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Abstract

Computational modeling of tumor growth has become an invaluable tool to simulate complex cell–

cell interactions and emerging population-level dynamics. Agent-based models are commonly 

used to describe the behavior and interaction of individual cells in different environments. 

Behavioral rules can be informed and calibrated by in vitro assays, and emerging population-level 

dynamics may be validated with both in vitro and in vivo experiments. Here, we describe the 

design and implementation of a lattice-based agent-based model of cancer stem cell driven tumor 

growth.
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1 Introduction

Agent-based modeling has a long history in quantitative oncology [1–3], including stem cell 

dynamics [4–9], and heterogeneity [10–12]. Such models can help predict disease 

progression and make invaluable recommendations for therapeutic interventions [13, 14]. 

Agent-based models simulate the behavior and interaction of individual cells. Behavioral 

rules can be dependent on environmental conditions, which include chemicals in the 

extracellular environment [15–17], supporting structures in the extracellular matrix [18, 19], 

fluid dynamics [20], physical forces [21], or presence and interactions with other cells [22, 

23]. Computer simulations are usually initialized with a single cell or a cluster of individual 

cells, and the status and behavior of each cell are typically updated at discrete time points 

based on their internal rules and current environmental conditions. Such models may help 

identify if cancer stem cells comprise a subpopulation of specific proportion in a tumor [24], 

and how to deliver radiotherapy doses efficiently to eradicate cancer stem cells [25].

2 Materials

Implement all classes and functions in a concurrent version system to allow shared 

programming and efficient debugging.
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2.1 Lattice

A finite 2D (or 3D if necessary) lattice, where each site can be occupied by a single or a 

population of cells (crowding).

1. Lattice size. Simulations are commonly initialized with either (a) a small number 

of cells to observe emergent population-level behavior, or (b) a populated tissue 

architecture. Define lattice size to accommodate anticipated final cell number. 

Account for possible boundary effects in case of a growing population. Set the 

size of a single lattice site to the size of a cell.

2. Neighborhood. Determine if cells interact with their four orthogonal neighbors 

(north, south, east, west; von Neumann neighborhood), or with the adjacent eight 

neighboring lattice points (northwest, north, northeast, east, west, southeast, 

south, southwest; Moore neighborhood) (Fig. 1).

3. Boundary conditions. Define behavior of cells on the boundary of the lattice, set 

to either periodic (the boundary “wraps”, so cells on the left edge interact with 

cells on the far right edge) or no-flux reflective (cells on the edge of the lattice 

only interact with interior and edge cells). Note that simulations with no-flux 

boundary conditions may introduce boundary effects, i.e., accumulation of cells 

near the boundary. For dynamically expanding arrays no boundary conditions are 

necessary.

2.2 Cell

Each cell is an individual entity with the following basic attributes:

1. Time to next division event (tc).

2. Type of the cell—stem/non-stem (isStem).

3. Probability of symmetric division (ps). Cancer stem cells divide either 

symmetrically to produce two identical cancer stem cells, or asymmetrically to 

produce a cancer stem cell and a non-stem cancer cell [26]. In the case of cancer 

stem cell define probabilities of symmetric division, 0 < ps ≤ 1, and asymmetric 

division pa = 1 − ps (Fig. 2).

4. Telomere length (p). Set the telomere length of the initial cell or cell population 

as a molecular clock [27–29], which is a quantification of the Hayflick limit [30].

5. Current cell cycle phase (if required). If information about specific cell cycle 

phases is required (such as for simulations of cell cycle specific 

chemotherapeutics) define cell cycle phases. Cell cycle length can be divided 

into fractions comparable to experimentally measured cell cycle distributions.

6. Probability of spontaneous death (α). Cancer cells (isStem = false) accumulate 

mutations that introduce genomic instability which may lead to premature cell 

death. Define a probability of spontaneous cell death, α ≥ 0, at which rate cells 

may die during cell division attempts. Cancer stem cells (isStem = true) have a 

superior DNA damage repair machinery [31–33] and, thus, the probability of 

spontaneous cell death can be set to zero. For more biological realism, define a 
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cell death rate that is larger than zero, but less than the self-renewal rate to ensure 

net population growth.

Each cell is equipped with a set of basic functions:

1. Procedure advance time (input arguments = time increment Δt, list of available 

sites in the direct neighborhood).

• Decrease time to next division (tc) by Δt. If tc < 0 set tc = 0.

• Update current cell cycle phase (if necessary).

• If tc ≤ 0 and there is available space, then perform division and generate 
new times to next division for both resulting cells.

2. Procedure divide (input argument = list of available sites in the direct 

neighborhood).

Choose a random number 0≤n≤1 from the uniform distribution. If n < α, then 

simulate cell death, i.e., remove cell from the simulation and instantaneously 

make a corresponding lattice point available. If required, instead of instantaneous 

cell removal, site on the lattice can be made available for new cells after 

specified amount of time, e.g., in order to simulate duration of apoptosis process. 

Otherwise:

• If the cell is not-stem (isStem = false) then decrease the proliferation 

capacity (p) by one, as non-stem cancer cells do not upregulate 

telomerase and are thus not long-lived and cannot initiate, retain, and 

reinitiate tumors [34, 35]. Simulate cell death by removing the cell from 

the simulation if the proliferation capacity is exhausted, i.e., less or 

equal to zero. Otherwise, new cell is a clone of the mother cell, i.e., 

non-stem cancer cell only produces non-stem cancer cell and 

decremented proliferation capacity is inherited by the daughter cell. 

Place new cell at vacant neighboring lattice point at random.

• If the cell is cancer stem cell (isStem = true), then draw a number from 

uniform distribution to decide if the division is symmetric based on the 

probability ps. If division is symmetric, new cell is a perfect clone of the 

mother cell; that is a cancer stem cells do not erode telomeres and retain 

identical proliferation capacity after mitosis. Otherwise, non-stem 

cancer cell offspring of a cancer stem cell inherit the current telomere 

length and determined proliferation capacity, i.e., new cell is identical 

except for attribute isStem, which set to false. Place new cell at vacant 

neighboring lattice point at random.

3. Procedure generate time to next division. Cells divide on average every 24 h. 

Derive specific cell cycle times tc (hours), averages and standard deviations from 

proliferation rate calculations from clonogenic assays or live microscopy 

imaging [36].
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4. Procedure random migration (input argument = list of available sites in the direct 

neighborhood). Cells may perform a random walk, and probabilities of migrating 

into adjacent lattice points can be obtained from a discretized diffusion equation 

[37, 38]. Assuming Moore neighborhood (see Sect. 2.1 above) and a cell at 

position (x0,y0): at time t can move based on available lattice points in the 

immediate eight-cell Moore neighborhood N(x0,y0) with probabilities

P xi
t + 1, yi

t + 1 =
Γ xi

t, yi
t

1 + ∑
N x0, y0

Γ xi
t, yi

t , i = 1, …, 8

With

Γ xi
t, yi

t =
1,  if lattice point xi, yi is unoccupied at time t

0,  otherwise 
.

With probability 1/(1+number of unoccupied neighboring lattice points) the cell 

remains temporarily stationary, and a cell that completely surrounded by other 

cells is not moving. Note that in this implementation, movement to all adjacent 

lattice points is equally weighted. This can be modified to account for increased 

distance to diagonal lattice points.

5. Procedure directed migration (if required) (input arguments = list of available 

sites in the direct neighborhood, function F whose gradient ∇F describes the 

migration stimulus, such as chemoattractant or chemorepellant). Vector n
describes the vector connecting the current cell position (x0, y0) to the center of 

one of the adjacent lattice points (xi, yi). Directed migration only occurs towards 

available lattice sites (S) when ∇F · n > 0. Weight each available site S by the 

factor cos(θ), where θ is the angle between the gradient ∇F and the movement 

direction n  for each possible movement). (Notice that cos(θ) = 1 when ∇F and 

n  are parallel, and cos(θ) = 0 when they are perpendicular, to give greatest 

weight to travel along the chemoattractant gradient direction.)

Sum each cos(θ) over the S available sites to get the averaged cosine value AS. Define the 

probability of mobilization G through an arbitrary chemotactic/haptotactic responsiveness 

function via G = H(|∇F|AS/(AS + 1)), where H has the properties:

• H(0) = 0 (no directed motion when no lattice sites are available or the chemical 

gradient is zero),

• H is a (monotonically) increasing function (directed motility increases with the 

magnitude chemotactic signal and alignment with the lattice), and

• H tends to 1 as |∇F|AS/(AS + 1) approaches ∞(directed motility increases with 

the chemotactic signal, but saturates at a maximal level scaled to 1).
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If a cell moves, its direction is weighted by the respective cosines for movement, so that 

cos(θ)G/(AS) is the probability of movement to the available site at angle θ. This method is 

explained in detail elsewhere [39].

3 Methods

3.1 Programming Environment

1. Define programming language. Agent-based models can be implemented and 

simulated in any programming language; most prominent languages including C

++, Java, Julia, Python, and Matlab. Each of these languages offers different 

computational speed and coding feasibility. C++ is considered as the 

environment offering the best performance, but has a high programming 

complexity. Matlab offers a great number of built-in functions and is easy to code 

in, but has significantly lower performance (e.g., when using nested loops).

2. Define graphical output. Visualize simulation solutions of agent-based models 

using existing implementations of graphical programming or implement specific 

visualization tools.

3. Agent-based software packages. Utilize predeveloped agent-based software 

packages; most prominent include Netlogo [40, 41], CompuCell3D [36, 42], 

Chaste [43], or Swarm [44].

3.2 Simulation Procedure

1. Time step. Define the simulation time step, Δt, such that Δt is smaller than the 

fastest biological process that is being considered in the model. In a model of cell 

proliferation (~1/day) and cell migration (~1 cell width/h), set Δt ≤ 1 h.

2. Develop a simulation flowchart to conceptualize and visualize the simulation 

procedure. At each defined discrete simulation time step, consider mutually 

exclusive processes that occur with lowest rate constant first. Let us assume that 

cell migration and cell proliferation are mutually exclusive (e.g., cells could 

migrate through most of G1, S, G2 phases). Check if maturation age is reached; 

if not, check if migration time is reached (Fig. 3).

3. Lattice update sequence. Update cells in random order to avoid lattice geometry 

effects. Maintain a list of “live” cell agents and select cells for update from this 

list at random.

4. Cell update sequence. Consider vacancy in cell neighborhood in random order to 

avoid lattice geometry effects. Maintain a list of vacant adjacent lattice sites for 

each cell agent and select for update from this list at random.

4 Notes

1. Homogenous populations. The presented model produces a heterogeneous 

population of stem and non-stem cancer cells. If ps = 1, the population remains 

(if only initialized with cancer stem cells) or will become (if initialized with both 
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stem and non-stem cancer cells) homogenous comprised of only cancer stem 

cells. If ps = 0, only non-stem cancer cells are produced and the resulting 

population size oscillates around a dynamic equilibrium or, if the probability of 

cancer stem cell death is positive and non-zero, the population will inevitably die 

out [45].

2. Plasticity. The presented model considers cancer stemness a cell phenotype, 

whereas recent literature may suggest stemness to be a reversible trait [46, 47]. 

The model can be extended to simulate phenotypic plasticity through cancer 

stem cell differentiation (that is, the cancer stem cell phenotype is set to non-

stem cancer cell) and non-stem cancer cell de-differentiation (that is, the non-

stem cancer cell phenotype is set to cancer stem cell) [48].

3. Senescence. The presented model considers cell death after exhaustion of 

proliferation potential. Alternatively, cells may enter senescence [49] and, 

although mitotically inactive, continue to consume resources that influence the 

behavior of remaining cancer cells [50].

4. Evolution. The presented model considers fixed parameters or rate constants for 

each cell trait. Rate constants can change due to mutations and genetic drift [51], 

which allows for simulations of the evolution of cancer stem cell traits under 

different environmental conditions [12, 52].

5. Carcinogenesis. Such modeling framework can be adapted to model tissue 

homeostasis and mutation/selection cascades during cancer development [16, 

53].

6. To ensure model results are reproducible, simulation inputs (parameters) and 

outputs should be recorded using open, standardized data formats, using 

biologically driven data elements that can be reused in independent models. The 

MultiCellDS (multicellular data standard) Project assembled a cross-disciplinary 

team of biologists, modelers, data scientists, and clinicians to draft a standard for 

digital cell lines, which record phenotype parameters such cell cycle time scales, 

apoptosis rates, and maximum proliferative capacity. Separate digital cell lines 

can represent cancer stem cells and non-stem cells. Similarly, standardized 

simulation outputs can record the position, cell cycle status, and other properties 

of simulated cells. Using standards will allow better software compatibility, 

facilitate cross-model validation, and streamline development of user-friendly 

software to start, modify, visualize, and analyze computational models. See 

MultiCellDS.org for further details.

7. Model assumptions (e.g., Fig. 3) should also be recorded with standardized data 

formats. The Cell Behavior Ontology (CBO) [54] provides a “dictionary” 

(ontology) of applicable stem cell behaviors, but it may not be able to fully 

capture the entire model logic in its present form. Extensions to the Systems 

Biology Markup Language (SBML) [55], such as SBML-Dynamic [56], are 

currently being developed to leverage the model structure of SBML and the 
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ontology of CBO to annotate the mathematical structure of agent-based models, 

but the standards are not yet complete.

8. Treatment. The presented agent-based model can be extended to account for the 

effects of cancer therapy including radiation [57–59], chemotherapy [60], 

oncolytic viruses [61], or immunotherapy [62].

9. Analysis. Agent-based models can be rigorously analyzed for sensitivity and 

stability [63, 64]. Comparison of coarse-grained model behavior (e.g., growth 

curves) with known analytical results can quality-check calibration protocols and 

the computational implementation.

10. Dynamically expanding domains. Tradeoffs between lattice size and computing 

speed can be avoided using dynamically growing domains [65].

11. Hybrid models. The discussed model setup can be extended to a hybrid discrete-

continuous framework where single cells are modeled as discrete agents, and 

environmental chemicals diffuse on a mapped continuum layer [66–68]. In those 

models cell cycle time may vary with environmental conditions (e.g., [16] and 

[69]).

12. Cell neighborhood. In more complex cases daughter cells can populate empty 

lattice sites within a given distance to approximate tissue deformability.
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Fig. 1. 
Schematic of expected cell displacement, cell, in the von Neumann (left) and Moore (right) 
neighborhoods on a two-dimensional lattice with lattice sizes of x2 μm2
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Fig. 2. 
(a) Schematic of cancer stem cell symmetric and asymmetric division. (b) Schematic 

representation of cancer stem cell symmetric (ps) and asymmetric division (pa) and non-stem 

cancer cell proliferation capacity. Adapted from [24]
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Fig. 3. 
Sample simulation flowchart with cell cycle scheme
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