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Gene expression biomarkers are now available
for application in the identification of genotoxic
hazards. The TGx-DDI transcriptomic biomarker can
accurately distinguish DNA damage-inducing (DDI)
from non-DDI exposures based on changes in the
expression of 64 biomarker genes. The 64 genes
were previously derived from whole transcriptome
DNA microarray profiles of 28 reference agents
(14 DDI and 14 non-DDI) after 4 h treatments of
TK6 human lymphoblastoid cells. To broaden the
applicability of TGx-DDI, we tested the biomarker
using quantitative RT-PCR (qPCR), which is accessi-
ble to most molecular biology laboratories. First,
we selectively profiled the expression of the 64
biomarker genes using TaqMan qPCR assays in
96-well arrays after exposing TK6 cells to the 28
reference agents for 4 h. To evaluate the classifica-
tion capability of the qPCR profiles, we used the
reference qPCR signature to classify 24 external

validation chemicals using two different methods—
a combination of three statistical analyses and an
alternative, the Running Fisher test. The qPCR results
for the reference set were comparable to the origi-
nal microarray biomarker; 27 of the 28 reference
agents (96%) were accurately classified. Moreover,
the two classification approaches supported the
conservation of TGx-DDI classification capability
using qPCR; the combination of the two approaches
accurately classified 21 of the 24 external valida-
tion chemicals, demonstrating 100% sensitivity,
81% specificity, and 91% balanced accuracy. This
study demonstrates that qPCR can be used when
applying the TGx-DDI biomarker and will improve
the accessibility of TGx-DDI for genotoxicity screen-
ing. Environ. Mol. Mutagen. 60:122–133,
2019. © 2018 Her Majesty the Queen in Right of Can-
ada Environmental and Molecular Mutagenesis.
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INTRODUCTION

The application of toxicogenomics (TGx) in chemical
toxicity testing has been a continuously developing area of
in vitro toxicology since the introduction of TGx nearly
two decades ago (Nuwaysir et al., 1999; Li et al., 2007;
Uehara et al., 2010). TGx biomarkers (i.e., gene expression
signatures) are sets of genes that produce characteristic and
reproducible transcriptional responses to toxicants with spe-
cific modes of action (MOAs) (Lamb et al., 2006; Ellinger-
Ziegelbauer et al., 2009). Thus far, various TGx signatures
have been produced that show promise for application in gen-
otoxic hazard identification (Amundson et al., 2005; Ellinger-
Ziegelbauer et al., 2009; Magkoufopoulou et al., 2012; Li
et al., 2015). TGx analyses provide transcriptional response
information that cannot be obtained using the current standard
in vitro genotoxicity assays (Thybaud et al., 2007; Zeiger
et al., 2015). These biomarkers can be used to measure the
initiation of DNA damage response genes and pathways to
identify chemicals operating through DNA damage-inducing
(DDI) or potentially other mechanisms. TGx changes may
also provide insight into MOA (e.g., identifying chemicals
that induce significant amounts of oxidative stress). Thus,
TGx can complement standard in vitro genotoxicity assays by
providing mechanistic context to the observed DNA damage
for human-relevant hazard identification.

In order to address the need for pragmatic TGx tools in
genetic toxicology, Li et al. developed the TGx-DDI tran-
scriptomic biomarker (formerly TGx-28.65), which clas-
sifies chemicals as either DDI or non-DDI (Li et al., 2015).
TGx-DDI was derived from TK6 human lymphoblastoid
cells exposed to 28 representative DDI and non-DDI agents
(the “reference” set) for 4 h. Transcriptional profiles were
derived using DNA microarrays, and the Nearest Shrunken
Centroid (NSC) method was applied to identify 65 stable
and differentially expressed genes that discriminate DDI
from non-DDI exposures. This 65-gene expression signa-
ture (recently modified to 64 genes due to an annotation
update) can be used to distinguish DDI from non-DDI
agents based on gene expression. The reference set consists
of both DDI and non-DDI agents with well-characterized
MOAs, which collectively provide a broad representation
for each class of chemicals (Li et al., 2015). The DDI
group contains agents that induce DNA damage through
direct or indirect interactions with DNA, such as DNA
alkylators, topoisomerase I/II inhibitors, and DNA antime-
tabolites. The non-DDI group includes toxicants that do not
interact with DNA, such as endoplasmic reticulum modula-
tors, histone deacetylase inhibitors, and antimitotic agents.
DDI classification using the biomarker is made if there is a
positive DDI call in at least one of three statistical analyses
(referred to as the three-pronged method)—a probability
analysis (PA) based on NSC, principal component analysis
(PCA), and 2-Dimensional Clustering (2-DC) (Li et al.,
2017); otherwise, the agent is classified non-DDI.

Previous studies have validated the classification capabil-
ity of the TGx-DDI biomarker beyond the reference set and
TK6 cell line (Buick et al., 2015; Yauk et al., 2016; Buick
et al., 2017; Li et al., 2017). The biomarker accurately clas-
sifies pro-genotoxicants in TK6 cells that are metabolically
activated with various types and concentrations of rat liver
S9, as well as in a metabolically competent human hepatic
cell line, HepaRG (Buick et al., 2015; Yauk et al., 2016).
In addition, the TGx-DDI biomarker response is concordant
with the micronucleus assay (Yauk et al., 2016), and a case
study has shown that the biomarker approach can comple-
ment standard methods in regulatory genotoxicity testing
(Buick et al., 2017). Recent validation has also demon-
strated that the biomarker’s classification capability is not
limited to DNA microarray technologies, and can be used
with new high-throughput methods to measure gene
expression (Li et al., 2017).
Thus far, whole transcriptome analyses using DNA

microarrays have facilitated TGx signature development.
However, for practical application of the TGx-DDI bio-
marker, microarrays lack the accessibility required to
accommodate a broad range of users seeking to apply the
biomarker in chemical testing. Furthermore, whole tran-
scriptome profiling is unnecessary for TGx-DDI chemical
classification as the biomarker relies on only 64 genes.
Quantitative real-time PCR (qPCR) is a standard method
for measuring the expression of select genes, and most
molecular biology laboratories are equipped with qPCR
instruments. Adapting the biomarker to the qPCR platform
will ensure that the TGx-DDI biomarker approach will be
accessible to all molecular biology laboratories.
In the present study, the TGx-DDI biomarker was mea-

sured using TaqMan qPCR gene expression assays in 96-well
plates. The 96-well qPCR array format provides a customiz-
able platform for analyzing the biomarker genes. We first pro-
filed each agent in the reference set of chemicals (Table I). In
addition, 24 additional chemicals were profiled and classified
as external validation of the TGx-DDI biomarker measured
via qPCR (Table II). These 24 chemicals are a subset of the
external validation chemicals used in previous validation
efforts (Li et al., 2017). Two approaches were applied for
chemical classification: the original three-pronged method
(Li et al., 2017), and an alternative method, the Running
Fisher test (Kupershmidt et al., 2010). We explored the per-
formance of the biomarker in predicting whether agents are
DDI or non-DDI using qPCR and assessed the use of the
alternative classification approach.

MATERIALS ANDMETHODS

Cell Culture and Treatments

Cell culture and treatments were performed as described in the original
TGx-DDI publication (Li et al., 2015). RNA from the original exposures in
Li et al. was no longer available for this experiment. Thus, a new experiment
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was conducted to re-derive cells for the reference set. For this, TK6 cells
were exposed to each reference agent and its solvent on two separate occa-
sions to produce two biological replicates of each treatment and control.

For external validation, the same RNA samples isolated by Li
et al. (2017) were used; a single replicate of 24 treatments and correspond-
ing controls were previously generated using the same exposure methods
as the reference set (Li et al., 2017).

The concentration and vehicle solvent for each treatment are listed in
Table I (Reference set) and Table II (External validation set). Overall, the
treatment chemicals consisted of the 28 reference agents and 24 of the exter-
nal agents used in the 2015 and 2017 studies by Li et al. (2015, 2017). Eight
DDI agents (called Class 1 chemicals in Li et al., 2017), five non-DDI agents
(Class 4 chemicals in Li et al., 2017), and 11 chemicals that cause chromo-
somal aberrations in vitro but not in vivo (Class 5 chemicals from Li et al.,
2017) constituted our external validation set.

Briefly, TK6 cells were obtained from American Type Culture Collection
(ATCC# CRL-8015; ATCC, Manassas, VA) and cultured in RPMI 1640
medium with 10% fetal bovine serum. All treatment chemicals were pur-
chased from Sigma-Aldrich (St. Louis, MO) except for potassium chromate
and cadmium chloride, which were purchased from J. T. Baker
(Phillipsburg, NJ). The concentrations were the same as the concentrations
optimized by Li et al. (2015); the concentrations were selected based on
the cell viability measured by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) assay and the level of stress response mea-
sured using the expression of three indicator genes, ATF3, GADD45A, and
CDKN1A (Li et al., 2015). The selected concentrations were those that
induced the largest fold changes in the three indicator genes while

maintaining the cell viability above 50% at 24 h. Cells were treated with
each agent in the exponential growth phase at a density of 4–5 × 105 cells/
mL for 4 h at 37�C before subsequent harvest and RNA extraction. The sol-
vent control samples were prepared concurrently with the treated samples
by treating the cells with an equal volume of the vehicle solvent as the
treatment.

RNA Isolation andQuality Assessment

To extract and purify total RNA, the RNeasy Mini Kit (Qiagen,
Toronto, ON, Canada) was used following the manufacturer’s protocol.
The quantity and quality of each extracted RNA sample were assessed
using a NanoDrop ND-100 spectrophotometer (Thermo Scientific, Bur-
lington, ON, Canada) and an Agilent 2100 Bioanalyzer (Agilent Technolo-
gies, Mississauga, ON, Canada). All RNA samples used had A260/280
absorbance ratios of ≥2.0 and RNA integrity number between 7.5 and 10.

ComplementaryDNA Synthesis and TaqMan qPCRAssays

RNA was reverse transcribed to cDNA using the SuperScript IV First-
Strand Synthesis System (Invitrogen, Burlington, ON, Canada). In each
20 μL cDNA synthesis reaction, 500 ng of RNA was input. For each of
the 28 reference agents and seven vehicle controls, five cDNA synthesis
reactions were performed, using 2.5 μg of RNA in total. The cDNA from
the five reactions were pooled to 100 μL and diluted 1:10 in water to a
final volume of 1 mL for each 96-well qPCR array.

TABLE I. TGx-DDI Biomarker Reference Agents, Treatment Concentrations, and Vehicle solvents

Class Mode of action Chemical names Concentration
Vehicle
solvent

DNA damage-inducing (DDI) Alkylating agents Cisplatin 80 μM DMSO
Methyl methanesulfonate
(MMS)

40 μg/mL MeOH

Topoisomerase I inhibitor Camptothecin (CPT) 125 nM DMSO
Topoisomerase II inhibitor Etoposide (ETO) 200 nM DMSO
RNA/DNA antimetabolites 5-fluorouracil (5-FU) 25 μg/mL DMSO

Methotrexate (MTX) 100 μM NaOH
DNA antimetabolites Arabinofuranosyl cytidine

(AraC)
50 μM H2O

Hydroxyurea 0.5 mM H2O
DNA strand break induced by other
mechanisms

Gamma irradiation 4 Gy Media
Bleomycin 10 μg/mL H2O
Hydrogen peroxide 80 μM H2O

Heavy metals Cadmium chloride 50 μM H2O
Potassium chromate (IV) 100 μM H2O
Sodium arsenite 20 μM H2O

Non-DNA damage-inducing
(non-DDI)

Antimitotic agents Colchicine 250 ng/mL EtOH
Docetaxel 50 nM DMSO
Paclitaxel 50 nM DMSO
Vinblastine 200 ng/mL DMSO

Histone modification inhibitors Trichostatin A (TSA) 20 ng/mL DMSO
Apicidin 1 μg/mL DMSO
HC Toxin 20 ng/mL MeOH
Oxamflatin 1 μM DMSO

Endoplasmic reticulum modulator Tunicamycin 2.5 μg/mL EtOH
Thapsigargin 250 nM Acetonitrile

Glycolysis inhibitor 2-deoxy-D-glucose (2-DG) 20 μM H2O
Electron transport chain uncoupler Antimycin A 100 μM EtOH
Other stresses Heat shock (47 � C) 47�C for

20 min
Media

Ethanol 2%, 4% Media

The 28 reference agents and the concentrations shown above were previously described by Li et al. (2015).
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The 96-well qPCR array was constructed from pre-designed, inventor-
ied TaqMan Gene Expression Assays (FAM-labeled, MGB probe/primer
sets, Applied Biosystems, Burlington, ON, Canada) (list of assays in Sup-
porting Information Table I and plate layout in Supporting Information
Fig. 1). Six reference genes were added to the arrays: HPRT1, GUSB,
GAPDH, CASC3, 18S, and EIF2B1.

Complementary DNA from two biological replicates of the 28 reference
samples and the seven vehicle controls, and a single replicate of each of
the 24 validation samples and the seven vehicle controls were prepared for
qPCR with TaqMan Gene Expression Master Mix (Applied Biosystems)
following the manufacturer’s instructions for 20 μL reactions. qPCR was
performed on the CFX96 Real-Time System (Bio-Rad, Mississauga, ON,
Canada) under settings for 96-well plates recommended by Applied Bio-
systems (Burlington, ON, Canada) (50�C for 2 min, 95�C for 10 min, and
40 cycles of 95�C for 15 s followed by 60�C for 1 min).

Quantitative RT-PCRGene Expression Fold Change
Calculation

After performing qPCR for all samples, the biomarker gene set was mod-
ified to 61 genes for the analyses, as three genes (ARRDC4, PCDH8, and
SEMG2) were excluded from statistical analyses due to Cq (quantification
cycle) values above 40 across the majority of samples.

Based on the stability of the Cq value across all samples, the two most sta-
bly expressed reference genes, HPRT1 and GUSB, were averaged and used to
generate ΔCq values of each reference expression profile. ΔΔCq values were
obtained by normalizing each chemical by the corresponding vehicle control.
The fold change in each gene was then calculated using the following equa-
tion: Fold change = 2−ΔΔCq (Vandesompele et al., 2002). The heatmap of
biomarker gene expression under each chemical treatment was generated
using the log2 fold change. All of the qPCR data are available on NCBI’s
Gene Expression Omnibus (GEO) under the accession number GSE121532
(URL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121532).

Chemical Classification by theThree-ProngedApproach

The three-pronged approach involves assessing performance using
PCA, 2-DC, and the NSC PA of the test agent alongside the reference
agents (Li et al., 2017).

The PCA was performed using the prcomp in R (www.r-project.org)
and a scatterplot was generated to represent the results (Fig. 1A). 2-DC
(Fig. 1B) was performed using the hclust function in R using average link-
age and Euclidean distance.

To perform the PA using NSC, the pamr function in the R statistical
environment was used (www.bioconductor.org). Briefly, the centroids for
each class were generated from the expression profiles of reference chemi-
cals belonging to each class by averaging the expression of each gene
across each class (Tibshirani et al., 2002). The PA classifies chemicals
based on the similarities in their centroids to that of the reference chemi-
cals. A test chemical was assigned to the class (DDI or non-DDI) where
its probability of membership was >0.90 (Li et al., 2015).

The overall prediction made by the TGx-DDI biomarker utilized the
results from all three analyses. Higher weight was given to results indicat-
ing DDI; if one of the analyses indicated that a chemical is DDI, regard-
less of the other two analyses, the overall prediction was stated as DDI for
a conservative assessment of genotoxic potential. Similarly, if one of the
analyses indicated non-DDI and the remaining two were inconclusive, the
overall prediction was non-DDI. Any chemical that lay on the border in
the PCA or did not branch with either of the two classes in hierarchical
clustering was considered inconclusive (Li et al., 2017).

Chemical Classification by theRunning Fisher Test

The use of the Running Fisher test to determine the predictive accuracy of
the original TGx-DDI biomarker has been described (Corton et al., 2018).
Briefly, the TGx-DDI transcriptomic biomarker was uploaded to the BaseSpace
Correlation Engine database (URL: https://www.illumina.com/products/by-
type/informatics-products/basespace-correlation-engine.html; formally Next-
Bio) (Kupershmidt et al., 2010) and compared to each list of fold changes

TABLE II. External Validation Chemicals, Treatment Concentrations, and Vehicle Solvents

Class Mode of action Chemical name Concentration Vehicle solvent

Class 1
DDI agents that directly interact with DNA

DNA alkylation Mitomycin C 10 μM H2O
Chlorambucil 4 μM DMSO
Busulfan 20 μM Acetone
ENU 500 μM DMSO
EMS 2 mM H2O
Nitrogen mustard 200 nM H2O

DNA strand breaks Bleomycin 10 μM H2O
Mixed, indirect MOA Hydroquinone 20 μM H2O

Class 4
Non-DDI, no interaction with DNA

Receptor tyrosine kinase inhibition Sunitinib malate 20 μM DMSO
Antibiotics Ampicillin 1 mM H2O

Erythromycin 500 μM EtOH
Acetylcholinesterase inhibition Methyl carbamate 1 mM H2O
N/A N-butyl chloride 1 mM H2O

Class 5
Non-DDI, known irrelevant in vitro positive

Protein synthesis inhibition Cycloheximide 10 μM H2O
Protein kinase inhibition Staurosporine 30 nM DMSO
Acetylcholinesterase inhibition Donepezil 1 mM DMSO
ETC uncoupling 2,4-DNP 1 mM MeOH
H+/K + -ATPase inhibition Esomeprazole 200 μM DMSO

Rabeprazole 0.8 μM H2O
GABA receptor activation Phenobarbital 1 mM H2O
Angiotensin II inhibition Olmesartan 0.16 μM NaOH
Aromatase inhibition Exemestane 100 μM MeOH
Dopamine receptor activation Rotigotine 100 μM DMSO
Glucocorticoid receptor agonist Dexamethasone 1 mM MeOH

The 24 chemicals and the concentrations shown above were previously described by Li et al. (2017).
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derived by qPCR using the Running Fisher test. For each pairwise comparison,
the P-value of the Running Fisher test and direction of the correlation were
exported. P-values were converted to –Log10(P-value)s and those with negative
correlations were converted to negative numbers. The reference set of 28 treat-
ments was used to derive a –Log10(P-value) cut-off of 19 that eliminated false
negatives. This cut-off was then applied to the external test set.

Combining theClassificationApproaches in External
Validation

Calls made by the individual analyses of the three-pronged approach
and by the Running Fisher test were combined to determine the aggregate
analysis that produces the most accurate classifications in external valida-
tion for the qPCR platform. The overall predictions made by each combi-
nation was determined following the same rule applied in the three-
pronged approach; one DDI call indicated an overall DDI call and if there
was no DDI call, the chemical was classified non-DDI.

RESULTS

Classification of theReference SetUsing the TGx-DDI
Transcriptomic Biomarker

The 28 reference agents and seven vehicle controls were
profiled using the 96-well custom TaqMan TGx-DDI
arrays. Following normalization with the corresponding
vehicle controls, the NSC method was applied to generate
centroids associated with DDI and non-DDI classes. The
three analyses, namely PCA, 2-DC, and the PA from the
NSC, were then applied to assign each chemical as DDI or
non-DDI.
In the PCA, 2-deoxyglucose (2-DG), a non-DDI agent,

clustered with DDI chemicals, and methotrexate (MTX)
and cadmium chloride, two DDI agents clustered with non-

Fig.1. (A) Principal component analysis (PCA) of the qPCR profiles of the reference set and dexamethasone, an external
validation agent. (B) Two-dimensional clustering (2-DC) of the qPCR profiles of the reference set and dexamethasone.
Red font indicates DDI reference agents and blue font indicates non-DDI agents. Green font represents the external
validation chemical.
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DDI chemicals (Fig. 1A); thus, all three were misclassified.
The remainder of the reference set clustered within their
respective classes. Cadmium chloride, MTX, and 2-DG were
also misclassified in the 2-DC analysis, where 2-DG
branched with the DDI chemicals while MTX and cadmium
chloride branched with the non-DDI chemicals (Fig. 1B).

The PA of the reference compound set measured using
qPCR (Fig. 2A) produced 26 correct classifications, two incon-
clusive, and one false negative classification. The two

inconclusive results included one DDI chemical, potassium
chromate (K2CrO4), and one non-DDI agent, 2-DG. MTX
was misclassified as non-DDI (false negative) in the NSC
PA. Cadmium chloride was correctly classified as DDI in the
PA; thus, the overall classification of cadmium chloride was
DDI, despite the misclassifications in the PCA and the 2-DC
analysis.
Overall, the combined classification approach for the

TGx-DDI biomarker measured using qPCR classified 26 of

Fig. 2. Heatmaps and predictions made by the TGx-DDI biomarker
generated using RT-qPCR 4 h post-exposure in TK6 cells. TK6 cells were
treated with the 28 reference agents (A) and 24 external validation
chemicals (B) listed on the x-axis. The 28-chemical reference set divides
into two classes consisting of 13 DNA damage-inducing (DDI) and 15 non-
DDI chemicals. The external validation set spans three classes: Class
1 (direct-acting DDI), Class 4 (non-DDI), and Class 5 (known irrelevant
in vitro positive, non-DDI). The biomarker genes are labeled on the right

side of the heatmap. Each square represents a gene’s transcript levels
relative to controls, with the color of the square indicating up-regulation
(red) or down-regulation (green) of the gene. The color scale corresponds to
the fold change in expression on the log10 scale. The “Prediction” bars
above each heatmap represent the outcomes of the NSC probability analysis
(PA), PCA, and 2-DC, yellow indicating DDI, blue indicating non-DDI,
and white indicating inconclusive result. The “Class” bar represents the
expected classification based on the classifications in Li et al. (2017).
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the 28 agents in the reference set accurately (93% sensitiv-
ity; 93% specificity; 93% balanced accuracy; 93%
accuracy).

External Validation of the TGx-DDIBiomarkerUsing the
Three-ProngedApproach

For external validation of the TGx-DDI biomarker mea-
sured using qPCR, 24 additional chemicals (Table II) were
profiled and classified using the same methods as the qPCR
reference set (Figs. 1 and 2B, and Supporting Information
Figure 2).

Of the eight Class 1 agents (i.e., DDI agents) tested, the
TGx-DDI biomarker correctly classified six out of eight
external validation chemicals. Although hydroquinone ren-
dered an inconclusive result in the PA, it was correctly
classified as DDI in the PCA and 2-DC analysis (Fig. 2B),
leading to a correct DDI classification in the three-pronged
classification approach. Chlorambucil and busulfan were
misclassified as non-DDI, as they were either inconclusive
or incorrectly classified as non-DDI in all three classifica-
tion methods (Fig. 2B).

Of the five Class 4 agents (i.e., non-DDI chemicals)
tested, one misclassified and one was inconclusive. Suniti-
nib malate was predicted to be DDI in all three classifica-
tion methods, resulting in an incorrect overall classification
of DDI (Fig. 2B). Although both PCA and 2-DC analyses
were inconclusive for ampicillin, the PA correctly identi-
fied it as non-DDI (Fig. 2B); thus, the overall classification
of this chemical was non-DDI in the three-pronged classifi-
cation approach.

Among the 11 Class 5 chemicals (i.e., non-DDI chemi-
cals that are known to produce irrelevant positive results in
in vitro genotoxicity tests) tested, two chemicals were mis-
classified. Exemestane was misclassified as DDI in the PA
and PCA, and was inconclusive in the 2-DC analysis
(Fig. 2B). Cycloheximide produced different results in all
three classification methods. Although the PA predicted
cycloheximide to be non-DDI and 2-DC was inconclusive,
cycloheximide was close to the cut-off on the DDI side in
the PCA, leading to an overall misclassification as DDI
(Fig. 2B).

In summary, classification of chemicals using the TGx-DDI
biomarker measured via qPCR accurately classified 18 external
validation chemicals—six of the eight Class 1 DDI agents and
13 of the 16 Classes 4 and 5 non-DDI agents—resulting in a
sensitivity of 75%, specificity of 81%, an accuracy of 79%,
and a balanced accuracy of 78%.

Determination of the PredictiveAccuracy of the TGx-DDI
BiomarkerUsing theRunning Fisher Test

The predictive accuracy of the TGx-DDI biomarker was
determined using the Running Fisher test. The reference
set of 29 treatments was first used to derive a –Log10(P-
value) cut-off that eliminated false negatives (Fig. 3A).

Using a cut-off of 19, there was one false positive,
2-deoxy-D-glucose, in the reference set. Using this thresh-
old, the qPCR TGx-DDI biomarker demonstrated 100%
sensitivity, 93% specificity, and 96% accuracy and bal-
anced accuracy.
The external validation set of 24 treatments was then

analyzed. Using the same cut-off of 19 derived from the
reference set, there were three false positives: exemestane,
sunitinib malate, and cycloheximide (Fig. 3B). The test
thus had a sensitivity of 100% and a specificity of 81%,
resulting in an accuracy of 88% and a balanced accuracy of
91% in external validation.

Combination of ClassificationApproaches in External
Validation

Calls made by the individual analyses of the three-
pronged approach and by the Running Fisher test were
combined to determine the best combination of classifica-
tion methods (Tables III and IV). The addition of the Run-
ning Fisher test to the three-pronged approach eliminated
two false negative calls for chlorambucil and busulfan,
resulting in 100% sensitivity, 81% specificity, 88% accu-
racy, and 91% balanced accuracy. All combinations con-
taining one of the three analyses of the three-pronged
approach and the Running Fisher test produced the same
results as above.

DISCUSSION

We measured the TGx-DDI biomarker using TaqMan
qPCR assays to test its performance on this widely avail-
able gene expression platform. The qPCR expression signa-
ture of the 28 reference agents was then used to classify
24 external test agents to test performance. The chemicals
were classified using two approaches, the three-pronged
classification strategy (PA, PCA, and 2-DC) and the Run-
ning Fisher test.
Using the three-pronged classification strategy, the TGx-

DDI biomarker measured using qPCR correctly classified
26 out of the 28 chemicals in the reference set, yielding
93% balanced accuracy; the two misclassifications included
one false positive (2-DG) and one false negative (MTX).
The Running Fisher test of the qPCR profiles of the TGx-
DDI reference set demonstrated an improvement in accu-
racy by classifying 27 reference agents correctly (96%).
Although the two classification methods were consistent in
the misclassification of 2-DG, the Running Fisher test pro-
duced no false negatives. TGx-DDI was previously vali-
dated on the Nanostring nCounter system (Li et al., 2017),
where it fully retained the original classification capability
and accurately classified all reference agents using the
three-pronged strategy. Overall, analysis of the reference
set of agents suggests that the TGx-DDI biomarker has
comparable performance on microarray, nCounter, and
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qPCR platforms, with the two former technologies yielding
slightly higher accuracies.

The performance of the TGx-DDI biomarker measured
using qPCR was further tested by analyzing an additional
24 chemicals that were previously analyzed by both microar-
ray and nCounter technologies (Li et al., 2017). These agents
spanned three classes studied in Li et al.: Class 1 (established
DDI agents), Class 4 (established non-DDI agents that are
negative in in vitro assays), and Class 5 (non-DDI agents
known to produce irrelevant positive results in vitro). Of the

24 chemicals, five were misclassified using the three-pronged
strategy and three were misclassified using the Running
Fisher test. The TGx-DDI biomarker measured using qPCR
misclassified two alkylating agents, chlorambucil and busul-
fan, as non-DDI in the three-pronged approach, but both
were correctly classified as DDI using the Running Fisher
test. The misclassification of non-DDI chemicals was consis-
tent in both classification approaches; sunitinib malate (Class
4), and exemestane and cycloheximide (Class 5), were classi-
fied as DDI. Notably, exemestane, an aromatase inhibitor,

Fig. 3. The Running Fisher test results for the 28 reference
agents (A) and 24 external validation chemicals (B). Red dots indicate
DDI and blue dots indicate non-DDI agents. Chemicals are ranked
by –Log10(P-value) from the highest on the left to the lowest on the right.

A cut-off of 19 was derived from the reference set and applied to both
datasets to separate DDI and non-DDI agents (horizontal line). Chemicals
above the cut-off were classified as DDI and ones below were classified as
non-DDI.
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was previously misclassified using both microarrays and the
nCounter system (there were two and one misclassifications
from the microarray and nCounter validation exercises,
respectively, for these 24 chemicals). The three misclassified
non-DDI agents from the validation set (sunitinib malate,
exemestane, and cycloheximide) and one from the reference
set (2-DG) can alter cell signaling and metabolism; such non-
genotoxic modulation of gene expression may influence the
biomarker performance as described previously (Li et al.,
2017). Overall, the TGx-DDI biomarker was able to identify
nine out of 11 Class 5 compounds (81%) as non-DDI, clearly
demonstrating its ability to distinguish irrelevant from rele-
vant positives, which highlights the ability of the TGx-DDI

biomarker to inform human relevance as described previ-
ously (Li et al., 2017).
Slight discrepancies in biomarker performance across

platforms may arise from differences in sensitivity, speci-
ficity, and dynamic range of each platform. Compared to
both qPCR and nCounter, microarrays have a smaller
detection range, and are subject to increased variability in
the measurement of weakly expressed genes (Etienne et al.,
2004; Richard et al., 2014). In addition, we used
manufacturer-designed TaqMan assays that were designed
for maximal coverage of annotated transcripts of each gene
and to span exons to prevent contamination of measure-
ments by genomic DNA. Thus, DNA microarray and

TABLE III. Calls Made by Different Combinations of Statistical Analyses in External Validation.

External validation
chemicals Three-pronged RF Three-pronged + RF PA + RF PCA + RF 2-DC + RF

Group 1
DDI

Bleomycin DDI DDI DDI DDI DDI DDI
Busulfan Non-DDI DDI DDI DDI DDI DDI
Chlorambucil Non-DDI DDI DDI DDI DDI DDI
EMS DDI DDI DDI DDI DDI DDI
ENU DDI DDI DDI DDI DDI DDI
Hydroquinone DDI DDI DDI DDI DDI DDI
Mitomycin C DDI DDI DDI DDI DDI DDI
Nitrogen mustard DDI DDI DDI DDI DDI DDI

Group 2
Non-DDI
(clean genotoxicity profile)

Ampicillin Non-DDI Non-DDI Non-DDI Non-DDI Non-DDI Non-DDI
Erythromycin Non-DDI Non-DDI Non-DDI Non-DDI Non-DDI Non-DDI
Methyl carbamate Non-DDI Non-DDI Non-DDI Non-DDI Non-DDI Non-DDI
N-butyl chloride Non-DDI Non-DDI Non-DDI Non-DDI Non-DDI Non-DDI
Sunitinib malate DDI DDI DDI DDI DDI DDI

Group 3
Non-DDI (known in vitro

positive)

2,4 DNP Non-DDI Non-DDI Non-DDI Non-DDI Non-DDI Non-DDI
Cycloheximide DDI DDI DDI DDI DDI DDI
Dexamethasone Non-DDI Non-DDI Non-DDI Non-DDI Non-DDI Non-DDI
Donepezil Non-DDI Non-DDI Non-DDI Non-DDI Non-DDI Non-DDI
Esomeprazole Non-DDI Non-DDI Non-DDI Non-DDI Non-DDI Non-DDI
Exemestane DDI DDI DDI DDI DDI DDI
Olmesartan Non-DDI Non-DDI Non-DDI Non-DDI Non-DDI Non-DDI
Phenobarbital Non-DDI Non-DDI Non-DDI Non-DDI Non-DDI Non-DDI
Rabeprazole Non-DDI Non-DDI Non-DDI Non-DDI Non-DDI Non-DDI
Rotigotine Non-DDI Non-DDI Non-DDI Non-DDI Non-DDI Non-DDI
Staurosporine Non-DDI Non-DDI Non-DDI Non-DDI Non-DDI Non-DDI
Sensitivity (%) 75 100 100 100 100 100
Specificity (%) 81 81 81 81 81 81
Accuracy (%) 79 88 88 88 88 88
Balanced Accuracy
(%)

78 91 91 91 91 91

RF = Running Fisher; PA = probability analysis; PCA = principal component analysis; 2-DC = 2-dimensional clustering. Chemicals with one or more
DDI call was classified DDI, and otherwise, non-DDI.

TABLE IV. Summary of Sensitivity, Specificity, and Balanced Accuracy of TGx-DDI Determined by Individual Analyses and
Aggregate Analyses in External Validation

Probability
analysis (%)

PCA
(%)

2-DC
(%)

Three-pronged
overall (%)

Running
Fisher (%)

Three-pronged + running
Fisher (%)

Sensitivity 63 75 75 75 100 100
Specificity 88 75 75 81 81 81
Balance Accuracy 75 75 75 78 91 91
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TaqMan probes may be in different exons of the biomarker
genes, which likely introduce variability between the plat-
forms (Etienne et al., 2004). Considering that TGx-DDI
was derived from the NSC identified in the microarray
expression profiles, it is not surprising that the expression
signature reproduced on qPCR is not identical to the
original.

The two different approaches to chemical classification
produced similar results. Overall, the Running Fisher test of
the TGx-DDI biomarker measured using qPCR generated
no false negatives (100% sensitivity), while the original
three-pronged method produced two false negative calls
(75% sensitivity) in external validation, demonstrating
increased sensitivity in detecting DDI agents. The Running
Fisher test also provided clear calls for chemical classes;
whereas, some analyses in the three-pronged classification
strategy produced “unclassified” calls. The Running Fisher
test applies a –Log10(P-value) cut-off and classifies chemi-
cals based on their position above or below this threshold,
providing dichotomous calls. Overall, the addition of Run-
ning Fisher test improved the sensitivity of TGx-DDI using
qPCR. The results indicate that using the TGx-DDI bio-
marker in the context of the Running Fisher test might be
advantageous for high throughput screening to identify DDI
agents through assessment of gene expression by qPCR,
similar to our previous studies using microarray and nCoun-
ter data (Corton et al., 2018).

The Running Fisher test was also combined with the
three-pronged approach and the individual analyses
(Table III). Overall calls were determined using the same
rule applied in the three-pronged method (one DDI call
indicates overall DDI classification, otherwise non-DDI).
All combinations containing the Running Fisher test pro-
duced 100% sensitivity, 81% specificity, and 91% balanced
accuracy, suggesting that the classification approaches are
complementary to each other and can be applied in
conjunction.

Li et al. previously noted some limitations of the bio-
marker in assessing antimetabolites in both the microarray
and nCounter external validation (Li et al., 2017). One of
the two reference chemicals misclassified by TGx-DDI bio-
marker measured via qPCR using the three-pronged
approach was MTX, an antimetabolic DDI agent. In Li
et al. (2015), MTX induced smaller fold changes in the bio-
marker gene expression data, producing weaker signals in
the heatmap when compared to other DDI agents in the ref-
erence set. In their 2015 paper, Li et al. reported that gene
panels smaller than the initial 65-gene panel misclassified
MTX. The qPCR analytical method reduced TGx-DDI bio-
marker to a gene set containing 61 genes, due to the exclu-
sion of three genes with low signals. This smaller gene set
could be a contributing factor to the misclassification of
MTX and other chemicals that induced weaker gene
expression changes, such as busulfan and chlorambucil
(Fig. 1A,B). Moreover, it has been shown that MTX

indirectly inhibits DNA synthesis. MTX targets dihydrofo-
late reductase (DHFR) to inhibit the conversion of dihydro-
folate to tetrahydrofolate (THF), which is the precursor of
5,10-methylene THF. 5,10-methylene THF is a cofactor in
the thymidylate synthase reaction; the inhibition of DHFR
by MTX eventually hinders de novo synthesis of thymidine
(White and Goldman, 1975; Bender and Makula, 1978).
Other antimetabolites in the reference set, such as hydroxy-
urea and 5-fluorouracil, inhibit ribonucleotide reductase
and thymidylate synthase, respectively, and directly inhibit
nucleotide synthesis (Krakoff et al., 1968; Spears et al.,
1984). Both were correctly classified (Figs. 1 and 2). It is
possible that the 4 h MTX exposure may be insufficient to
induce a similar level of DNA damage and subsequent
transcriptional responses as other DDI agents that can be
measured in the 61-gene panel.
The DDI grouping includes genotoxicants that directly

or indirectly interact with DNA; however, the diverse
MOAs within the group are not distinguishable. Moreover,
the non-DDI group contains non-genotoxic agents as well
as aneugens, which cause abnormal chromosome numbers
in daughter cells through the interference with the mitotic
machinery (Parry et al., 1996). Although considered non-
DDI in this study, aneugens cause genomic damage and,
thus, are genotoxicants. Moving forward, investigating
other potential signatures specific to MOAs contained in
the reference set may be useful for querying a single whole
transcriptome expression profile for different genotoxic
mechanisms.
Recently, Ates et al. developed a 96-well qPCR array for

analyzing a proprietary gene expression signature of geno-
toxicity in HepaRG cells (Ates et al., 2018). While the
experimental approach is similar to our study, this gene
expression signature is analyzed after a 72 h exposure
based on a reference set of known in vivo genotoxicants
that contains aneugens (e.g., vinblastine) that are included
in the non-DDI category of the TGx-DDI reference set.
Thus, positive calls made by the two biomarkers provide
different information regarding the chemical’s interaction
with DNA.
The development and validation of the qPCR analytical

methodology for the TGx-DDI biomarker addresses the
challenge that laboratories without whole transcriptome
profiling capacity may face in applying TGx-DDI. Another
barrier may be the statistical analyses that are required for
classification. Recently, an online chemical classification
application was released that uses the original TK6 bio-
marker developed on Agilent Whole Genome microarrays
(URL: https://manticore.niehs.nih.gov/tgclassifier/gthome.
php) (Jackson et al., 2017). Users can upload their own
transcriptomic data for test chemicals and vehicle controls
to this open access tool for the three-pronged chemical
classification; the tool eliminates the need for in-house bio-
statistics expertise to use the biomarker. The online tool
currently supports Affymetrix Human Genome arrays,
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Agilent Whole Human Genome arrays, and generic arrays
with log2 transformed gene fold change values. The qPCR
dataset generated in the present study will provide a qPCR-
specific reference expression profile to the online tool for
future studies applying the biomarker in the qPCR format.

In summary, we reproduced the TGx-DDI biomarker
using qPCR assays in 96-well arrays to broaden its accessi-
bility. The utility of the qPCR expression signature as a bio-
marker to identify DDI chemicals was tested using a set of
24 external chemicals. The qPCR analytical methodology
was consistent with the microarray and nCounter methodol-
ogies for the TGx-DDI biomarker, although somewhat less
accurate than the latter technologies. The results demon-
strate that DDI classifications can be made using this qPCR
approach. Furthermore, this work complements the TGx-
DDI online chemical classification tool discussed above; as
an addition to the online tool, the qPCR dataset will further
facilitate the application of TGx-DDI and its incorporation
in genotoxicity assessment.
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