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SUMMARY

Little attention has been given to the design of efficient studies to evaluate longitudinal biomarkers. Mea-
suring longitudinal markers on an entire cohort is cost prohibitive and, especially for rare outcomes such
as cancer, may be infeasible. Thus, methods for evaluation of longitudinal biomarkers using efficient and
cost-effective study designs are needed. Case cohort (CCH) and nested case–control (NCC) studies allow
investigators to evaluate biomarkers rigorously and at reduced cost, with only a small loss in precision.
In this article, we develop estimators of several measures to evaluate the accuracy and discrimination of
predicted risk under CCH and NCC study designs. We use double inverse probability weighting (DIPW)
to account for censoring and sampling bias in estimation and inference procedures. We study the asymp-
totic properties of the proposed estimators. To facilitate inference using two-phase longitudinal data, we
develop valid resampling-based variance estimation procedures under CCH and NCC. We evaluate the
performance of our estimators under CCH and NCC using simulation studies and illustrate them on a
NCC study within the hepatitis C antiviral long-term treatment against cirrhosis (HALT-C) clinical trial.
Our estimators and inference procedures perform well under CCH and NCC, provided that the sample
size at the time of prediction (effective sample size) is reasonable. These methods are widely applicable,
efficient, and cost-effective and can be easily adapted to other study designs used to evaluate prediction
rules in a longitudinal setting.
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1. INTRODUCTION

For many lethal diseases such as hepatocellular carcinoma (HCC), active surveillance of the high-risk
population may aid in detecting the disease at an early stage when curative therapy can be implemented.
For disease monitoring, using longitudinally measured information to predict the occurrence of a clinical
outcome in a future time is a key analytical goal. The prediction of such a time-dependent binary outcome is
often dynamic, updated with information accumulated over time. Once a prediction algorithm is developed
based on longitudinal biomarkers, it is critical to evaluate its clinical performance prior to adopting it for
routine clinical use.

The motivation of our research comes from a biomarker study for HCC surveillance. Alpha fetoprotein
(AFP) is the most widely used biomarker for HCC surveillance, however, its sensitivity and specificity
in detecting early HCC are low. More reliable biomarkers for HCC surveillance and early detection are
sought in order to improve the outcome of the disease. The hepatitis C antiviral long-term treatment against
cirrhosis (HALT-C) trial included 1050 patients at high risk of HCC, i.e., those with cirrhosis, and chronic
infection with hepatitis B virus or hepatitis C virus. Patients were randomized to low dose pegylated
interferon or no treatment and followed every 3 months for a total duration of 3.5 years. Blood samples
were collected at each visit for subsequent research testing, including assays for HCC biomarkers. As part
of the trial, a nested case–control (NCC) study was conducted to assess the accuracy of a novel serum
biomarker, des-gamma-carboxy prothrombin (DCP), in predicting the risk of HCC among patients under
surveillance. The NCC sub-cohort included all 39 HCC cases diagnosed during the follow up. For each
case, two controls matched on treatment assignment and presence of cirrhosis on baseline biopsy were
selected from those at risk of HCC at the time of diagnosis. The biomarkers were evaluated at multiple
follow up visits and the results based on the repeated markers were reported in Lok and others (2010). In
that study, the prediction performance of the biomarkers at a single time point was assessed ignoring the
sampling design. The main question remaining to be addressed with the information collected is how to
efficiently assess the longitudinal prediction accuracy of the new marker from a two-phase study with a
rare outcome?

The study considered in the HALT-C trial is of a two-phase design in that biospecimens are ascertained
only for a subset of individuals selected in the second phase. Two-phase sampling designs, including the
case cohort (CCH) (Prentice, 1986) and the NCC (Thomas, 1977), are particularly appealing for biomarker
studies as cost-effective alternatives to the full-cohort design. In the case of a longitudinal study of novel
biomarkers, cost-effectiveness is of particular importance due to the need to assay repeated measurements
from all individuals in the full cohort. Efficient estimation of the relative risk in risk modeling analysis
based on a subset of individuals has been addressed to a great extent in Borgan and others (2000), Breslow
and others (2009), Chen and Lo (1999). However, literature is limited on methods to select individuals
in the context of evaluating biomarker performance (Cai and Zheng, 2012; Liu and others, 2012); and
no work so far has been proposed to calculate accuracy summaries under two-phase longitudinal studies.
The two-phase designs, while cost-effective, generate complex datasets in which the missingness of the
longitudinal marker values depends on the outcome of interest, making estimation and inference about
the accuracy of prediction based on a longitudinal marker challenging. In particular, inference needs
to account for both between-individual correlations induced by specific sampling schemes and within-
individual correlations due to repeated measures.Appropriate statistical methods are not currently available
for such a setting. Wide adoption of these designs to evaluate predictive markers in a longitudinal setting
is critically dependent on the availability of appropriate statistical tools.

The evaluation of the clinical performance of a medical test has been traditionally based on receiver
operating characteristic (ROC) curves, and calculation of time-dependent ROC curves to evaluate a single
longitudinal marker has been considered in Zheng and Heagerty (2004). Area under the ROC curve
(AUC) for a longitudinal biomarker provides a global summary of the marker’s capacity for discriminating
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between individuals who are still at risk at the update time and subsequently develop the outcome in a
given time frame versus those who do not. Extension of the Brier score to the longitudinal setting, termed
the prediction error (PE), serves as a tool for quantifying the calibration of a prediction model (Schoop
and others, 2008; Blanche and others, 2015). More recently other metrics of risk assessment have been
proposed that are more clinically relevant compared with the AUC (e.g., Gu and Pepe, 2009; Pfeiffer and
Gail, 2011). However, they are most often considered with a binary outcome and are yet to be extended
to a setting with longitudinal markers and survival outcomes. Evaluating dynamic prediction rules in that
setting is a topic of great interest in the field. Allowing the calculation of these quantities with a two-phase
study would be of great practical importance.

The goal of this article is to provide estimation and inference tools for the cost-effective evaluation
of longitudinal dynamic risk predictions under two-phase study designs. First, we consider summary
measures that can be used to quantify the clinical utility of dynamic risk predictions and are relevant
to clinical practice of active surveillance, and propose non-parametric estimators in this setting. Such
an approach separates the validation procedure from the procedure for dynamic risk derivation, and it
improves upon existing methods for longitudinal accuracy estimation with a full cohort evaluation (e.g.,
Zheng and Heagerty, 2007) in terms of robustness. To accommodate two-phase sampling design, we
consider the idea of doubly inverse probability weighted (DIPW) estimators. Building upon previous
research using baseline data (e.g., Liu and others, 2012), we further modify both the sampling weights
and the censoring weights to accommodate more complex longitudinal settings. This introduces additional
complexity for inference. Therefore to facilitate inference on the longitudinal accuracy summaries, we
study the asymptotic properties of the new methods and propose a resampling-based procedure to account
for various sources of variation, those due to two-phase sampling and specific estimation procedures.
We also provide a unified approach to analyzing two-phase longitudinal data, which accounts for the
between-individual correlation induced by sampling in addition to the within-individual correlation among
measurements for the same individual. This is an important contribution to the literature, and will facilitate
the adoption of cost-effective two-phase designs in longitudinal biomarker studies in practice.We introduce
notation in Section 2. We describe estimation of dynamic risks and risk assessment measures under
longitudinal cohort and two-phase designs in Section 3. We describe the inference procedures in Section
4. The results of simulation studies evaluating the proposed procedures are presented in Section 5. In
Section 6, we illustrate the performance of our methods on evaluating a longitudinal biomarker in liver
cancer study carried out with a NCC design.

2. EVALUATION OF LONGITUDINAL PREDICTION

2.1. Notation

Suppose there are n subjects in the full cohort and let Ti denote the time to failure for the ith subject,
i = 1, ..., n. Due to censoring, for Ti, we only observe Xi = min(Ti, Ci) and �i = I {Ti ≤ Ci}, where
Ci is the corresponding censoring time. We use Zi to denote time-constant covariates such as gender.
For i = 1, ..., n, the observed longitudinal biomarker on subject i prior to event time Xi is denoted by
Yi = (Yi(si1), . . . , Yi(simi ))

T measured at times si = (si1, . . . , simi )
T with si1 < · · · < simi < Xi, where

Yi(s) biomarker value for the ith subject measured at time s. The observation times are assumed to be
specified by a study protocol, although deviations from protocol are not unusual. The observed covariate
information for subject i consists of Hi = (ZT

i , YT
i , sT

i )
T. At any time u ≥ 0, the history of the covariate

process for subject i is known and equals to Hi(u) = {Zi, Yi(u), si(u)}, where Yi(u) = {Yi(sij) : 0 ≤
sij ≤ u, j = 1, . . . , mi, u < Xi} and si(u) = {sij : 0 ≤ sij ≤ u, j = 1, . . . , mi, u < Xi}. The full data
sample is denoted by Dn = {Xi, �i, Hi, i = 1, . . . , n}. Let ξij be a binary indicator of whether (ξij = 1)
or not (ξij = 0) the jth measurement of ith subject is sampled at phase two and let πij = P(ξij = 1 | Dn)
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be the probability of such sampling. Note that in a two-phase study design, if all samples from subcohort
members are measured then πij = 1 for all j.

We let Ri(τ0 | s) = R{τ0|s, Hi(s)} = 1 − P{Ti > s + τ0|Ti > s, Hi(s)} denote the dynamic risk for
subject i at time τ0 from the measurement time s given Hi(s) and Ti > s, and R̂i(τ0 | s) = R̂{τ0 | s, Hi(s)}
denote the corresponding estimate. We note that not only is Ri(τ0|s) often more clinically relevant to
clinicians and patients than observed marker values, it also provides a way to incorporate information
from multiple time-varying markers and multiple clinical variables.

2.2. Measures of longitudinal predictive discrimination

Calibration of Ri(τ0|s) can be gauged by PE, defined as PEs,τ0 = E[{I(Ti ≤ s + τ0)− Ri(τ0|s)}2 | Ti > s]
(Schoop and others, 2008). The clinical utility of biomarkers has traditionally been quantified with a ROC
curve. In a surveillance setting, a decision at time s is often made based on a subject’s risk of experiencing
an event in the next time interval τ0, Ri(τ0|s), rather than on specific values of the multivariate Hi(s). We
therefore define a test based on Ri(τ0|s) and a thresholdψ ∈ (0, 1)with test being positive if Ri(τ0|s) > ψ

and negative otherwise. This definition of a test is key to defining true and false positive fractions (TPF
and FPF) in a longitudinal setting:

TPFs,τ0(ψ) = P{Ri(τ0|s) > ψ | s < Ti ≤ s + τ0} and

FPFs,τ0(ψ) = P{Ri(τ0|s) > ψ | Ti > s + τ0}.

Then the corresponding ROC curve and AUC can be defined, respectively as ROCs,τ0(p) =
TPFs,τ0{FPF−1

s,τ0
(p)} and AUCs,τ0 = ∫

TPFs,τ0(ψ)dFPFs,τ0(ψ).
We focus here on the estimation of TPFs,τ0(ψ) and FPFs,τ0(ψ), but note that additional measures

of prediction performance can be derived from the pair of these quantities. In particular, we extend
two risk prediction summaries recently proposed by Pfeiffer and Gail (2011), the proportion of cases
followed (PCF) and the proportion needed to follow-up (PNF), to the longitudinal setting. We define the
proportion of cases followed, PCFs,τ0(p), as the proportion of subjects who experience an event in time
τ0 from s, conditional on being at risk at time s, if we follow a proportion p of individuals at highest
conditional risk in the population. Let ψp denote a risk threshold such that P{Ri(τ0 | s) > ψp} = p. Then
PCFs,τ0(p) = P{Ri(τ0 | s) > ψp | s < T ≤ s + τ0}. A related measure, the proportion of the population
needed to be followed, PNFs,τ0(q), denotes the proportion of the population at highest conditional risk
that needs to be followed in order to capture a proportion q of cases. Let ψq denote a risk threshold such
that P{Ri(τ0 | s) > ψq | s < T ≤ s + τ0} = q. Then PNFs,τ0(q) = P{Ri(τ0 | s) > ψq | T > s}.

Such summaries are relevant in the active surveillance setting, to inform the selection of cutoffs for
binary decision rules and for making comparisons among prediction rules.

3. ESTIMATION OF DYNAMIC RISK AND PREDICTION PERFORMANCE MEASURES UNDER LONGITUDINAL

TWO-PHASE STUDIES

3.1. Longitudinal propensity of inclusion

In a two-phase study, the probability that an individual’s measurement is included in the second phase of
study, πS

ij = P(ξij = 1|Dn), is dictated by the sampling fraction specified in the study design protocol (see
Web Appendix A of the supplementary material available at Biostatistics online for the specification of
πS

ij under several two-phase study designs). Contribution to the estimation can then be weighted by the
inverse of the probability of sampling (ωij = ξij/π

S

ij ), which is referred to as the true inverse probability
weighted (TIPW) procedure. To improve efficiency over the simple TIPW estimators, one may leverage

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy013#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy013#supplementary-data
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both outcome and covariate information used for sampling, as well as additional auxiliary variables (Wij)
by non-parametrically estimating πij given Wij, a procedure known as the augmented inverse probability
weighting (AIPW) (Robins and others, 1994). Wij often involves continuous variables. For example, in
NCC designs, the sampling is dependent on X and thus W needs to include X to ensure the consistency
of the AIPW estimators. Such weights can also be robustly estimated with a non-parametric procedure in
the form of the Nadaraya–Watson estimator,

π̂S

ij =
∑n

l=1

∑mi
k=1 ξlkKh(Wij − Wlk)∑n

l=1

∑mi
k Kh(Wij − Wlk)

(3.1)

where Kh(·) = K(·/h)/h, K is a symmetric kernel density function, and h > 0 is the bandwidth. Selection
of appropriate h can follow the recommendations in Qi and others (2005). When the dimension of Wij is
not small, such a non-parametric estimator may not be feasible. Problems can also arise when additional
factors, such as comorbidities, are associated with missingness of regularly scheduled measurements.
Thus, to account for missingness due to two-phase sampling and random missingness due to other known
factors, we propose to flexibly estimate πS

ij as

π̂S

ij = P(ξij = 1|wij) = g�{αT
�B�(Xi)+ γ T

�Aij}. (3.2)

by fitting the model separately for subjects with� = 0 and� = 1, where g� is a pre-specified smooth link
function, such as logit, wij = (Xi,�i, AT

ij)
T, B(X ) is a spline basis function of X , γ = (αT

0 , αT
1 , γ T

0 , γ T
1)

T

and A represents auxiliary information including variables that are related to the missingness of the mea-
surements, either by design or another missingness mechanism. In this AIPW framework, the contribution
of an individual measurement to estimation is weighted by ŵS

ij = ξij/π̂
S

ij .

3.2. Estimation of dynamic risk under two-phase study designs

We consider a flexible model for estimation of a dynamic τ -year risk for an individual under active
surveillance over s years with a general form Ri(τ0|s), Ri(τ0|s) = g{βT

τ0
Hi(s)}, where g(·) is a known

increasing and smooth link function, Hi(s) is the vector of partial longitudinal information collected up
to time s, including some flexible functionals of components in Hi(s). We consider directly modeling
Ri(τ0|sij) using a binary outcome I (Ti ≤ sij + τ0) among individuals with Ti ≥ sij. We call such a model
a partly conditional generalized linear model (PCGLM) following Zheng and Heagerty (2005).

In the presence of censoring, the contribution of an observation needs to be weighted by ŵC

ij (τ0) =
δi I(sij < Xi ≤ sij + τ0)

1
Ĝ(Xi)

+ I(Xi > sij + τ0)
1

Ĝ(sij+τ0) . In particular, Ĝ(·) is the Kaplan–Meier (KM)

estimate of G(·), the censoring distribution under the independent censoring assumption. Therefore, in
the estimation, we propose to weigh the contribution from the jth measurement of the ith subject by
DIPW), ŵC

ij (τ0)ŵS

ij, to account for missingness in the outcome due to censoring, missingness in covariates
due to two-phase sampling and random missingness in covariate information. Under the assumption that
E{ŵC

ij (τ0)
ξij

p̂iSij
| Dn} = 1, a consistent estimator of βτ0 can be obtained by solving the following DIPW

estimating equation:

n∑
i=1

mi∑
j=1

ŵC

ij (τ0)ŵ
S

ijH(sij)
{

I (Xi ≤ sij + τ0)− g{βT
τ0

H(sij)
}

= 0. (3.3)

Then, for a future subject i with covariates H0(s) at s, an estimator of Ri(τ0|s) is g{β̂T

τ0
H0(s)}.
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3.3. Estimation of longitudinal prediction accuracy based on two-phase data

Previous work done on TPF and FPF for a single longitudinal marker in a used semiparametric estimation
methods Zheng and Heagerty (2004, 2007). We opted for nonparametric estimation as a way to increase
robustness and require fewer assumptions. This is particularly appealing in the multivariate setting where
there is a need for separating the assumption used for model development from that for model validation.
Similar to our proposed method for estimating dynamic risk, we also consider a DIPW procedure here.

For example, the pair of risk-specific accuracy summaries can be estimated as

T̂PFs,τ0(ψ) =
∑

ij I(|sij − s| ≤ ε)I(̂Ri(τ0 | sij) > ψ) I(sij < Xi ≤ sij + τ0) ŵC

ij (τ0)ŵS

ij∑n
i=1

∑mi
j=1 I(|sij − s| ≤ ε)I(sij < Xi ≤ sij + τ0) ŵC

ij (τ0)ŵS

ij

(3.4)

F̂PFs,τ0(ψ) =
∑

ij I(|sij − s| ≤ ε)I(̂Ri(τ0 | sij) > ψ) I(Xi > sij + τ0) ŵC

ij (τ0)ŵS

ij∑n
i=1

∑mi
j=1 I(|sij − s| ≤ ε)I(Xi > sij + τ0) ŵC

ij (τ0)ŵS

ij

, (3.5)

where ε is the half width of the window where observations can be included to estimate accuracy at time
s. In this article, we focus on the situation where ε is a pre-specified fixed quantity. This is reasonable
for practical settings where sij’s are taken in close neighbourhoods of a finite number of pre-scheduled
visit times. A more flexible approach would be to consider a kernel-based estimator Kh(sij − s) in place
of I(|sij − s| ≤ ε).

The AUCs,τ0 is estimated by ÂUCs,τ0 = ∫
T̂PFs,τ0(ψ)dF̂PFs,τ0(ψ) and the estimator of the prediction

error, PEs,τ0 , is

P̂Es,τ0 =
∑

ij I(|sij − s| ≤ ε)
{
I(sij < Xi ≤ sij + τ0)− R̂i(τ0 | sij)

}2
ŵC

ij (τ0)ŵS

ij∑
ij ŵC

ij (τ0)ŵS

ijI(|sij − s| ≤ ε)
.

To estimate the PCFs,τ0(p), we first sort the predicted risk around time s for all individuals sampled into
the second phase, R̂i(τ0 | sij) I(|sij − s| ≤ ε)ξij, i = 1, . . . , n, in decreasing order. We then find the largest
k satisfying the following inequality:

∑k
i=1

∑mi
j=1 I(|sij − s| ≤ ε)I(Xi > sij) ŵC

ij (τ0)ŵS

ij∑n
i=1

∑mi
j=1 I(|sij − s| ≤ ε)I(Xi > sij) ŵC

ij (τ0)ŵS

ij

≤ p.

Then the estimator of PCFs,τ0(p) is defined as

P̂CFs,τ0(p) =
∑k

i=1

∑mi
j=1 I(|sij − s| ≤ ε)I(sij < Xi ≤ sij + τ0) ŵC

ij (τ0)ŵS

ij∑n
i=1

∑mi
j=1 I(|sij − s| ≤ ε)I(sij < Xi ≤ sij + τ0) ŵC

ij (τ0)ŵS

ij

.

To estimate the PNFs,τ0(q)we again used the sorted risks and find the largest k satisfying the following
inequality:

∑k
i=1

∑mi
j=1 I(|sij − s| ≤ ε)I(sij < Xi ≤ sij + τ0) ŵC

ij (τ0)ŵS

ij∑n
i=1

∑mi
j=1 I(|sij − s| ≤ ε)I(sij < Xi ≤ sij + τ0) ŵC

ij (τ0)ŵS

ij

≤ q,
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then the PNFs,τ0(q) is estimated by

P̂NFs,τ0(q) =
∑k

i=1

∑mi
j=1 I(|sij − s| ≤ ε)I(Xi > sij) ŵC

ij (τ0)ŵS

ij∑n
i=1

∑mi
j=1 I(|sij − s| ≤ ε)I(Xi > sij) ŵC

ij (τ0)ŵS

ij

.

We note that for individuals who are not in the second phase of the study, ŵS

ij = 0.

4. INFERENCE FOR ESTIMATORS OF PREDICTION PERFORMANCE MEASURES UNDER LONGITUDINAL TWO-PHASE

STUDY DESIGNS

To make inference about R̂i(τ0|sij), we studied the asymptotic properties of proposed estimators. In Web
Appendix B of the supplementary material available at Biostatistics online, we show that β̂τ0 is consistent
for βτ0 , where βτ0 is the unique solution of the expected value of the corresponding weighted estimating
equation. Furthermore, we show that the process ÛR(τ0 | s) = √

n
[̂
Ri(τ0|s)− Ri(τ0|s)

]
is asymptotically

equivalent to a sum of n identical and weakly correlated terms, n−1/2
∑n

i=1 ζiR(τ0|s), where ζRi(τ0|s) is
defined in Web Appendix B of the supplementary material available at Biostatistics online. Following Cai
and Zheng (2012) and Breslow and Wellner (2007), it can be shown that ÛR(τ0 | s) converges weakly to
a zero-mean Gaussian process.

To make inference about estimators of accuracy summary measures including T̂PFs,τ0(ψ), F̂PFs,τ0(ψ),

ÂUCs,τ0 and P̂Es,τ0 (denoted by a generic term Âs,τ0 ), we show in Web Appendix C that Âs,τ0 is consistent
for As,τ0 . We further derive the asymptotic linear expansion of ÛAs,τ0

= √
n(Âs,τ0 − As,τ0),which is

asymptotically equivalent to a sum of n identical and weakly correlated terms, n−1/2
∑n

i=1 ηAi(τ0|s), where
ηAi(τ0|s) is defined in Web Appendix C of the supplementary material available at Biostatistics online.
Again, with appropriate justification, one may show that ÛAs,τ0

converges to zero-mean normal random
vector for any s and τ0 with the data support.

Due to the weak dependence among ζRi(τ0|s) and ηAi(τ0|s) induced by finite sampling in the second
phase of a two-phase study (correlations among ξij within sampled individuals), as well as correlations
among measurements within an individual, explicit asymptotic variance estimators based on ζiR(τ0|s) and
ξiA(τ0|s) can be difficult to obtain. Thus, we developed a resampling procedure that is appropriate for
inference under two-phase study designs by extending our previously proposed resampling procedures
developed for a setting where predictors are measured at baseline (Cai and Zheng, 2013) to the current
setting with markers measured longitudinally.

The variance of each of our performance measures under longitudinal CCH or NCC studies can be
estimated as follows:

1. Generate n × P independent and identically distributed random variables Vip from a known
distribution with E(Vip) = 1 and Var(Vip) = 1, and Vn×P = {Vip, i = 1, . . . , n, p = 1, . . . , P}.

2. Use Vn×P to obtain P perturbed counterparts of weights and statistics:
(a) the perturbed sampling weights ŵ∗S

ijp = ξij

π∗S
ijp

, whereπ∗S

ijp is the perturbed inclusion probability

estimated with Vip as a weight for all mi observations of the ith subject.

(b) the perturbed censoring weights, ŵ∗C

ijp (τ0 | s) = δi I(sij < Xi ≤ sij + τ0)
1

Ĝ∗
p (Xi)

+ I(Xi >

sij +τ0)
1

Ĝ∗
p (sij+τ0) , where Ĝ∗

p(·) is a weighted KM estimator, with Vip denoting the perturbation

weight for measurements on the ith subject.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy013#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy013#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy013#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy013#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy013#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy013#supplementary-data
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(c) R̂∗
ip(τ0 | s) = g{β̂T∗

p,τ0
Hi(s)} where β̂

∗
p,τ0

is the solution to

1

n

n∑
i=1

Vip

mi∑
j=1

ŵC∗
ijp (τ0 | s)ŵS∗

ijpHi(sij)
{

I (Xi ≤ sij + τ0)− g{βT
τ0

Hi(sij)
}

= 0,

(d) summary measures Â∗
p(τ0 | s), for example:

T̂PF
∗
s,τ0,p(ψ) =

∑
ij VipI(|sij − s| ≤ ε)I(̂R∗

ip(τ0 | sij) > ψ) I(s < Xi ≤ s + τ0) ŵC∗
ijp (τ0 | s)ŵS∗

ijp∑
ij VipI(s < Xi ≤ s + τ0) ŵC∗

ijp (τ0 | s)ŵS∗
ijp

.

3. The estimate of variance of R̂i(τ0 | s) and Â(τ0 | s) is the empirical variance of the P estimates
R̂∗

ip(τ0 | s) and Â∗
s,τ0,p, respectively, p = 1, . . . , P, under a given two-phase sampling design.

Similar approach and theoretical justification has also been considered for CCH studies with markers
measured at baseline (Huang, 2014). Since perturbation is performed at an individual level, we expect the
basic theoretical justification for the resampling procedure to apply to the longitudinal setting as well. In
the next section, we investigate the performance of this approach with numerical studies.

5. SIMULATION STUDIES

5.1. Simulation setup

The longitudinal data for biomarker Y was generated with a linear mixed effects model with measurement
error: Yi(u) = Wi(u) + ei(u), where Wi(u) = α0i + α1i log(u/30). The random components (α0i,α1i)

were generated as a bivariate normal with mean (μα0 ,μα1)
T = (0.6, −1.0)T , and a covariance matrix

�α =
[ 0.832 −0.005
−0.005 0.132

]
. The measurement error ei(u) was generated from normal distribution with

mean zero and a standard deviation of 0.1. Failure time T was assumed to depend on the covariates through a
proportional hazards relationship: λi(u) = λ0(u) exp{−1.5Wi(u)} with a Weibull baseline hazard: λ0(u) =
v/ν2(u/ν2)

v−1, scale ν2 = 20 and shape v = 1.4. Censoring time was generated from an exponential
distribution (rate = 0.01) with administrative censoring at 180 months. There were up to 10 measurements
per subject taken at 6-month intervals. Given fixed interval for sij, ε is taken to be 0.

For CCH designs, we simulated cohorts of size n = 15 000 in phase one, and sampled 1000 events and
1000 censored individuals without replacement (finite sampling) from the full cohort. We refer to subjects
who experienced an event at any point in the study as cases, and those who did not as controls. For NCC
designs, we simulated cohorts of size n = 2000 as phase 1 samples. We then sampled all the cases into the
second phase sample, and for each case we sampled one control from the risk set at the time of the event
of the case, stratifying on a dichotomized value of the marker (≥ 0.7) at baseline. We also considered
smaller sample sizes for the second phase in order to evaluate the robustness of the estimates.

The true values of the accuracy measures of interest were generated as follows: we generated two full
cohort datasets of size n = 500 000 without censoring. One served as a training set and the other as a
validation set. We fit the PCGLM using the training set for binary outcome I(Ti −sij < τ0) = g{βT

τ0
Hi(sij)}

with covariates Hi(sij) = {Yi(sij), f (sij)}, where f (sij)was a spline function of sij with a degree of freedom
(df) of 3. Using the estimates from the model, we calculated Ri(τ0 | s) and its accuracy summaries As,τ0
at various time frames of (s, τ0) using the validation set. With the two-phase samples, we estimated
Ri(τ0 | s) following the procedure in Section 3.2, using a weighted PCGLM model with covariates Hi(sij).
The estimation of longitudinal accuracy summaries at selected (s, τ0) were calculated using the methods
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Table 1. Case-cohort n events/n non-events (ne/nē) are shown in table headings, iterations = 1000,
perturbations = 500, σe = 0.1, and μα1 = −1.0

Case-cohort, iterations = 1000, perturbations = 500, σe = 0.1, μα1 = −1.0

n = 250/250, s = 48, τ0 = 24, ne/nē/nc = 43/25/21

True Est Bias% SEemp SEpert CP%

PE 0.168 0.171 1.9 0.025 0.025 95.3
TPF(0.4) 0.936 0.929 0.7 0.050 0.054 92.2
FPF(0.3) 0.777 0.764 1.6 0.109 0.114 93.0
AUC 0.813 0.787 3.1 0.056 0.059 94.5
PCF(0.2) 0.297 0.309 4.0 0.030 0.040 99.1
PNF(0.8) 0.640 0.647 1.1 0.055 0.064 96.0

n = 2000/2000, s = 48, τ0 = 24, ne/nē/nc = 342/200/166

PE 0.168 0.169 0.3 0.008 0.008 96.3
TPF(0.4) 0.936 0.932 0.4 0.018 0.018 94.6
FPF(0.3) 0.777 0.765 1.6 0.039 0.040 95.6
AUC 0.813 0.808 0.5 0.018 0.019 96.1
PCF(0.2) 0.297 0.298 0.3 0.010 0.011 96.3
PNF(0.8) 0.640 0.642 0.2 0.019 0.020 96.2

PE = prediction error; TPF(0.4) = true positive fraction at R(τ0 | s) = 0.4; FPF(0.3) = false positive fraction at R(τ0 | s) = 0.3;
AUC = area under the ROC curve; PCF(0.2) = the proportion of events in τ0 timeframe from s captured if 20% of the population
at risk at time s were followed; PNF(0.8) = the proportion of the population at risk at time s that would need to be followed in
order to capture 80% of the events in the timeframe τ0 from s.
Effective sample sizes used to estimate the performance measures are summarized in the table as ne/nē/nc, where ne denotes the
number of events observed in a τ0 timeframe from s, nē denotes the number of subjects still at risk at time s + τ0 and nc is the
number of subjects who were censored between s and s + τ0.

described in Section 3.3, and variance estimates as described in Section 4. Censoring weights, wC

ij (τ0),
were estimated using the Kaplan–Meier estimator. For CCH, wS

ij were estimated using true sampling
weights. For stratified NCC, wS

ij were estimated using a generalized additive model (GAM) with ξ as the
outcome, with observed measurement time X and stratifying variables as covariates, and fit to data on
subjects without observed events (� = 0).

5.2. Simulation results

For CCH designs, longitudinal summaries performed well overall across various (s, τ0), with negligible
bias and the estimated standard errors (SEpert) close to the empirical standard errors (SEemp), with the cov-
erage probability (CP) close to the nominal 95% (Table 1). The most challenging simulation scenario was
for (s, τ0) = (48, 24), with sample size at baseline increasing from nCCH = 250 per group to nCCH = 2000
per group. This scenario was challenging because the effective sample sizes at s = 48 were substantially
smaller than those at baseline. Up to 4% bias was seen in the small sample size simulation (nCCH = 250),
SEpert tended to be overestimated with CP ranging from 92.2% ot 99.1%. This is especially the case for
PCF(0.2), the proportion of cases captured if 20% of the subjects at highest risk were to be followed.
There was up to 4% bias in scenarios with small effective sample sizes, and the CP as high as 99% (top
panel, Table 1). This is not surprising, as such a measure is relatively more closely related to the number
of events occurring between s and τ0 and can only be estimated well with sufficient effective sample sizes.
This highlights the unique phenomenon in longitudinal studies, where the estimation varies with both
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Table 2. Nested case–control study simulation results showing convergence with increasing sample size,
iterations = 1000, perturbations = 500, σe = 0.1, and μα1 = −1.0

Nested case–control, iterations = 1000, perturbations = 500, σe = 0.1, μα1 = −1.0

Sampled from n = 500, s = 48, τ0 = 24, ne/nē/nc = 58/27/11

True Est Bias % SEemp SEpert CP %

PE 0.168 0.171 1.6 0.021 0.021 95.5
TPF(0.4) 0.936 0.929 0.7 0.044 0.046 91.2
FPF(0.3) 0.777 0.767 1.2 0.107 0.105 91.2
AUC 0.813 0.780 4.1 0.050 0.055 95.2
PCF(0.2) 0.297 0.306 2.8 0.026 0.032 98.0
PNF(0.8) 0.640 0.650 1.6 0.051 0.055 94.1

Sampled from n = 4000, s = 48, τ0 = 24, ne/nē/nc = 462/219/85

PE 0.168 0.169 0.6 0.007 0.007 96.4
TPF(0.4) 0.936 0.935 0.1 0.015 0.015 94.1
FPF(0.3) 0.777 0.777 0.0 0.037 0.037 94.2
AUC 0.813 0.806 0.8 0.017 0.017 95.7
PCF(0.2) 0.297 0.298 0.2 0.009 0.009 94.8
PNF(0.8) 0.640 0.642 0.3 0.017 0.018 94.6

PE = prediction error; TPF(0.4) = true positive fraction at R(τ0 | s) = 0.4; FPF(0.3) = false positive fraction at R(τ0 | s) = 0.3;
AUC = area under the ROC curve; PCF(0.2) = the proportion of events in τ0 timeframe from s captured if 20% of the population at
risk at time s were followed; PNF(0.8) = the proportion of the population at risk at time s that would need to be followed in order
to capture 80% of the events in the timeframe τ0 from s.
Effective sample sizes used to estimate the performance measures are summarized in the table as ne/nē/nc, where ne denotes the
number of events observed in a τ0 timeframe from s, nē denotes the number of subjects still at risk at time s + τ0 and nc is the
number of subjects who were censored between s and s + τ0.

specific landmark times s and prediction time τ0. As the sample size increased to nCCH = 2000, the SEpert

converged to within 0.001 of those estimated empirically (SEemp), bias was 1.6% or lower, and the CP
ranged from 94.6% to 96.3% (bottom panel, Table 1).

The results from NCC designs (Table 2) echo those of the CCH design. Recall that for NCC samples,
rather than using true sampling fraction we estimated the sampling weights, ŵS

ij, using a GAM. We
note that the model provided adequate approximation of πij, the sampling probability, suggesting that a
flexible modeling approach can be used in practical situations when the true sampling weights may not
be ascertained reliably.

For both CCH and NCC, all performance measures performed well under reasonable sample sizes,
with small bias and good CP.

6. REAL DATA EXAMPLE: HALT-C NCC STUDY

6.1. Description of the HALT-C dataset

The HALT-C trial consisted of 1002 patients with chronic hepatitis C and bridging fibrosis or cirrhosis, who
failed to respond or to achieve a sustained virologic response to 20 weeks of combination therapy. Those
patients were randomized at 24 weeks to treatment with peginterferon-α-2a or control (no treatment) and
were followed every 3 months for 3.5 years after randomization. Blood samples were collected at each
visit for subsequent research testing including assays for HCC biomarkers. To ascertain HCC, ultrasound
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examinations were performed 6 months after enrollment and every 12 months thereafter. Patients with an
elevated or rising AFP, the currently most commonly used marker for detecting HCC, and those with new
lesions on ultrasound were evaluated further by computed tomography or magnetic resonance imaging.
One of the goals of the HALT-C trial was to identify and validate markers for the surveillance and early
diagnosis of HCC. The marker of interest was DCP.

A NCC study was used to evaluate the accuracy of DCP in the detection of HCC. For this study, 39 HCC
cases diagnosed between randomization and 3.8 years after randomization were included in the study.
For each case, two controls without HCC at the time of diagnosis of the case were selected matching on
treatment assignment, presence of cirrhosis on baseline biopsy and length of followup. One control was
later excluded because of high DCP values due to caumadin (anticoagulant) use, leaving 77 controls. DCP
values played no role in diagnosis of HCC.

6.2. Analysis of the HALT-C dataset

To estimate the NCC sampling weights, we fit a GAM with a logit link function to the full trial data at
baseline (n = 1002) with a binary indicator of inclusion in the NCC study as the outcome, a smoothing spline
function of the event time (df = 4), adjusting for event status and covariates used for stratified sampling
into the NCC sample: cirrhosis (binary) and treatment group assignment (binary). Given the small sample
size of the NCC cohort, estimating the inverse probability weights may have the additional advantage of
improving efficiency compared to a TIPW approach. The sampling weights, wS

ij, were estimated as the
inverse of the fitted values from the GAM. The censoring weights, wC

ij (τ0)(τ0 | s), were estimated using a
Kaplan-Meier estimator of the censoring distribution. Since individuals were followed by the protocol of
HALT-C trial, the assumption that censoring is not dependent on other covariates seems to be reasonable
here. In order to calculate DCP-based absolute dynamic risk RDCP(τ0 | s), we fit a DIPW based PCGLM
model as described in Equation 3.3, with H(s) = (DCP value measured at s, f (s)), and f is a smooth spline
function with df = 3. We then used procedures described in sections 3.3 to estimate the performance of
RDCP(τ0 | s) at selected pairs of (s, τ0). For inference, the standard errors of the estimates were estimated
by the empirical standard deviation of the corresponding P = 500 perturbed estimates.

6.3. Results of analysis of the HALT-C NCC study dataset

There were 1002 subjects enrolled in the HALT-C clinical trial, with 39 subjects with events and 77
controls selected into the NCC study. The baseline characteristics of all subjects in the trial and in the
NCC study are summarized in Table 3. The mean age of the subjects selected into the NCC study was 51.7
years, 22% were female, 60% were white and 57% of the subjects had cirrhosis of the liver. The data in the
NCC study is summarized in Figures S1 and S2 of the supplementary material available at Biostatistics
online. In the Figure S1 of the supplementary material available at Biostatistics online, we show the
attended visits (circles), event times (filled circles) and censoring times (filled triangles). The subjects are
grouped by their risk set with each color corresponding to a given risk set. The inverse probability weights
estimated using the generalized additive model are shown to the right of the event or censoring indicators
for each individual. In Figure S2 of the supplementary material available at Biostatistics online, we show
the marker trajectories for all individuals in the NCC study, stratified by event status (diagnosed with
hepatocellular carcinoma during the study vs. not), cirrhosis of the liver and treatment group assignment.

The prediction evaluation results are summarized in Table 4. The prediction performance of DCP
in predicting the timeframe of diagnosis with HCC was good overall. The prediction estimates were
especially notable for s = 2 and τ0 = 1 year prediction timeframe, during which 11 events were observed
in the subcohort. The AUC was estimated (standard error) at 0.86 (0.07), with 82% of the events estimated
to be captured if 20% of subjects at highest risk were to be followed. That means that we estimate that nine

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy013#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy013#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy013#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy013#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy013#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy013#supplementary-data
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Table 3. Baseline characteristics of patients randomized into the HALT-C clinical trial, and those
of selected into the nested case–control study (NCC) at 3.8 years after randomization

HALT-C HALT-C NCC
(n = 1002) (n = 116)

Age at randomization, mean (SD) 50.2 (7.2) 51.7 (7.5)
Female, n (%) 289 (28.8) 26 (22.4)
Race/ethnicity, n (%)

White 717 (71.6) 70 (60.3)
Black 183 (18.3) 36 (31.0)
Hispanic 79 (7.9) 7 (6.0)
Other 23 (2.3) 3 (2.6)

Drinks (per week), mean (SD) 9.6 (16.4) 9.5 (14.5)
DCP (log2), mean (SD) 4.9 (0.9) 4.9 (1.0)
Cirrhosis present, n (%) 408 (40.7) 66 (56.9)
Randomized to treatment, n (%) 507 (50.6) 59 (50.9)
HCC diagnosed, n (%) 39 (3.9) 39 (33.6)

Table 4. Estimates (EST) and standard errors (ESD) of measures of predictive capacity summarizing
predictions of hepatocellular carcinoma based on des-γ -carboxyprothrombin biomarker and a partly
conditional logistic model with the logit link function (PCGLM)

HALT-C NCC study prediction evaluation results (τ0 = 12 months)

s = 6 months s = 1 year s = 2 years s = 3 years

(ne/nē = 4/109) (ne/nē = 5/105) (ne/nē = 11/94) (ne/nē = 17/76)
EST (ESD) EST (ESD) EST (ESD) EST (ESD)

PE(×10) 0.042 (0.021) 0.055 (0.024) 0.107 (0.035) 0.214 (0.056)
AUC 0.709 (0.125) 0.782 (0.121) 0.858 (0.067) 0.748 (0.077)
PCF(0.2) 0.500 (0.223) 0.600 (0.207) 0.818 (0.112) 0.646 (0.120)
PNF(0.8) 0.637 (0.197) 0.747 (0.285) 0.147 (0.210) 0.523 (0.192)

PE(×10) = prediction error × 10; AUC = area under the ROC curve; PCF(0.2) = the proportion of events in τ0 timeframe from s
captured if 20% of the population at risk at time s were followed; PNF(0.8) = the proportion of the population at risk at time s that
would need to be followed in order to capture 80% of the events in the timeframe τ0 from s.
The estimates were obtained s = {6, 12, 24, 36} months and τ0 = 12 months. The number of events between s and s + τ0, and the
number of subjects with no events before s + τ0, are denoted by ne and nē, respectively. The standard errors were estimated with
500 perturbations.

subjects who would progress to HCC within 1 year would be captured if we followed 21 subjects with
highest estimated risks who are still at risk of HCC at 2 years after randomization. For s = 3 years and
τ0 = 1 year, we observed 17 events, with the AUC estimated at 0.75 (0.08), PCF(0.2) = 0.65 (0.12), and
PNF(0.8) was 0.52 (0.19). We note that the numbers of events our estimates were based on were generally
small, but these results are promising and warrant further investigation into the evaluation of DCP as a
biomarker for predicting HCC.

7. DISCUSSION

In this article, we presented non-parametric estimation and inference of longitudinal accuracies under
two-phase study designs for several measures of prediction performance. We evaluated the performance



Longitudinal biomarkers under two-phase study designs 497

of our estimators using extensive simulation studies and illustrated them on a NCC study of a longitu-
dinal biomarker within the HALT-C clinical trial. Our estimators perform well overall, showing little or
no bias and achieving nominal coverage probabilities for reasonable sample sizes. Our methods provide
investigators with a useful tool for evaluating preliminary longitudinal markers for active surveillance in
practice. We note, that in very small samples one may encounter some bias and conservative standard
errors. In practice, it is prudent to inspect the number of observed events and nonevents over the pre-
diction window between s and s + τ0, especially in the longitudinal setting with later measurement time
s, as more individuals drop out since baseline, and two-phase sampling also further limits the number
of individuals at risk at the prediction time. Simulations based on preliminary data might be helpful to
determine if samples are sufficient for stable estimates. The development of the estimation and inference
procedures under two-phase studies built on those developed under the cohort study design. Estimators
constructed in this way are, we hope, intuitive and practical. Thus, they can be extended to other, pos-
sibly more complex, study designs and applications, thus providing an arsenal of practical, robust and
flexible methods for risk prediction and evaluation of predictions in a wide variety of applications. For
example, due to sample size limitation we only considered the predictive values of a single biomarker
(DCP) in the HALT-C example. However, our methods can be readily adapted to evaluate a panel of
multiple biomarkers measured either only for the second phase subjects or for the full cohort, as well
as settings to evaluate the incremental predictive value of newly discovered markers over the established
ones.

The validity of our proposed estimators depends on the assumptions we make. The DIPW estimators
require correctly specifying both the sampling weights and the censoring weights. In addition, we assume
that longitudinal measurement times are fixed by research protocol. If they vary by measurement time
during surveillance, our estimators will potentially be biased. In addition, when the follow up visit times
are correlated with the outcome or other covariate information, our estimating equation based procedure
will produce biased estimates. A possible solution would be to consider a class of inverse intensity-of-visit
process-weighted procedures as proposed in Lin and others (2004). This would be a natural extension
under the current IPW framework.

We considered only two-phase sampling designs where individuals at baseline were selected and all
their measurements were available in the second phase, as implemented in the HALT-C NCC study. When
sampling individuals from a full cohort at baseline, the effective sample sizes will vary depending on the
specific timeframes of the conditioning time, s, and the prediction timeframe, τ0. Investigation into more
efficient sampling designs, such as sampling of longitudinal observations within a given individual, are
warranted in the future, especially for markers that are expensive to measure.
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