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Abstract

Epidemiologists often categorize a continuous risk predictor, even when the true risk model is not 

a categorical one. Nonetheless, such categorization is thought to be more robust and interpretable, 

and thus their goal is to fit the categorical model and interpret the categorical parameters. We 

address the question: with measurement error and categorization, how can we do what 

epidemiologists want, namely to estimate the parameters of the categorical model that would have 

been estimated if the true predictor was observed? We develop a general methodology for such an 

analysis, and illustrate it in linear and logistic regression. Simulation studies are presented and the 

methodology is applied to a nutrition data set. Discussion of alternative approaches is also 

included.
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1. Introduction

Fitting models by categorizing a continuous risk predictor is a common practice in 

epidemiology. Among many recent examples, see [20, 19, 1, 5, 10] and [25]. A look at 

current issues of epidemiology journals will uncover many more examples. An important 

issue is that, generally in these problems, there are many covariates other than the main risk 

predictor.

The appeal of categorization in interpreting results is clear. If we have a risk predictor X, and 

we categorize it into J levels (C1, …, CJ), one can compare the highest level of the predictor, 

CJ, to the lowest level, C1, and if they are statistically significantly different, one can then 

conclude that it is better to be in the class that has the lowest risk, and quantify how much 

better.

One important technical point is that categorization implicitly posits an induced model based 

on the categorized variable X. In some cases, the induced model actually fits the data, e.g., 

when the response Y actually depends on X only through its categorized version, or if there 

are no other covariates, see the next paragraph. In other cases, and generally, the induced 

model does not fit the data, and we call this model misspecified. In particular, suppose that 

there are other covariates than X, say Z. Consider a binary response, Y, let H(·) be the 

logistic distribution function, and suppose that the true risk model in ·the continuous scale is 

pr(Y = 1|X, Z) = H{m(X, Z, β)} for some continuous function m(·). Then, even if there is no 

measurement error, if any of the covariates Z are related to Y in this continuous model, or if 

there is an interaction of X and Z on Y, categorizing X into J levels and plugging that into 

m(X, Z, β) in place of X leads to a misspecified model as we have defined it. Measurement 

error in this context makes things even more difficult. When there is no measurement error, 

[26] gives a characterization of what is actually being estimated in misspecified models: 

while we do not emphasize it, our paper extends this characterization to the measurement 

error case. A relevant paper that first solved this particular problem is [14], which was also 

cited in [26].

This slightly different terminology is motivated by the following example. Suppose that Y is 

binary, there are no additional covariates Z, and simply define πj = pr(Y = 1|X* = j), where 

X* is the categorized predictor. Then we can write, correctly, that pr(Y = 1|X* = j) = H{I(X* 

= j)θj} by making the obvious identifications. Thus, categorization does result in an induced 

correctly specified logistic model, just not the one in the continuous scale. A logistic 

regression analysis of Y on the categories of X* then will estimate θj consistently.

Our point is not to try to get epidemiologists to change their common practice. Instead, we 

study the effect of measurement error when a continuous predictor variable subject to 

measurement error is categorized. Our goal is to answer the question: with measurement 

error in this context, how can we (a) obtain consistent estimates of what epidemiologists 

would have obtained if X were actually observed; and (b) develop consistent standard errors.

We answer the question above in a general way. Section 2 gives basic technical background. 

Section 3 provides a general methodology for answering questions (a) and (b) above. 

Section 4 presents simulation studies for linear and logistic regression that show the good 
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behavior of our methodology, both in terms of bias and confidence interval coverage. 

Section 5 shows applications of our approach by using data from the Eating at America’s 

Table Study [23]. Section 6 presents a discussion about other potential approaches to 

categorization and how those approaches compare to ours. Sketches of technical arguments 

are in the appendix.

Remark 1.

As discussed above, categorization leads to a misspecified model. It is also well-known that 

such categorization generally leads to differential measurement error [11, 13, 3], and thus 

additional complications over simply fitting a measurement error model. Chapters 6.1–6.2 of 

[13] has a detailed discussion when the continuous variable is dichotomized, calling the 

result differential by dichotomization. We are thus assuming that the true risk model in a 

continuous variable X is not categorical in X. If it were, consult [13] and [3], who also 

discuss the issue of doing a measurement error analysis in this case, especially the difficult 

complex issues of computation and identifiability both theoretical and practical.

2. Data generating mechanism and basic ideas

2.1. Illustration: A special case of linear regression

It is instructive to consider a special case, namely linear regression. Doing so will set the 

stage for our general method. The response is Y, the scalar predictor subject to error is X, 

the observed scalar predictor is W, there are predictors Z measured without error, and we 

define Z = 1, ZT T
 to allow for an intercept. The regression model in the continuous 

predictor X is Y = Xβ1 + ZTβ2 + ϵ, where ϵ is mean zero independent of (W, X, Z). There are 

j = 1, …, J categories (C1, …, CJ): the number of categories J is set by the investigator, and 

is generally 3 (tertiles), 4 (quartiles) or 5 (quintiles), depending on the scientific field and the 

investigator’s interests. Here M(X, Z) = {I(X ∈ C1), …, I(X ∈ CJ), ZT}T. If X could be 

observed, then we would also immediately obtain an estimate of β = β1, β2
T T

.

By [26], when X is observed, what epidemiologists estimate by using the categorized M(X, 

Z) is Θ, where, based on the normal equations for the categorized predictor, 

Θ = θ1, …, θJ, ΘJ + 1
T T

 is the solution to

0 = E M(X, Z) Y − MT(X, Z)Θ
= E M(X, Z) Xβ1 + ZTβ2 − MT(X, Z)Θ .

(1)

The estimate Θ is the solution to 0 = n−1∑i = 1
n M Xi, Zi Y i − MT Xi, Zi Θ , and this is a 

consistent estimate of Θ. Comparisons between categories j and k for j, k ≤ J, say, are 

θ j − θk.
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However, when X is not observable, estimating the solution to (1) has to be based solely on 

(Y, W, Z). In (1), it makes sense that if one believes the true regression model is linear in (X, 

Z), then, at some point, an estimate of β can be obtained via a measurement error analysis if 

there are sufficient data to do so.

Solving (1) based only on the observed W though is not so easy, and it is clear that some part 

of the relationship between W and X given Z is going to need to be specified, as it needs to 

be to do a general measurement error analysis. One way to do this is to define

𝒢(X, Z, Θ, β) = M(X, Z) Xβ1 + ZTβ2 − MT(X, Z)Θ , (2)

and then define Q(W , Z, Θ, β) = E 𝒢(X, Z, Θ, β) |W , Z . Since 0 = E{Q(W, Z, Θ, β)}, Θ can be 

estimated by solving

0 = n−1∑i = 1
n E M(X, Z) Xβ1 + ZTβ2 Wi, Zi − E M(X, Z)MT(X, Z) Wi, Zi Θ .

Hence, in this simple case, for j = 1, …, J we will need to be able to calculate expectations 

of XI(X ∈ Cj) given (W, Z) and the probability that X ∈ Cj given (W, Z). As we will see, in 

general problems, we will need to estimate the expectations of other functions of X given 

(W, Z).

So, to summarize, to get a general solution, it appears that we will need to estimate (β1, β2) 

by a measurement error analysis and estimate expectations of specified functions of X given 

(W, Z).

Remark 2.—Following on Remark 1, it is obvious that in the unlikely event that the true 

risk model is actually categorical in X, so that E(Y | X, Z) = MT(X, Z)β, then model 

misspecification and differential measurement error both disappear, and one really needs just 

the probabilities that X is in the categories given (W, Z). As [13] and [3] discuss in detail, 

estimating such models is difficult because of model identifiability concerns. Often, papers 

dealing with this issue assume the existence of a validation data set, where X is actually 

observed on a subset of the data. [13] is a particularly good source for the difficulties we 

have mentioned and remedies using replication data. [3], page 314, who states that 

estimating the misclassification rates is “most likely coming from internal validation data” 

and also has a nice discussion.

2.2. Assumptions

Our work is very general, but even so, the algorithm is basically the same as in Section 2.1. 

Our methodology requires three basic assumptions, described below. We let X be the 

continuous predictor subject to measurement error, Z covariates measured exactly, W the 

mismeasured version of X, and Y the response.
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Assumption 1.—When X is observed, the true response model in the continuous scale has 
parameters β, such that there is an estimating function, Φtrue(Y, X, Z, β) that identifies β and 
satisfies

0 = E Φtrue(Y , X, Z, β) X, Z . (3)

Assumption 1 occurs in at least two circumstances.

Example 1.—(A) There are functions m1(X, Z, β) and m2(X, Z, β) such that E(Y|X, Z) = 

m1(X, Z, β) and the unbiased estimating function that would be used if X were observable is

Φtrue(Y , X, Z, β) = m2(X, Z, β) Y − m1(X, Z, β) . (4)

(B) There is a parametric model for Y given (X, Z).

Example 1(A) is very general, in that it includes traditional quasilikelihood models, 

nonlinear regression, generalized linear models, probit regression, etc. Crucially, it does not 

require a fully parametric model for the distribution of Y given (X, Z).

In our approach, as in linear regression in Section 2.1, we may need to obtain information 

about moments of specified functions of X given (W, Z). To do this, we will consider the 

setting in which there may be an external data set of N observations giving information on 

one set of parameters of the joint distribution, Λext: if there is no external study, N = 0 and 

Λext does not exist. In addition, there is another set of the parameters, Λint, that is estimated 

from the n observations in the internal data set.

Assumption 2.—When X is not observed, either (a) the distribution of X given (W, Z) is 
known up to parameters Λext and Λint as described above, or (b) there is a function, 

𝒢(X, Z, Θ, β) defined at (11) below, whose conditional expectation given (W, Z) depends on 

parameters Λext and Λint and can be estimated. The parameter Λext cannot be estimated by 
internal data, while the parameter Λint can be estimated by internal data. For both, there are 
unbiased estimating functions Vext,m(Λext) for the external data and Vint,i(Λint, Λext) for the 
internal data such that E{Vext,m(Λext)} = 0 and E{Vint,i(Λint, Λext)} = 0.

For linear regression, 𝒢(X, Z, Θ, β) is given in (2).

If there are external data and N > 0, we estimate Λext by solving the estimating equation

0 = N−1 ∑
m = 1

N
Vext, m Λext . (5)

In the internal data set, we estimate Λint by solving an estimating equation
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0 = n−1∑i = 1
n V int, i Λint, Λext . (6)

There is also a very subtle issue that needs to be made explicit.

Assumption 3.—If external data are necessary for model identification, the parameter 
Λext is transportable in the sense that this parameter is the same in the external and internal 
data sets.

The issue of when parameters are transportable from an external data set to the internal data 

set is discussed in Chapter 2.2.4–2.2.5 of [4]. As they state, it is much better if there are 

sufficient internal data that external data need not be used, but this is not always the case.

2.3. General observations when X is observed

As argued in Section 1, the goal is to fit a model when X is categorized into J levels (C1, …, 

CJ), and so we defined the dummy variables and Z together as M(X, Z) = {I(X ∈ C1), …, 

I(X ∈ CJ), ZT}T: our formulation allows more complex forms, including interactions. 

Suppose there are i = 1, …, n subjects in the primary/main/internal study, and suppose 

further that we observe (Yi, Xi, Zi). If X is observed, the analysis done on these categories 

will be based on replacing (X, Z) in (3)–(4) by M(X, Z), and to make clear the 

categorization, we define a parameter Θ, set Φcat{Yi, M(Xi, Zi), Θ} = Φtrue{Yi, M(Xi, Zi), 

Θ}, and obtain Θ by solving

0 = n−1∑i = 1
n Φcat  Y i, M Xi, Zi , Θ . (7)

More complex forms of (7) are easily accommodated.

Unlike in Assumption 1 and (3)–(4), except in the rare case that the categorized model is 

actually true, 0 ≠ E[Φcat{Y, M(X, Z), Θ}|X, Z], a conditional expectation. This is a key part 

of the work in [26].

Despite the fact that the categorized model does not fit the data conditional on (X, Z), by 

standard estimating equation theory [26], the estimate formed by solving (7) has a limit as n 
→ ∞, Θ, which is the solution to

0 = E Φcat Y , M(X, Z), Θ . (8)

It is important to observe that (8) is an unconditional expectation, not a conditional one.

If, instead of observing X, we observe its mismeasured version W, and if we replace X by 

W, we will of course generally inconsistently estimate both β and Θ.
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2.4. Estimating the true parameter β

In our approach, as in Section 2.1 for linear regression, we must estimate β in (3). There is 

of course a large literature on how to do this [13, 4, 3, 27]. Borrowing on that literature, from 

Assumptions 1–2, for an estimating function Φ(Y, W, Z, β, Λint, Λext), the estimate, β, is the 

solution to

0 = n−1∑i = 1
n Φ Y i, W i, Zi, β, Λint, Λext , (9)

where Λint, Λext  are obtained from equations (5) and (6), respectively. Of course, the details 

and the form of Φ(·) differ from case-to-case.

3. Methodology and asymptotic theory

3.1. Methodology: General case

The methodology is simple to explain at the general level. The target Θ is defined as the 

solution to (8). However, we can rewrite (8) as

0 = E E Φcat Y , M(X, Z), Θ W , Z . (10)

Since the distribution of Y given (X, Z) depends on β, for notational completeness we define

𝒢(X, Z, Θ, β) = E Φcat Y , M(X, Z), Θ X, Z
= E Φcat Y , M(X, Z), Θ X, Z, β ;

(11)

Q W , Z, Θ, β, Λint, Λext = E 𝒢(X, Z, Θ, β) W , Z . (12)

Making the usual nondifferential measurement error assumption, i.e., that Y and W are 

independent given (X, Z),

0 = E Q W , Z, Θ, β, Λint, Λext . (13)

Critically, (12) depends only on the observed covariates. Thus, if we have consistent 

estimates β, Λint, Λext  of (β, Λint, Λext), then a consistent estimate Θ, of Θ solves

0 = n−1∑i = 1
n Q Zi, W i, Θ, β, Λint, Λext . (14)
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In some cases, we do not have external data. Thus, we do not have Vext and Λext, and Vint 

and Θ only depend on Λint.

Remark 3.—The key question is how to compute 𝒢(X, Z, Θ, β) in (11). In the fully general 

case (3), we require a parametric model for the distribution of Y given (X, Z), as in Example 

1(B). However, in standard regression models of the form in (4) in Example 1(A), great 

simplification occurs, because in that case,

Φcat Y , M(X, Z), Θ = m2 M(X, Z), Θ Y − m1 M(X, Z), Θ ,

and thus

𝒢(X, Z, Θ, β) = m2 (X, Z), Θ m1(X, Z, β) − m1 M(X, Z), Θ .

C.3 gives detailed formulae for linear and logistic regression.

Remark 4.—Our method is closely related to the expectation-correction method of [27], 

Chapter 2.5.2, and less closely to the general corrected score methods first introduced by 

[17]. [27] has an excellent and comprehensive discussion of the correction methods in the 

literature. We do not have a score function per se, but we have a function, Φcat{Y, M(X, Z), 

Θ}, with the property that E[Φcat{Y, M(X, Z), Θ}] = 0: importantly, it is not true that the 

conditional expectation E[Φcat{Y, M(X, Z), Θ}|X, Z] ≡ 0. Instead of our (11)–(12), the 

expectation-correction method uses as its estimating equation E[Φcat{Y, M(X, Z), Θ}|Y, W, 

Z] = Q*(Y, W, Z, Θ, β, Λint, Λext). The obvious distinction is that our function Q(·) does not 

involve Y explicitly, while the expectation-correction function Q*(·) does involve Y. We 

used Q(·) and (11) because our assumptions allow 𝒢( ⋅ ) to be calculated explicitly, especially 

in Example 1(A), so that implementation is somewhat easier. In addition, in Example 1(A), 

there does not need to be a full likelihood, as would be required in the expectation-correction 

method, so there are actual differences in the methods.

3.2. Asymptotic Theory

Asymptotic theory for the parameter estimates is easily derived. Let Ω = (Θ, β, Λint, Λext) 

and let the true values of the parameters be denoted by Ω.

It is neater notation in this section to let i = 1, …, n denote the internal data, and i = n + 1, 

…, n + N denote the external data. For i > n, define Ψi(Ω) = 0, 0, 0, Vext, i
T Λext

T
, while for i 

≤ n define

Ψi(Ω) = QT Wi, Zi, Θ, β, Λint, Λext , ΦT Yi, Wi, Zi, β, Λint, Λext , Vint, i
T Λint, Λext , 0 T .

If there are external data, the estimate Ω solves 0 = ∑i = 1
n + N Ψi(Ω). If there are no external 

data, then N = 0, Ω = (Θ, β, Λint) and the zero element and Λext in the definition of Ψi(Ω) 

are removed.
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By standard estimating equation results, we have the following results, which are shown in 

Appendices A.1 and A.2.

Lemma 1.—If there are external data, i.e., N > 0, make Assumptions 1–3. Suppose that N 
→ ∞ and n → ∞ such that n/(n + N) → blim, where 0 < blim < 1. Then

(n + N)1/2(Ω − Ω) Normal 0, A−1B A−1 T ,

where A = blimE{∂Ψ1(Ω)/∂ΩT} + (1 − blim)E{∂Ψn+N(Ω)/∂ΩT} and B = blimcov{Ψ1(Ω)} + (1 

− blim)cov{Ψn+N(Ω)}. In the definitions A of and B, the expectation and covariance matrix 

for Ψ1(Ω) are computed in the internal data, while the expectation and covariance matrix for 

ΨN+n(Ω) are computed in the external data. Let Cext be the sample covariance matrix of 

Ψi(Ω) for i = n + 1, …, n + N and let Cint be the sample covariance matrix of Ψi(Ω) for i = 1, 

…, n. Consistent estimates of A and B are easily seen to be A = (n + N)−1∑i = 1
N + n ∂Ψi(Ω)/ ∂ΩT

and B = n/(n + N) Cint + N /(n + N) Cext.

Lemma 2.—If there are no external data, i.e., N = 0, make Assumptions 1–2. As n → ∞,

n1/2(Ω − Ω) Normal 0, A−1B A−1 T ,

where A = E{∂Ψ1(Ω)/∂ΩT} and B = cov{Ψ1(Ω)}. In the definitions of A and B, the 

expectation and covariance matrix for Ψ1(Ω) are computed in the internal data. Let Cint be 

the sample covariance matrix of Ψi(Ω) for i = 1, …, n. Consistent estimates of A and B are 

easily seen to be A = n−1∑i = 1
n ∂Ψi(Ω)/ ∂ΩT and B = C int .

Remark 5.—While the calculations used in Lemmas 1–2 are standard, as a referee has 

pointed out, we are making the following kinds of assumptions to carry them through: 

weaker conditions can be constructed. All these conditions hold in our examples of linear 

and logistic regression with additive measurement error. There is a parameter which we have 

called in this subsection Ω = (Θ, β, Λint, Λext). For i = 1, …, n + N, we have defined 

estimating functions Ψi(Ω), which we have defined in such a way that E{Ψi(Ω)} = 0 for i = 

1, …, n + N: the expectations are unconditional, although in implementing the estimators we 

have exploited our Assumptions 1–3 to simplify the numerical calculations. Having done all 

this, we are now in the realm of estimating equation theory. Sufficient but not necessary 

conditions for our asymptotic theory to hold are the following.

• The parameter space is compact. This is not necessary but it is convenient for 

proving consistency.

• There is a unique Ω in the parameter space such that E{Ψi(Ω)} = 0 for all i = 1, 

…, n + N.
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• The estimating equations Ψi(Ω) are 3-times continuously and boundedly 

differentiable in the parameter space.

• The estimating equation 0 = ∑i = 1
n + N Ψi(Ω) has a unique solution.

• The matrix E{∂Ψi(Ω)/∂ΩT} is of full rank within a neighborhood of the true 

parameter value.

• For sufficiently large (n, N), within a neighborhood of the true parameter value, 

(n + N)−1∑i = 1
n + N ∂Ψi(Ω)/ ∂ΩT is of full rank with eigenvalues bounded away from 

0 and ±∞.

Remark 6.—The major new item here in verifying the assumptions mentioned in Remark 5 

are the differentiability assumptions having to do with Q(W, Z, Θ, β, Λint, Λext) in (12). Let 

the conditional density/mass function of Y given (X, Z) be fY|X,Z (·, β, Λint, Λext) and the 

conditional density/mass function of X given (W, Z) be fX|W,Z(·, Λint, Λext). Let dν(y) and 

dν(x) be integrals/counts as the case requires. Then (12) can be written out as

Q W , Z, Θ, β, Λint, Λext = ∫ ∫ Φcat y, M(x, Z), Θ f Y X, Z y x, Z, β, Λint, Λext dν(y)

× f X W , Z x W , Z, Λint, Λext dν(x) .

Then the non-standard differentiability assumptions in Remark 5 are really about the 

differentiability assumptions of Φcat{y, M(x, Z), Θ}, fY|X,Z(·, β, Λint, Λext) and fX|W,Z(·, 

Λint, Λext) with respect to the parameters.

4. Simulations: Logistic and linear regression

4.1. Logistic regression

4.1.1. Scenarios—For simplicity, we do our simulations in the case that there is no Z. 

For logistic regression, we assume that the true model is

pr(Y = 1 X) = H β0 + Xβ1 = H (1, X)β , (15)

where H(·) is the logistic distribution function. Then we generate data as

W = X + U; X = Normal μx, σx
2 ; U = Normal 0, σu

2 , (16)

where X and U are independent. We set β0 = −0.42 and set β1 = log(1.5) in Table 1. We set 

(μx = 0, σx
2 = 1, σu

2 = 1), so that the measurement error variance is the same as the variance of 

X, and the classical attenuation coefficient is λ = σx
2/ σx

2 + σu
2 . Solving (8) numerically, we 

find that Θ = (−0.98, −0.64, −0.42, −0.21, 0.14)T. In both cases, the main study sample size 

is n = 500.
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We used the quintiles of the distribution of X to define the categories. This is because, as 

stated in the introduction, we have our goal is to obtain consistent estimates of what 

epidemiologists would have obtained if X were actually observed, in this case, the quintiles 

of X.

We did simulations in two cases:

1. External-Internal Data: The internal data has no replicates and the external data 

set has size N = 300 and K = 2 replicates for each observation. The nuisance 

parameters are Λext = σu
2 and Λint = μx, σx

2 . We estimated σu
2 from the external 

data with replicates, and estimated μx, σx
2 using the internal data without any 

replicates. Standard errors were computed as in Lemma 1.

2. Internal Data Only: The internal data has R = 2 replicates and there are no 

external data (K = 0). The nuisance parameters Λ = Λint = μx, σx
2, σu

2 . We 

estimated (μx, σx
2, σu

2) from the internal data with replicates. Standard errors were 

computed as in Lemma 2.

C.3 provides details of implementation.

4.1.2. Results—The results given below are similar, and indeed even more impressive, 

when the main study sample size n increases to n = 1,000, 2,000 and 3,000, and thus these 

are not displayed here. The results are also similar when β1 is either smaller or larger. The 

same qualitative results are also found for Θ = (θ1, …, θ5)T individually (results not shown).

We fit the new approach and compare it with the naive method for the both cases described 

above. Our main interest is to estimate the log relative risk θ5 − θ1, which compares the 

effect of the category 5 with the effect of the category 1. In the two simulations, we 

computed (a) the log relative risk pretending that X is observed; (b) our method; and (c) the 

naive method that ignores measurement error. In the scenario of internal data with R = 2, the 

predictor used was the sample mean of the replicates.

Based on 1000 simulated data sets, in Table 1, we report the empirical average mean bias, 

asymptotic standard error, standard deviation, root mean squared error, and coverage rate of 

the nominal 95% confidence interval across the simulations.

From Table 1, we observe the following.

• The estimator using true X and our method both have little bias and provide near-

nominal coverage.

• The naive estimator that ignores the measurement error is badly biased and 

attenuated towards zero. Consequently the coverage probabilities are near-zero 

and the root mean squared errors are quite inflated.

• With no internal replicates, i.e., R = 1, the root mean squared error of our method 

is naturally higher than if X had been observed, but not quite as high as would be 

expected in a continuous analysis. Indeed, in a continuous analysis with 
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attenuation λ = 0.50, as in our simulation, one would expect a doubling of root 

mean squared error.

4.2. Linear regression

4.2.1. Scenarios—In this section, we do simulations based on simple linear regression 

with no Z, including homoscedastic and heteroscedastic cases.

We assume that the true model is

Y = β0 + Xβ1 + ϵ = (1, X)β + ϵ, (17)

Similarly, we generate data as

W = X + U; X = Normal μx, σx
2 ; U = Normal 0, σu

2 .

We set β0 = 0 and set β1 = 0.75 and studied two cases: (a) homoscedastic with ϵ ~ N(0, 1); 

and (b) heteroscedastic with ϵ ~ N(0, 0.2 + 0.5×2). The classical attenuation coefficient and 

sample size are the same as in Section 4.1. Solving (8) numerically, we find that Θ = (−1.04, 

−0.40, 0.00, 0.40, 1.05)T. C.2 provides implementation details.

4.2.2. Results—Similarly as before, our main interest is to estimate θ5 − θ1, which 

compares the effect of the category 5 with the effect of the category 1. In the two 

simulations, we computed θ5 − θ1 (a) pretending that X is observed; (b) our methods; and 

(c) the naive method that ignores measurement error. For the naive method, in internal data 

with R = 2, the predictor used is the sample mean of the replicates.

Based on 1000 simulated data sets, in Table 2, we report the empirical average mean bias, 

asymptotic standard error, standard deviation, root mean squared error, and coverage rate of 

the nominal 95% confidence intervals across the simulations.

From Table 2, we see that similar conclusions can be drawn as in Section 4.1. However, an 

interesting thing is in the heteroscedastic case, when noise ϵ has its variance related to X. 

Assuming that X is observed, the coverage rate of nominal 95% confidence intervals is low, 

because the heteroscedasticity is ignored. Using our method, we can get close to nominal 

coverage without knowing any information about the noise ϵ. Thus, this example shows that 

our method is very general as we stated in Example 1(A).

5. Empirical example

5.1. Data description

We illustrate our methods using data from the Eating at America’s Table (EATS) Study [23], 

in which 964 participants completed multiple 24-hour recalls of diet. We consider the 

variable Fat Density, which is the percentage of calories coming from Fat. The response Y is 

either (i) the indicator of obesity, which means that a subject’s body mass index (BMI, 
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weight in kilograms divided by the square of height in meters) is 30 or greater. or (ii) the 

actual body mass index. We assume that W, is unbiased for usual intake X, and that W = X 
+U. It is reasonable in these data to take (a) X to be normally distributed, (b) that U is 

normally distributed; and (c) that X and U are independent, as we now describe. We used the 

methods described in [9] and Chapter 1.7 of [4], which also give the rationale for these 

methods. Specifically, for (a), as they suggest a qq-plot of the individual means for Fat 

Density looked acceptably normal, with skewness and kurtosis = −0.06 and 3.02, 

respectively, see the top panel of Figure 1. For (b), as they suggest, we took differences of 

the first and second Fat Density measurements, which had skewness (theoretically = 0) and 

kurtosis = −0.14 and 3.40, respectively: the somewhat higher kurtosis here is seen to be 

minor on the qq-plot, see the middle panel of Figure 1. Finally, for (c), they suggest 

analyzing the correlation between the individual-level mean and standard deviation = 0.06, 

and there was no obvious strong pattern when we plotted the data the latter against the 

former, see the bottom panel of Figure 1.

For numerical stability, our analysis in the continuous scale is uses centered and 

standardized W using (15W − 5)/ 0.5. To illustrate an example of an internal and an external 

study, we randomly selected N = 200 subjects as the external study to have the first two 24-

hour recalls, while using the remaining data as the main internal study. As in the simulation, 

we either set the number of recalls R = 1, K = 2, meaning the external study data were used 

to estimate the measurement error variance, for R = 2, K = 0, in which case the external data 

were not used.

5.2. Results

5.2.1. Logistic regression—As described in Section 4.1, we assume the true model 

defined by (15)–(16), and the respective two cases. In this application we again estimate the 

log relative risk θ5 − θ1. We fit both our new approach and the naive model that ignores 

measurement error when external data is and is not used.

In Table 3, we observe that when using the external data and only 1 observation in the 

internal data the estimate of the log relative risk θ5 − θ1 from our approach is 108% greater 

than the naive estimate, while when using internal data with two replicates our estimate of 

our approach is 32% greater than the naive estimate. This makes sense because the second 

case uses the mean of two replicates, hence has smaller measurement error variance, and 

thus the naive estimate will be closer to our method.

In both cases, the asymptotic standard error from our new method is greater than the naive 

method, which led to wider confidence intervals. This makes sense, because with a scalar 

covariate measured with error, correcting for measurement error bias usually increases 

estimated standard errors, while of course reducing bias.

5.2.2. Linear regression—Next we consider the linear model with body mass index as 

the response. All assumptions for W, X and U are the same as in Section 5.1. Moreover, we 

maintain the standardization and sampling scheme in Section 5.1: the results are presented in 

Table 4.
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From Table 4, we observe similar conclusions as in logistic regression case. One point of 

particular interest is that in both scenarios (external-internal or internal data only), our 

estimator converges theoretically to the same value, and this is seen in the results. The naive 

method that ignores measurement error estimates different parameters because the 

measurement error variance is twice as large in the external-internal case as it is in the 

internal-only case.

6. Other approaches and the assumptions

6.1. Other approaches

We emphasize once more that it is common practice in epidemiology to categorize a 

continuous predictor, and we have given numerous citations of this practice. Generally, this 

practice results in a misspecified model.

Our goal is to correct the analysis so as to reproduce, asymptotically, the estimators that 

would have been obtained if there were no measurement error. The problem has not been 

considered previously in the context that a continuous predictor has been categorized. Such 

categorization generally leads to differential measurement error [11, 13, 3], and thus 

additional complications over simply fitting a measurement error model.

While our paper is the first to consider the issue of how to correct an analysis to account for 

a continuous predictor that is categorized, there are of course other possible approaches, but 

none of them really avoids the basic issues we have discussed of what is needed to obtain 

consistent estimators with asymptotically correct inference in the case of measurement error.

• For example, one could assume that the true risk model is based upon the 

categorized truth, even if this is implausible in most contexts. One could further 

assume that the misclassification is nondifferential, which is incorrect if the true 

risk model is in the continuous scale [11, 13, 3]. There is a small literature on 

this problem. [13], especially Chapter 6.1, has remarks on the bias induced when 

a binary predictor is misclassified. [3], Chapter 6.7.7 and Chapter 6.14, has a 

detailed discussion of the issue, and provides a number of references to the 

problem. Both [13] and [3] show that a measurement error correction will require 

a distribution for the categorical X given (W, Z), sometimes called the 

reclassification rate, and both indicate that there are substantive issues, including 

identifiability, involved with estimating these models. For replication studies 

wherein W is measured repeatedly on a subset of the data, there is some evidence 

that 3 replicates will result in identifiability. However, both books emphasize the 

use of internal validation substudies, wherein one actually observes X in a 

substudy.

• If Xcat is the categorized truth, then one might attempt an analysis based on 

assuming a joint distribution of (Y, W, Xcat) given Z, but as in any measurement 

error model [4], the joint distribution requires (a) a distribution for Y given (Xcat, 

W, Z), and (b) the distribution of (W, Xcat) given Z. However, (a) actually 

depends on W, and thus that the modeling presents additional complications. In 
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addition, (b) is no easier than ours, can be implausible and does not make fewer 

assumptions than we have done.

• Simulation-extrapolation, or SIMEX, [6, 22, 4] is a well-known approach to the 

creation of approximately, but not fully, consistent estimators for additive 

measurement error models of the form W = X +ZTα +U, where U is independent 

of Z and can be homoscedastic or heteroscedastic but has replicates [8], and is 

generally taken to be normally distributed. This literature attempts to dispense 

with distributional assumptions for X for the continuous case, but is at best 

approximately correct. The fact that a categorized risk model is implausible, 

leading to differential measurement error, may also cause complications, but the 

use of SIMEX in this context is a worthwhile topic for further study. We also 

mention the MCSIMEX procedure [16], which is appropriate for misclassified 

data where the misclassification probabilities can be estimated.

• It is also possible to change the paradigm entirely and avoid categorization, and 

all the issues related to categorization, by instead using Bsplines. Indeed, part of 

the reason sometimes given for categorizing a continuous predictor and not 

modeling a response linearly in the continuous X is that it could lead to unduly 

extreme comparisons for risk between the lowest and the highest values of X. 

The general thought is that this can be overcome by replacing the linear X by a 

Bspline in X. There are papers involving Bsplines and measurement error [2, 12, 

18], and it appears that regression calibration can possible be used by calibrating 

each spline basis function. After the fitting, one could compare the Bspline fits at 

the 10th, 30th, 50th, 70th and 90th percentiles of X to form versions of the tables 

found in epidemiology papers, but the interpretations are not fully comparable.

We showed how to solve this problem and given asymptotically consistent estimators with 

asymptotically correct standard errors. Assumption 2 is reasonable in other contexts than 

ours, for example, that X has a mixture-of-normals distribution and U is normally distributed 

[7].

6.2. Assumptions in the simulations and example

Readers of an initial version of this paper have noted that our simulations and data example 

use the assumption that the distribution of X given (W, Z) is normally distributed, but 

misinterpreted this fact into concluding that the approach is only applicable in that case. For 

the data example in Section 5, we justified the assumptions using known methods for model 

checking of measurement error models. Assumption 2 is widely used and reasonable in 

many other contexts than ours numerical work, for example, that X has a mixture-of-normals 

distribution and U is normally distributed [7]. Modeling via mixture distributions is a 

reasonable way to extend what we have done in the classical error case. See also [21] for the 

homoscedastic and heteroscedastic cases when the variance function and the distributions of 

X and U are modeled as mixture distributions.

Many papers in the literature also rely on the existence of validation data, where X is 

actually observed in a subset of the main data set. In that case, Assumption 2 is easily 

checked by model fitting and validation on the observed validation data subset.
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6.3. Categorization

In Section 2.1, we stated that the number J of categories was set by the investigators, 

Usually, J = 3, 4 or 5, as seen by the examples cited in the introduction. In addition, setting 

the category limits is also an art, and may be based on (a) limits in the literature; (b) limits 

based on the error-prone instrument, such as the quintiles of a food frequency questionnaire 

or 24-hour recall; and (c) limits based on a measurement error analysis. Since our goal is to 

construct the analysis that would have been done if X could be observed, we use the latter.
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Appendix A:: Sketch of technical arguments

A.1. Argument for Lemma 1

We consider the case that there are external data used to estimate Λext and that there are 

parameters Λint. As in Section 3.2, the data for i = 1, …, n are for the internal data, while, 

for i = n + 1, …, n + N, are for the external data if such external data exist and are used. The 

functions Ψi(Ω) are also defined in Section 3.2. By Taylor series,

n + N −1/2∑i = 1
n + N Ψi(Ω) − Ψi(Ω) = n + N −1/2∑i = 1

n + N ∂Ψi(Ω)
∂Ω Ω − Ω + op Ω − Ω

= n + N −1∑i = 1
n + N ∂Ψi(Ω)

∂Ω n + N 1/2 Ω − Ω + op(1) .

For logistic regression and linear regression, the forms of Ψi(Ω) can be found in Appendix 

C. Thus,

(n + N)1/2(Ω − Ω) = − (n + N)−1 ∑
i = 1

N + n
∂Ψi(Ω)/ ∂Ω

−1
(n + N)−1/2 ∑

i = 1

N + n
Ψi(Ω) + op(1) .

It is obvious that (n + N)−1∑i = 1
N + n ∂Ψi(Ω)/ ∂Ω = A + op(1), and immediate that 

(n + N)−1/2∑i = 1
N + nΨi(Ω) Normal(0, B), where A and B are defined in Lemma 1.

A.2. Argument for Lemma 2

We consider the case that there are only parameters Λint. As in Section 3.2, the data for i = 1, 

…, n are for the internal data. The functions Ψi(Ω) are also defined in Section 3.2. Then
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0 = n−1/2 ∑
i = 1

n
Ψi(Ω)

= n−1/2 ∑
i = 1

n
Ψi(Ω) + n−1 ∑

i = 1

n
∂Ψi(Ω)/ ∂Ω n1/2(Ω − Ω) + op(1),

so that

n1/2(Ω − Ω) = − n−1 ∑
i = 1

n
∂Ψi(Ω)/ ∂Ω

−1
n−1/2 ∑

i = 1

n
Ψi(Ω) + op(1) .

As in A.1, n−1∑i = 1
n ∂Ψi(Ω)/ ∂Ω = A + op(1), and (n + N)−1/2∑i = 1

N + nΨi(Ω) Normal(0, B), 

where A and B are defined in Lemma 2.

Appendix B:: Tables for simulations and EATS data analysis

Table 1

Simulation study for logistic regression in Section 4.1 with sample size n = 500 and, where 

applicable, the external study has sample size N = 300 and 2 replicates, while β0 = −0.42, β1 

= log(1.5). The target parameter, Θ = (θ1, …, θ5)T, where θj is the parameter for the jth 

category. Displayed are results for the estimation of the log relative risk, θ5 − θ1. Ext-Int 

Data is the case that external data are used to estimate the measurement error variance. Int 

Data is the case that the internal data have 2 replicates, and the Ignore ME estimator ignores 

the measurement error and is based on the mean of these replicates. Coverage is the 

coverage rate of nominal 95% confidence intervals. RMSE is the square root of the mean 

squared error.</Table_Caption>

Log Relative Risk Analysis

Data Method mean bias
Mean Estimated 

Std. Err. Actual Standard Deviation RMSE Coverage

X observed 0.016 0.304 0.301 0.301 95.2%

Ext-Int Data

Our Method −0.005 0.41 0.402 0.402 94.5%

Ignore ME −0.453 0.251 0.256 0.520 0%

Int Data

Our method 0.005 0.361 0.323 0.323 95.9%

Ignore ME −0.287 0.268 0.266 0.391 80.2%
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Table 2

Simulation study for linear regression in Section 4.2 with n = 500 and, where applicable, the 

external study has sample size N = 300 and 2 replicates, while β0 = 0, β1 = 0.75. The target 

parameter, Θ = (θ1, …, θ5)T, where θj is the parameter for the jth category. Displayed are 

results for the estimation of θ5 − θ1. Ext-Int Data is the case that external data are used to 

estimate the measurement error variance. Int Data is the case that the internal data have 2 

replicates, and the Ignore ME estimator ignores the measurement error and is based on the 

mean of these replicates. Coverage is the coverage rate of nominal 95% confidence intervals. 

RMSE is the square root of the mean squared error.

Results Analysis (θ5 − θ1)

Data Method mean bias
Mean Estimated 

Std. Err. Actual Standard Deviation RMSE Coverage

Homoscedastic ϵ ~ N(0, 1)

X observed 0.004 0.145 0.150 0.150 95.1%

Ext-Int Data

Our Method 0.013 0.249 0.233 0.233 95.8%

Ignore ME −0.814 0.139 0.142 0.826 0.1%

Int Data

Our method −0.007 0.176 0.170 0.170 95.3%

Ignore ME −0.536 0.142 0.145 0.555 3.7%

Heteroscedastic ϵ ~ N(0,0.2 + 0.5x2)

X observed 0.004 0.123 0.169 0.169 85.3%

Ext-Int Data

Our Method 0.011 0.261 0.245 0.245 95.9%

Ignore ME −0.814 0.122 0.135 0.825 0.1%

Int Data

Our Method −0.010 0.197 0.189 0.189 95.9%

Ignore ME −0.537 0.123 0.141 0.555 1.8%
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Table 3

Data analysis for logistic regression in Section 5. The target parameter, Θ = (θ1, …, θ5)T, 

where θj is the parameter for the jth category. Displayed are results for the estimation of the 

log relative risk, θ5 − θ1. Ext-Int Data is the case that external data are used only to estimate 

the measurement error variance, and the external data have 2 replicates. Int Data is the case 

that the internal data have 2 replicates, and the Ignore ME estimator ignores the 

measurement error and is based on the mean of these replicates. Asymptotic Std. Err. is the 

standard error estimate from the theory. CI is the nominal 95% confidence interval for the 

log relative risk. p-value is the p-value for the test that the log relative risk = 0.</
Table_Caption>

Log Relative Risk Analysis

Data Method Estimate Asymptotic Std. Err. 95% CI p-value

Ext-Int Data

Our Method 0.98 0.47 (0.06,1.90) 0.036

Ignore ME 0.47 0.24 (0.00, 0.95) 0.049

Int Data

Our Method 1.10 0.34 (0.43,1.77) 0.001

Ignore ME 0.83 0.22 (0.39,1.26) 0.000

Table 4

Data analysis in for linear regression Section 5. The target parameter, Θ = (θ1, …, θ5)T, 

where θj is the parameter for the jth category. Displayed are results for the estimation of θ5 − 

θ1. Ext-Int Data is the case that external data are used only to estimate the measurement 

error variance, and the external data have 2 replicates. Int Data is the case that the internal 

data have 2 replicates, and the Ignore ME estimator ignores the measurement error and is 

based on the mean of these replicates. Asymptotic Std. Err. is the standard error estimate 

from the theory. CI is the nominal 95% confidence interval for θ5 − θ1. p-value is the p-

value for the test that θ5 − θ1 = 0.

Results Analysis (θ5 − θ1)

Data Method Estimate Asymptotic Std. Err. 95% CI p-value

Ext-Int Data

Our Method 0.59 0.18 (0.24, 0.95) 0.001

Ignore ME 0.28 0.10 (0.09, 0.47) 0.004

Int Data

Our Method 0.56 0.13 (0.30,0.81) 0.000

Ignore ME 0.35 0.09 (0.18,0.52) 0.000
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Fig 1. 
EATS data of Section 5. Top panel: Normal qq-plot of the mean Fat Density over 4 recalls. 

This indicates that the mean Fat Density is approximately normally distributed and qualifies 

for the assumptions in our numerical example. Middle panel: Normal qq-plot of differences 

of observed Fat density, as a diagnosis that U is approximately normally distributed. Bottom 

panel: Mean and standard deviation plot to diagnose heteroscedasticity, showing that there is 

little heteroscedasticity in the measurement errors.
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Appendix C:: Estimating equations for linear and logistic regression

C.1. Estimating the nuisance parameter Λ

Here we only consider two cases among numerous possibilities. One is that the internal data 

consists of (Yi, Wi, Zi) for i = 1, …n and σu
2 is estimated from the external data using 

replicates Wik for k = 1, …, K and i = n + 1, …, n + N. The second case is that the replicates 

are in the internal data.

C.1.1. External-internal data

For specificity, we consider the first case that the external data have no responses Y, are 

independent of the internal data. Suppose that we use external data only to estimate σu
2, and 

we observe Wik = Xi + Uik for k = 1, …, K and i = n+1, …, n+N. We use internal data to 

estimate μx, σx
2 without replicates. In the external data, let W i = K−1∑k = 1

K W ik. Define 

σu, i
2 = (K − 1)−1∑k = 1

K W ik − W i . 2 to be the sample variance of the Wik for a given i. 

Because E W i − μx
2 = σx

2 + σu
2, unbiased estimating equations for Λext, Λint = μx, σx

2, σu
2

are

For μx:n−1∑i = 1
n Wi − μx = 0;

Forσu
2: N−1∑i = n + 1

n + N σu, i
2 − σu

2 = 0;

For σx
2:n−1∑i = 1

n Wi − μx
2 − σx

2 − σu
2 = 0.

C.1.2. Internal data only

Suppose there is no external data, and we have replicates Wir for r = 1, …, R in the internal 

data. Now we use internal data to estimate Λ = μx, σx
2, σuR

2 , and we observe Wir = Xi + Uir 

for r = 1, …, R and i = 1, …, n.

Define W i = R−1∑r = 1
R W ir. Define σu, i

2  to be the sample variance of the Wir within subject i, 

and define σu
2/R = σuR

2 . The estimating equations are

For μx:n−1∑i = 1
n Wi . − μx = 0;

ForσuR
2 :n−1∑i = 1

n σu, i
2 /R − σuR

2 = 0;

For σx
2:n−1∑i = 1

n Wi . − μx
2 − σx

2 − σuR
2 = 0.

Since the two cases we considered are the same as in linear regression and logistic 

regression, the way we estimate Λint and Λext are exactly the same. Then we will only give 

details for the estimating equations about β and Θ below.
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C.2. Details for linear regression

C.2.1. Background

Here we give full details of our methodology for linear regression. As in Lemma 1, Ω = (Θ, 

β, Λint, Λext).

Let Z = 1, ZT T
. Here we consider the simple case of linear regression with the classical 

measurement error model in both the external and internal data sets to be

Y = Xβ1 + ZTβ2 = X, ZT β;

W = X + U; X = Normal ZTα, σx
2 ; U = Normal 0, σu

2 .

C.2.2. The forms of Φ(·)

In this linear model, denote the estimating equations for β as Φ(·), we consider

Φ Y , W , Z, β, Λint, Λext = (1, W)T Y − Wβ1 − ZTβ2 + 0, β1σu
2 T .

C.2.3. The forms of Φcat(·) and Q(·)

Since we assume the true model is Y = X, ZT β, it is easy to see that categorical estimating 

function

Φcat Y , MT(X, Z)Θ = M(X, Z) Y − MT(X, Z)Θ .

Hence, by simple calculations and following Remark 3, with Ω = (Θ, β, Λint, Λext),

Q(W , Z, Ω) = E M(X, Z) X, ZT β − MT(X, Z)Θ W , Z .

We used the integrate function in the R package stats to compute the integrals.

The estimating function for β = (β0, β1) is

Φ(β, Λ) = n−1∑i = 1
n E Yi − H m Xi, β ∂m Xi, β / ∂ βT Wi .

The estimating function for Θ is

Q Wi, Θ, β, Λ = E

m Xi, β I Xi ∈ C1 − Θ1I Xi ∈ C1
⋮

m Xi, β I Xi ∈ CJ − ΘJI Xi ∈ CJ

Wi .

Asymptotic standard errors were estimated as in Lemma 1 and Lemma 2.
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C.3. Details for logistic regression

C.3.1. Background

Here we give full details of our methodology for logistic regression. As in Lemma 1, Ω = (Θ, 

β, Λint, Λext).

As before, let H(·) denote the logistic distribution function and let Z = 1, ZT T
. Here we 

consider the special case of linear logistic regression with the classical measurement error 

model in both the external and internal data sets to be

pr(Y = 1 X, Z) = H Xβ1 + ZTβ2 = H X, ZT β ;

W = X + U; X = Normal ZTα, σx
2 ; U = Normal 0, σu

2 .

Different from the linear case in Section C.2, we consider the case where X depends on 

another covariate Z. There are numerous data structures possible, but we here present the 

external-internal and internal data only cases.

C.3.2. Settings

There are two settings of interest.

• There is no information about σu
2 in the internal data, so that the external 

parameter is the measurement error variance, Λext = σu
2, while the internal 

parameters are Λint = αT, σx
2 T

.

• There are no external data, so that Λext is null, and the internal data with 

replicates allow estimation of Λint = αT, σu
2, σx

2 T
.

In both case, σu
2 (or σuR

2  in the internal data only case) are estimated the same as in C.1.1 and 

C.1.2, while the estimating function for (α, σx
2) is

Vint, i Λint, Λext = Zi
T Wi − Zi

Tα , Wi − Zi
Tα

2 − σx
2 − σu

2 ,

where i = 1, …, n.

C.3.3. Estimating β

In this section, we implement our method and give all estimating equations in the case where 

we have both external and internal data. In another case, where we only use internal data 

with replicates, all results below are still valid by removing Λext.
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Define λ = σx
2/ σx

2 + σu
2 . Then, given (W, Z), X is normally distributed with mean 

μ W , Z, Λext, Λint = ZTα + λ W − ZTα  and variance λσu
2. We write this conditional density as 

fx|w,z(x, w, z, β, Λint, Λext).

There are multiple ways to estimate β from the observed data. Here we describe two of 

them.

• The first is regression calibration, in which X is replaced by its mean given (W, 

Z) and the linear logistic model is fit. Thus the regression calibration method has

Φ Y , W , Z, β, Λint, Λext = μ W , Z, Λext, Λint , Z T × Y − H μ W , Z, Λext, Λint β1 + ZTβ2 .

• A second possibility, one that we used, is the following. By simple calculations, 

pr(Y = 1|W, Z) = p(W, Z, β, Λint, Λext), where

p W , Z, β, Λint, Λext = ∫ H x, ZT β f x w, z x, W , Z, Λint, Λext dx,

a quantity that is easily computed in R using the integrate function in the R 

package stats. Denote pi = pr(Yi = 1|Wi, Zi). Thus, the loglikelihood 

∝ n−1∑i = 1
n Y ilog pi + 1 − Y i log 1 − pi . We then use optim function in the R 

package stats to minimize the negative loglikelihood to estimate β.

C.3.4. The forms of Φcat(·) and Q(·)

Since we assume the true model is pr(Y = 1| X, Z) = H X, ZT β , it is easy to see that 

categorical estimating function

Φcat Y , MT(X, Z)Θ = M(X, Z) Y − H MT(X, Z)Θ .

Hence, with Ω = (Θ, β, Λint, Λext), by simple calculations and following Remark 3,

Q(W , Z, Ω) = E M(X, Z) H X, ZT β − H MT(X, Z)Θ W , Z .

We used the integrate function in the R package stats to compute the integrals.
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