docking

program, which has been consistently ranking among the top predic-

tors and scorers in CAPRI, a community-wide experiment for the pre-

diction of biomolecular interactions.22 Its simple but sensible scoring

function has contributed much to its success.23 It includes intermole-

cular van der Waals (Evdw) and Coulomb electrostatics (Eelec)

FIGURE 1 The workflow of iSEE predictor. Only the 3D structure of wildtype complex and the mutation information are necessary input for

iSEE. We first model the mutated structure using HADDOCK (the water refinement web service). Then we extract features related to the
evolutionary conservation and to changes in structure and energetics caused by the mutation. A random forest algorithm is then optimized and
cross validated on a training dataset, resulting in our final ΔΔG predictor iSEE. Finally, iSEE is evaluated on two blind test datasets and compared
with other current leading ΔΔG predictors
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energies, an empirical desolvation energy term (Edesolv)24 and buried

surface area (BSA), which is only used in intermediate scoring steps

and not in the final scoring function. iSEE is based on a random forest

model25,26 for ΔΔG prediction, trained on a subset of 1102 single

point mutations in 57 complexes from SKEMPI 1.1. It uses a small

number of features to lower the overfitting risk and competes with

both empirical potentials- and machine learning-based state-of-the-

art methods on an existing independent test dataset (the Benedix

et al dataset8) and a large test dataset from the recently released

SKEMPI 2.0 database. The recent release of SKEMPI 2.0 allows us for

the first time to test various ΔΔG predictors on a large new blind

dataset with about 500 mutations. Analysis of the importance of the

features used in iSEE highlights the significance of evolutionary infor-

mation in predicting the effect of mutations on the binding affinity of

protein complexes. Using iSEE we performed a full computational

mutation scanning of the interface of the MDM2–p53 complex and

identified three important residues, two of which have been validated

as hot-spot experimentally.

2 | METHODS

2.1 | Training and test datasets

Four datasets of experimental ΔΔG with available crystal structures of

protein complexes were used in this study. Only single point muta-

tions in the interface of the protein–protein complexes were consid-

ered, and only for dimeric complexes for ease of computations, but

our prediction scheme can be easily extended to multimers. The inter-

face residues were defined following Levy's method27 as those

located in the core, rim, and support regions.

The training dataset was extracted from the DACUM database

(https://github.com/haddocking/DACUM),28 our ΔΔG database

derived from the SKEMPI 1.1 database.14 DACUM contains 1872 sin-

gle point mutations in 81 protein complexes. After applying the

above-mentioned filter criteria, 1102 single point mutations in 57 pro-

tein complexes were selected.

We compiled two independent datasets, not used for training, to

evaluate, and compare our predictor with state-of-the-art ΔΔG

predictors.

We selected a subset from the Benedix et al NM dataset8 for

which predictions of various ΔΔG predictors have already been

reported.7,9 The original NM dataset has both single point and multi-

ple point mutations in protein dimer or multimer complexes. We

applied the same filtering criteria as above. Moreover, to avoid any

overlap between the training dataset and the test dataset, mutations

existing in the training dataset were filtered out from the original NM

dataset. This procedure resulted in 19 mutations in one complex (PDB

ID: 1IAR). For this heterodimer complex, only ΔΔG values for muta-

tions on chain A were contained in our training dataset, while all ΔΔG

data in the NM dataset are for mutations on chain B. Thus, the NM

dataset is distinct from our training dataset at the level of mutation

position. In the remaining of our article, we will refer to those data as

“the NM dataset.”

Also, we selected new data from the recently released SKEMPI

2.0 database. After applying the above-mentioned filter criteria,

487 mutations in 56 protein complexes were selected. We will refer

to this dataset as “the S487 dataset” in the remaining article.

Finally, we used the MDM2–p53 complex for case study, which

does not exist in SKEMPI. We obtained experimental ΔΔG values in

our laboratory (van Rossum et al, manuscript in preparation) for

16 and 17 single point mutations at the interface of MDM2 and p53,

respectively (PDB ID: 1YCR). Seven mutations that reach the experi-

mental detection limitation have experimental ΔΔG of larger than

2 kcal/mol. The list of these mutations can be found in Supporting

Information Table S8.

2.2 | Predictive features

We compiled a list of 31 features (Supporting Information Table S4)

including intermolecular energy terms and buried surface area (BSA)

from HADDOCK21 and conservation values from PSSM.

To obtain the structural and energetic features, both wild type

and mutant structures were refined using the protocol implemented

in the refinement interface of the HADDOCK server.29 The mutations

were introduced by simply changing the identity of the residue in the

coordinate file and letting HADDOCK rebuild the missing side-chain

atoms and refine the interface in explicit solvent using the TIP3P

water model and the Optimized Potentials for Liquid Simulations

(OPLS) force field30 with an 8.5 Å cutoff for the non-bonded interac-

tions. The HADDOCK terms for wildtype or mutant complex were

extracted from the top ranked HADDOCK model. The HADDOCK-

derived features are:

• Evdw, the intermolecular van der Waals energy described by a

12-6 Lennard-Jones potential.

• Eelec, the intermolecular electrostatic energy described by a Cou-

lomb potential.

• Edesolv, an empirical desolvation energy term.24

• BSA, the buried surface area calculated by taking the difference

between the sum of the solvent accessible surface area (SASA)

for each individual protein and the SASA of the protein complex

using 1.4 Å water probe radius.

The four HADDOCK terms of wildtype complex and the differ-

ences of the HADDOCK terms between mutant and wildtype com-

plexes were used as HADDOCK-based predictive features, which are

named as Evdw_wt, Eelec_wt, Edesolv_wt, BSA_wt, Evdw_diff,

Eelec_diff, Edesolv_diff, and BSA_diff.

The PSSM was calculated through PSI-BLAST of BLAST 2.3.031

using a local version of the software and databases with the following

parameters: BLOSUM62 was used as scoring matrix by default, and

PAM30 was used when BLOSUM62 failed for short sequences; the

number of iterations was 3 and the e-value threshold was set to

0.0001; the BLAST database was the nr database (non-redundant

BLAST curated protein sequence database, version on 22nd August

2016). Default values were used for all the other parameters. For each

mutation position of a query protein, four types of conservation fea-

tures were extracted from the PSSM file:
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• the PSSM profile for this position, which is a 20 by 1 vector

(PSSM_AA).

• the information content for this position (PSSM_IC).

• the individual PSSM value for the wildtype residue at this position

(PSSM_wt).

• the difference between the individual PSSM values for mutant

residue and wildtype residue at this position (PSSM_diff ).

2.3 | Training procedures and evaluation metrics

We used the random forest algorithm26 from the R Caret package32 to

train our ΔΔG predictor. We optimized the parameters of random forest

over 10 times 10-fold cross-validations on the training dataset: the num-

ber of trees to grow, defined by the “ntree” parameter, was varied from

10 to 100 in steps of 10, and the number of variables randomly sampled

as candidates at each split, defined the “mtry” parameter, was sampled

from 1 to 20. The prediction performance was evaluated by root mean

square error (RMSE) and Pearson's correlation coefficient (PCC).

2.4 | Comparison with other ΔΔG predictors

The performance of the iSEE ΔΔG predictor was compared with sev-

eral state-of-the-art ΔΔG predictors on the independent NM and

SKEMPI 2.0 S487 test datasets. For the NM dataset, the predicted

ΔΔG values of pred1,9 pred2,9 CC/PBSA,8 BeAtMuSiC,10 and FoldX6

were directly extracted from Li et al.9 and those of ZeMu from Doura-

do's article.7 Predictions of mCSM11 and BindProfX19 for the test

datasets were directly obtained from their respective webservers. The

default parameters of BindProfX were used except the “Score to use”

which was set to “interface profile and physics potential” (the authors

reported it to work best for single point mutations19). A local version

of FoldX (4.0) was used for the S487 dataset.

2.5 | Classification of mutations

Mutations were classified based on three scenarios: the location of

the mutation, the type of mutated amino acid and the change in the

size of the amino acid side-chain.

Based on the type of secondary structure a mutation is located, it

was classified as a loop or non-loop mutation. We used DSSP33,34

(v2.0.4) for secondary structure assignment. DSSP code S, B, and

blank were considered as loop, otherwise non-loop.

Based on the type of mutated amino acid, a mutation was called

“toALA” mutation when a residue was mutated to alanine, otherwise

“toNonALA” mutation.

The change of amino acid size was defined as the difference of

volumes (ΔV) between mutant and wildtype amino acids. The volumes

of the 20 amino acids were taken from literature.35 A mutation was

classified as “neutral” if |ΔV| ≤ 10 Å3, as small to large (“toLarge”) if

ΔV > 10 Å3, and as large to small (“toSmall”) if ΔV < −10 Å3.

2.6 | Feature importance analysis

We used the algorithm from the R package randomForest26 to evalu-

ate feature importance. The feature importance is measured by the

decrease of mean squared error when splitting on a feature, averaged

over all trees. The importance measure of a group of features was cal-

culated by taking the sum of weighted importance of each feature in

that group with the weight for each feature defined as the number of

times the feature was chosen as split variable over all trees divided by

the total of all group member features. The PSSM profile scores for

the 20 amino acids were treated as a group (PSSM_AA). The best

model trained on the entire training dataset with parameters ntree =

80 and mtry = 7 was used to analyze the feature importance.

2.7 | Data and model availability

All PDB files including the HADDOCK-refined models, and PSSM files

used in this work are available from the SBGrid Data repository36

(doi:10.15785/SBGRID/520). The iSEE predictor and features used

for training and test are freely available on GitHub from https://

github.com/haddocking/iSee.

3 | RESULTS

3.1 | Training and validation of iSEE on a large
diverse single point mutation dataset

We trained iSEE on a relatively large and diverse dataset consisting of

experimental ΔΔG values for 1102 single point mutations in the interface

of 57 dimer complexes. Among those, 656 mutations are in loops, 767 are

non-ALA mutations, 376 correspond to small to large substitutions, and

590 from large to small size (Supporting Information Table S5). For each

mutation, we extracted 31 energetics and conservation features (see

Methods). A random forest (RF) model was trained and evaluated using

10-fold cross-validation (CV). The data are randomly divided into 10 parts,

9 of which are used for training and the left-out one for evaluating the per-

formance of the trained RF model. This process was repeated 10 times to

reduce the randomness of the data partition. From this training, a RFmodel

with 80 trees and 7 randomly selected variables for each node achieved

the best average root mean square error (RMSE) value (Figure S1 in Sup-

porting Information). The resulting best performing ΔΔG predictor, called

iSEE, was comparedwith state-of-the-artΔΔG predictors (see below).

iSEE's prediction performance shows an average RMSE of

1.41 � 0.14 kcal/mol and a Pearson's correlation coefficient (PCC) of

0.80 � 0.06 over the cross-validated sets (Figure 2A). The predictor per-

forms as well for ALA and non-ALA mutations, mutations inside and out-

side loops, and mutations corresponding to different changes in side-

chain sizes (Figure 2B,D). This indicates that our approach is not very sen-

sitive to possible conformational changes coming from loop flexibility and

is robust for different types of mutations. We further evaluated the appli-

cability of iSEE to different types of protein complexes. Our results show

that iSEE has a strong generalizability for predicting ΔΔG trends for muta-

tions within complexes (Supporting Information Figures S2 and S3).

3.2 | iSEE competes with state-of-the-art ΔΔG
predictors

We evaluated the performance of our iSEE ΔΔG predictor on the

blind Benedix et al dataset8 (see Methods) and compared it to several

other state-of-the-art ΔΔG predictors based on empirical potentials or
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machine learning methods, which have been tested by Li et al9 on the

same data set. We only selected data from the NM data set for muta-

tions that were not represented in the training data, which left 19 sin-

gle point mutations for one complex (heterodimer, PDB ID: 1IAR.

Supporting Information Table S6).

iSEE was compared with the following predictors:

• FoldX, which models free energy as a linear combination of multi-

ple energy terms with weights optimized on a set of experimental

ΔΔG values.6

• ZeMu, which can model conformational changes upon mutation

using molecular dynamics simulations but relies on FoldX to pre-

dict ΔΔG.7

• CC/PBSA,8 pred1,9 and pred2,9 which generate an ensemble of

structures and apply a Molecular Mechanics—Poisson–Boltzmann

Surface Area (MM-PBSA) approach to calculate the binding free

energy.

• BeAtMuSiC, which is based on a linear combination of coarse

grained statistical potentials.10

• mCSM,11 a machine learning based approach, using distance-

specific atom-contacts (calculated from the wild-type structures

only) and pharmacophore changes of the mutation site as features

of Gaussian processes to predict ΔΔG.

• BindProfX,19 which is mainly based on evolutionary interface pro-

file constructed from structural homologs, and combines the

interface profile score with FoldX through a simple linear function

to predict ΔΔG.

iSEE compares favorably with the eight other predictors considered

here over the independent NM test set with a RMSE of 1.37 kcal/mol
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FIGURE 2 Correlations between predicted and experimental ΔΔG values for the training dataset consisting of 1102 single point mutations from the

SKEMPI14/DACUM28 database. Ten times 10-fold cross-validation (CV) was applied during training, and the average of the CV predicted ΔΔG
values are shown here for all mutations (A) and mutations classified as loop or non-loop (B), type of mutated amino acid (C), and change in amino
acid size (D). The diagonal indicates an ideal prediction. PCC is the Pearson's correlation coefficient and RMSE represents root mean squared error
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and a PCC of 0.73 (Figure 3), belonging to the top four predictors with

PCCs over 0.70: BindProfX (0.81), iSEE (0.73), FoldX (0.72), and ZeMu

(0.70). The ΔΔG predictions of the top four predictors are statistically sig-

nificant with p values lower than 0.001, while other predictors have larger

p values ranging from 0.006 to 0.523. Note that since CC/PBSA did use

the NM data for training,8 its performancemight be over-estimated.

3.3 | There is still plenty of room to further improve
ΔΔG predictors

We benchmarked iSEE and three other ΔΔG predictors (FoldX,

mCSM, and BindProfX) on a much larger blind test dataset (the S487

dataset) constructed from the recently released SKEMPI 2.0 update.

This dataset contains 487 mutations in 56 protein complexes that

have not been seen by any predictor tested here (Supporting Informa-

tion Table S7). None of the four ΔΔG predictors performs well on this

large blind test set (Figure 4). BindProfX performs best with an RMSE

of 1.20 kcal/mol and PCC of 0.41 while iSEE achieves an RMSE of

1.32 kcal/mol and PCC of 0.25.

To see if a combination of those ΔΔG predictors could

improve the prediction performance, we simply averaged their pre-

dictions. The resulting combined predictor outperforms all the indi-

vidual predictors with improved RMSE (1.18 kcal/mol) and PCC

(0.43) (Figure 4).

   PCC = 0.73
RMSE = 1.37
p < 0.001

   PCC = 0.70
RMSE = 1.28
p < 0.001

   PCC = 0.81
RMSE = 1.11
p < 0.001

   PCC = 0.72
RMSE = 1.15
p < 0.001

   PCC = 0.60
RMSE = 1.33
p = 0.006

   PCC = 0.48
RMSE = 1.44
p = 0.036

   PCC = 0.39
RMSE = 1.49
p = 0.099

   PCC = 0.24
RMSE = 1.70
p = 0.318

   PCC = 0.16
RMSE = 1.83
p = 0.523

RMSE unit: kcal mol-1

FIGURE 3 Predicted versus experimental ΔΔG for various ΔΔG predictors tested on a subset of the Benedix et al dataset8 consisting of

19 mutations for one complex, non-overlapping with our training set. This subset was not used in any of the predictors, except for CC/PBSA.
PCC is the Pearson's correlation coefficient, P is two tailed P value of PCC, and RMSE represents root mean squared error

GENG ET AL. 115



3.4 | Feature importance

We analyzed the importance of iSEE features for the prediction per-

formance. This was done by calculating the averaged decrease of

mean squared error for splitting on a given feature over all trees in the

random forest model (see Methods). The results (Figure 5) reveal that

the PSSM value of the wildtype amino acid (PSSM_wt) and the differ-

ence of PSSM values between mutant and wildtype residues

(PSSM_diff ) are the two most important features. They capture the

evolutionary conservation of a specific amino acid at the mutation

position and its change after mutation, respectively. PSSM has been

proven to provide crucial information in various related topics, such as

binding site predictions37 and hot-spot predictions.38 The alignment

depth does not seem to have much impact on the prediction perfor-

mance (Supporting Information Figure S4). However, with most

entries having over 300 sequences in their alignment a more system-

atic study should be performed to come to clear conclusions on this.

The next most important feature is an energetic term, namely the

change in intermolecular electrostatic energy calculated by HAD-

DOCK between the mutant and wildtype complexes (Eelec_diff ), fol-

lowed by the PSSM information content (PSSM_IC). The latter

captures the evolutionary conservation over all 20 types of amino

acids that can potentially appear at the mutation position. The high

importance of the PSSM_wt, PSSM_diff, and PSSM_IC features

   PCC = 0.25
RMSE = 1.32
p < 0.001

   PCC = 0.41
RMSE = 1.20
p < 0.001

   PCC = 0.43
RMSE = 1.18
p < 0.001

  PCC = 0.34
RMSE = 1.53
p < 0.001

   PCC = 0.25
RMSE = 1.35
p < 0.001

FIGURE 4 Correlations between predicted and experimental ΔΔG for various ΔΔG predictors tested on 487 mutations of SKEMPI 2.0. PCC is

the Pearson's correlation coefficient, P is two tailed P value of PCC, and RMSE represents root mean squared error
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FIGURE 5 iSEE feature importance analysis. The importance value is

measured as the decrease of mean squared prediction error when
splitting on a given feature, averaged over all trees. The higher its
value, the more important is the corresponding feature. The PSSM
profile scores for the 20 amino acids are presented as a group in
“PSSM_AA”
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indicate that evolutionary conservation is essential to quantitatively

describe the effect of mutations on binding affinity.

3.5 | Case study: The MDM2–P53 complex

The effect of several new mutations in the complex of MDM2 with

the tumor suppressor protein p53, which plays a central role in can-

cer development,39,40 was characterized experimentally in our labo-

ratory using a novel high-throughput binding assay (van Rossum

et al, manuscript in preparation). It contains ΔΔG measurements for

33 new mutations, 7 of which have reached the experimental detec-

tion limit (Supporting Information Table S8). The average experimen-

tal error for this dataset was estimated to be less than 0.5 kcal/mol.

Like the performance on S487 dataset, the predictors have difficul-

ties in predicting ΔΔG for this complex with all PCC values below

0.40 with P values ranging from .070 to .491(Supporting Information

Figure S5). If we treat the problem as a classification one to see how

well they detect important mutations with ΔΔG ≥ 2 kcal/mol. iSEE

reliably identified important mutations (ΔΔG ≥ 2 kcal/mol) with the

highest Matthews correlation coefficient (MCC) of 0.61 together

with FoldX (Supporting Information Table S1).

We further performed a full computational mutation scanning of

the interface of the MDM2–p53 complex: Each interface residue in the

complex (26 and 12 residues for MDM2 and p53, respectively) was

mutated to all other 19 amino acid types (Figure 6). Only single point

mutations were considered. In total, we thus conducted

722 computational mutations, of which 33 have experimental measure-

ments. None of the predicted ΔΔG values was negative, which indi-

cates that no interface mutations were predicted to strengthen the

interaction between MDM2 and p53. This is largely consistent with the

experimental data: Experimentally only six mutations were found to

stabilize the complex, but only by very small amounts (≥ −0.4 kcal/mol,

Supporting Information Table S8). Considering the RMSE of iSEE

(1.41 kcal/mol) predicting those is challenging.

From Figure 6, we can clearly identify three residues more sensi-

tive to mutations: Y67 on MDM2 and F19 and W23 on p53. The lat-

ter two are experimental hot-spots41 (Supporting Information

Tables S2 and S8) and the third one is a candidate for experimental

verification.

4 | DISCUSSION

We have developed a machine learning based ΔΔG predictor, iSEE,

for quantitative prediction of the effects of single point mutations at

the interface of a protein–protein complex. By combining structural,

evolutionary, and energetic features and training on a large and

diverse dataset, our iSEE predictor not only demonstrated a consistent

and high performance on various types of mutations during training,

but also competed with state-of-the-art methods (based on empirical

potential or machine learning models) on independent blind test

datasets.

FIGURE 6 Full computational mutation scanning of the MDM2–p53 interface using iSEE. A, Heat map of ΔΔG values for the mutation of each

residue in the MDM2–p53 interface to all other amino acid types. The sites with at least one experimental mutation are indicated in bold.
Mutations from one amino acid to the same amino acid were assigned a value of zero. The right panel shows the distribution of ΔΔG values for
each site with the vertical solid line and dashed lines showing the average and standard deviations of all predicted ΔΔG values, respectively.

Three residues have their median above the average + one standard deviations showing more sensitivity to mutations. Two of those are
experimentally validated hot-spots (W23 and F19). B, the three predicted key binding sites are represented in sticks and all 38 interface sites in
ball in the 3D structure of MDM2–p53 complex (PDB ID: 1YCR). MDM2 is represented in cartoon and surface and p53 in cartoon. Each interface
site is colored by the median of full mutational predictions

GENG ET AL. 117



Compared with other machine learning methods, our predictor

uses a rather small number of features, 31 in total which minimize the

risk of overfitting (mCSM, eg, could use over 100 features). Evolution-

ary features, which benefit from the wealth of sequence data, are par-

ticularly sensitive to describe the impact of mutations on binding

affinity as demonstrated by our feature importance analyses. The evo-

lutionary conservation at both the amino acid type level (PSSM_wt

and PSSM_diff ) and mutation position level (PSSM_IC) were dominant

among all iSEE features. Next to evolutionary features, energetic

terms calculated with HADDOCK contribute to a quantitatively pre-

diction of ΔΔGs, in particular the change of intermolecular electro-

static energy (Eelec_diff ).

Unlike mCSM for which only wild-type structures are needed as

input, iSEE does require the structures of both wildtype and mutant

complexes. Models of the mutant complexes were obtained using the

HADDOCK refinement server.29 The robust prediction results for

mutations in loop versus non-loop and mutations with different resi-

due size changes indicates that this approach—the short refinement in

explicit solvent performed by HADDOCK—can handle a small degree

of conformational changes and remove steric clashes. To explore

whether using an ensemble of structural models instead of a single

model would improve the prediction performance, we also trained

and tested iSEE using the average features calculated from the top

four models returned by the HADDOCK refinement server. iSEE

seems rather robust with respect to small conformational differences

that might affect the energetic terms since using values from the top-

ranked model or averages over the best 4 does not have any signifi-

cant impact on its performance (Supporting Information Table S3).

More systematic analyses are, however, needed to draw solid conclu-

sions on this point.

With the recent release of SKEMPI 2.0, it becomes possible to

benchmark current ΔΔG predictors on a large and novel blind dataset.

Our benchmarking results on a set of 487 mutations show that all

state-of-the-art ΔΔG predictors do not perform well with PCCs lower

than 0.42. This indicates there is still a plenty of room for further

improvements. Interestingly, averaging the predictions from the differ-

ent ΔΔG predictors generated an improved prediction performance,

indicating the various ΔΔG predictors might use complementary fea-

tures. This should be useful for further development and improvement

of ΔΔG predictors.
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