Skip to main content
. Author manuscript; available in PMC: 2019 Jun 21.
Published in final edited form as: Electron J Stat. 2018 Dec 11;12(2):4032–4056. doi: 10.1214/18-EJS1489

Table 2.

Simulation study for linear regression in Section 4.2 with n = 500 and, where applicable, the external study has sample size N = 300 and 2 replicates, while β0 = 0, β1 = 0.75. The target parameter, Θ = (θ1, …, θ5)T, where θj is the parameter for the jth category. Displayed are results for the estimation of θ5 − θ1. Ext-Int Data is the case that external data are used to estimate the measurement error variance. Int Data is the case that the internal data have 2 replicates, and the Ignore ME estimator ignores the measurement error and is based on the mean of these replicates. Coverage is the coverage rate of nominal 95% confidence intervals. RMSE is the square root of the mean squared error.

Results Analysis (θ5θ1)
Data Method mean bias Mean Estimated Std. Err. Actual Standard Deviation RMSE Coverage
Homoscedastic ϵ ~ N(0, 1)
X observed 0.004 0.145 0.150 0.150 95.1%
Ext-Int Data
Our Method 0.013 0.249 0.233 0.233 95.8%
Ignore ME −0.814 0.139 0.142 0.826 0.1%
Int Data
Our method −0.007 0.176 0.170 0.170 95.3%
Ignore ME −0.536 0.142 0.145 0.555 3.7%
Heteroscedastic ϵ ~ N(0,0.2 + 0.5x2)
X observed 0.004 0.123 0.169 0.169 85.3%
Ext-Int Data
Our Method 0.011 0.261 0.245 0.245 95.9%
Ignore ME −0.814 0.122 0.135 0.825 0.1%
Int Data
Our Method −0.010 0.197 0.189 0.189 95.9%
Ignore ME −0.537 0.123 0.141 0.555 1.8%