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Abstract

The purpose of this investigation was to find out whether C-terminally end-cleaved aquaporin 0 

(AQP0), that is present predominantly in the lens mature fiber cells of the WT, functions as a 

water channel and a cell-to-cell adhesion (CTCA) protein in a knockin (KI) mouse model 

(AQP0∆C/∆C) that does not express intact AQP0. A genetically engineered KI mouse model, 

AQP0∆C/∆C, expressing only end-cleaved AQP0 was developed. This model expresses 1–246 

amino acids of AQP0, instead of the full length 1–263 amino acids. Lens transparency of postnatal 

day 10 (P10) was analyzed qualitatively by dark field imaging. WT, AQP0+/− and AQP0+/∆C 

lenses were transparent; AQP0−/− and AQP0∆C/∆C mouse lenses displayed loss of transparency. 

Lens fiber cell membrane vesicles (FCMVs) were prepared from wild type (WT), AQP0 

heterozygous (AQP0+/−), AQP0 knockout (AQP0−/−), AQP0+/∆C and AQP0∆C/∆C; water 

permeability (Pf) was measured using the osmotic shrinking method. CTCA assay was performed 

using adhesion-deficient L-cells and FCMVs prepared from the abovementioned genotypes. 

FCMVs of AQP0+/− and AQP0−/− showed a statistically significant reduction (P<0.001) in Pf and 

CTCA compared to those of WT. AQP0+/∆C and AQP0∆C/∆C FCMVs exhibited no statistically 

significant alteration (P>0.05) in Pf compared to those of WT. However, CTCA of AQP0+/∆C 

AQP0∆C/∆C FCMVs was significantly higher (P<0.001) than that of WT FCMVs. Our experiments 

clearly show that C-terminally end-cleaved AQP0 can function both as a water channel and a 

CTCA molecule in the lens fiber cell membranes. Also, end-truncation plays an important role in 

increasing the CTCA between fiber cells.
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1. Introduction

The crystalline lens is a unique tissue, which is meticulously designed to be transparent for 

focusing light precisely on the sensory retina. It has a monolayer of epithelial cells at the 

anterior surface and multiple layers of fiber cells that extend from the anterior to the 

posterior pole. Fiber cells are derived from the epithelial cells at the germinative zone. Of 

the two major regions in the lens, the cortex contains elongating and maturing secondary 

fiber cells whereas the nuclear region has the mature and the oldest fibers. The fiber cells of 

a lifetime are present in the lens, which lacks vasculature as an adaptation to avoid light 

scattering. A microcirculation comprising AQP water channels, solute transporters, co-

transporters etc. nourish the lens and remove metabolic wastes [1–6] to uphold transparency 

and homeostasis.

The structure of the lens is critical for its function and a salient feature is the presence of all 

the fiber cells produced in a lifetime. The cellular proteins present undergo post-translational 

modifications including end-cleavage. AQP0, the most abundantly expressed membrane 

protein in the lens, is synthesized as a 28 kDa protein. When the fiber cells mature, the 

amino- (N) and/or carboxyl- (C) terminal ends cleave off to result in AQP0 smaller than its 

original molecular size. Water permeability [3] and cell-to-cell adhesion (CTCA) are the two 

important roles of AQP0 [6–10]. Does the end-cleaved AQP0 perform both functions? The 

effect of certain N- and C-terminal end truncations of AQP0 on water channel function and 

CTCA had been investigated using in vitro/ex vivo models [8,10–12] which showed the 

capability of cleaved forms to perform both functions. However, protein structural analyses 

proposed distinct roles for the intact and cleaved forms of AQP0; it has been postulated that 

posttranslational N- and/or C-terminal end cleavages result in the closure of water pore [13]. 

There are no in vivo investigations on the effect of end-cleavage of AQP0 on water channel 

and CTCA functions. To fill the gap, we developed a knockin mouse model (AQP0∆C/∆C) 

expressing only end-cleaved AQP0 and investigated the water channel and CTCA functions.

2. Materials and methods

2.1. Animals

WT, AQP0−/+ and AQP0−/− [14,15], and AQP0+/∆C and AQP0∆C/∆C mouse models [16] 

used in this study are in C57BL/6J (The Jackson Laboratory, Bar Harbor, ME) inbred strain 

background. These mice had been screened to verify the expression of the beaded filament 

protein CP49 without the natural mutation [15,16], following the methods described by 

Alizadeh et al. [17] and Simirskii et al.[18]. AQP0∆C/∆C mouse model was developed 

through inGenious Targeting Laboratory, Inc. (Ronkonkoma, NY). This mouse model 

expresses a major form of C-terminally end-cleaved AQP0 (that lacks 17 amino acids, 247–

263) in the fiber cells. This form of AQP0 is observed in the nuclear region of human, 

bovine and mouse [6,19–22]. AQP0∆C/∆C mice do not express the intact AQP0 which has 1–

263 amino acids in the WT. The creation of this mouse model and characterization as well as 

the lens optical quality of the lens had been described in a recent paper by Varadaraj and 

Kumari [16]. All procedures were performed following the ARVO Statement for the Use of 

Animals in Ophthalmic and Vision Research and the National Institutes of Health’s (NIH; 

Kumari and Varadaraj Page 2

Biochem Biophys Res Commun. Author manuscript; available in PMC 2020 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Bethesda, MD, USA) “Guide for the Care and Use of Laboratory Animals” and protocols 

approved by Stony Brook University Animal Care and Use Committee.

2.2. Assessment of lens transparency

Lens transparency was studied using the method as described [15,16]. In brief, lenses of 

pups at postnatal day 10 (P10) from WT, AQP0+/−, AQP0−/−, AQP0+/∆C and AQP0∆C/∆C 

mice were dissected out into mammalian physiological saline that was prewarmed to 37°C. 

To qualitatively assess transparency, lenses were imaged under dark field using the same 

lighting and imaging conditions using a binocular microscope connected to a digital camera.

2.3. Mouse lens fiber cell membrane water permeability assay

Membrane water permeability (Pf) measurement was carried out using the rate of shrinking 

of lens fiber cell membrane vesicles (FCMVs), as done previously [3,23]. In brief, lens 

capsules of WT, AQP0+/−, AQP0−/−, AQP0+/∆C and AQP0∆C/∆C mice pups at P10 were 

gently removed and fiber cell bundles from the outer cortex were dissected out. FCMVs 

were prepared and incubated in hypertonic saline (450 mOsm) and the rate of shrinkage was 

imaged using digital video microscopy; Pf was calculated as described by Varadaraj et al. 

[3].

2.4. Mouse lens FCMV Adhesion Assay

Adhesion-deficient L-cells were cultured as described [8,12]. In brief, mouse fibroblast L-

cells (ATCC, Manassas, VA) were cultured at 37°C in an incubator set with 5% CO2. Lens 

FCMVs were prepared from WT, AQP0+/−, AQP0−/−, AQP0+/∆C and AQP0∆C/∆C mice pups 

at P10 as described in section 2.3 above. Adhesion assay was done as described previously 

[10]. The FCMVs were loaded with CellTracker Green and plated over a monolayer of 

parental L-cells, which lack endogenous adhesion protein and incubated for 1hr at 37 °C. 

The culture dishes were gently washed three times for 5 min each. Cells were imaged under 

a Zeiss epifluorescent microscope (excitation band filter of 465–495 nm; emission band 

filter of 515–555 nm). The number of fluorescent FCMVs attached to the lawn of cells was 

counted. Mean and standard deviations were calculated from the values of six repetitions 

and represented as a bar graph.

2.5. Statistical Analysis

SigmaPlot 10 software was used for Student’s t-tests. Statistical significance was calculated 

using a paired t-test. P < 0.05 was considered significant.

3. Results and Discussion

We tested the functional status of end-cleaved AQP0 in the KI mouse model that was 

genetically modified to lose 17 amino acids at the C-terminal end to result in a shortened 

AQP0 with 1–246 amino acids instead of the 1–263 amino acids (intact AQP0) present in the 

WT cortex. Our experiments corroborate that the end-cleaved AQP0 functions as an open 

water channel and a CTCA protein.
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Knockout and mutations of AQP0 cause cataract due to loss of function or gain of function 

[14,24–28]. To find out the effects of the expressing only end-cleaved AQP0 in the lens on 

transparency, AQP0+/∆C and AQP0∆C /∆C lenses were observed at a very early stage in 

development and compared with age-matched WT and AQP0+/− and AQP0−/− lenses. At 

postnatal day 10 (P10) wild type (WT), AQP0+/− and AQP0+/∆C mouse lenses remained 

transparent whereas AQP0−/− and AQP0∆C/∆C mouse lenses showed loss of transparency 

(Fig. 1).

Our previous in vitro studies have shown that C-terminally end-truncated AQP0 mutant 

(AQP0–1-246), which was chosen to develop the current knockin model, trafficked to the 

plasma membrane and showed both Pf and CTCA functions [12]. To test whether this is true 

in an in vivo model, we prepared lens outer cortical FCMVs of WT, AQP0+/−, AQP0−/−, 

AQP0+/∆C and AQP0∆C/∆C mice and carried out osmotic Pf measurements after subjecting 

them to a hypertonic medium. Membrane Pf was calculated using the rate of shrinking of 

each vesicle. FCMVs of WT which expresses naturally both intact AQP0 and cleaved AQP0 

had an average Pf of 38.90 ± 8.91 µm/s (Table 1; Fig. 2). The Pf of FCMVs of AQP0+/− and 

AQP0−/− decreased 2 and 4-fold, respectively, compared with that of WT (Table 1; Fig. 2). 

The reductions were statistically significant (P< 0.001) and denoted with a star. However, 

loss of 17 amino acids at the C-terminal end of AQP0 in AQP0+/∆C and AQP0∆C/∆C mice 

lenses did not significantly (P>0.05) alter the fiber cell Pf , when compared with WT lenses 

(Table 1 and Fig. 2). Using electron crystallographic analyses, it had been suggested that 

intact AQP0 functions as an open water channel; end-cleaved AQP0 is closed as a water pore 

but functions as a CTCA protein [13]. However, the present investigation and previous 

studies [11,12] show that both intact and cleaved forms of AQP0 can function as open water 

channels.

Next, we tested the CTCA capability of the different genotypes. FCMV adhesion assay was 

performed ex vivo to test and verify the adhesive property between lens fiber cell 

membranes. CellTracker Green-loaded WT, AQP0+/−, AQP0−/−, AQP0+/∆C or AQP0∆C/∆C 

mice lens FCMVs were plated over a monolayer of parental L-cells and subjected to 

adhesion assay. FCMVs of AQP0+/− and AQP0−/− exhibited significantly less adhesion (P< 

0.001) to parental L- cells compared with those of WT lens (Fig. 3). These data suggest that 

as the level of AQP0 decreases there is a proportional decrease in CTCA. AQP0 present in 

the WT is responsible for the increased level of vesicle adhesion to the parental L-cells. 

FCMVs from AQP0+/− showed comparatively less adhesion than those of WT, and 

significantly more than those of AQP0−/− indicating that AQP0-induced adhesion is due to 

the direct interaction of AQP0 with the plasma membrane of the L-cells. When we examined 

AQP0+/∆C or AQP0∆C/∆C FCMVs there was a significant increase (P<0.05) in adhesion 

compared to WT FCMVs. These data clearly demonstrate that the end-cleaved AQP0 is 

capable of CTCA. Further, the results show that the C-terminal end-cleavage of AQP0 

during lens development helps to increase the adhesion between fiber cells, corroborating 

the previous in vitro [8,12] and ex vivo [10] studies.

In the WT lens, the outer cortex has the highest concentration of intact AQP0; inner cortical 

and outer nuclear regions contain a mixture of intact and end-cleaved AQP0 proteins 

[21,29,30] with a gradient reduction in intact AQP0; the concentration of cleaved AQP0 
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proportionally increases from the inner cortex towards the nuclear region. In the AQP0∆C/∆C 

mouse model the lenses, express only cleaved AQP0. The created C-terminally end-

truncated AQP0 (AQP0–1-246) mimics the most prevalent natural cleavage of AQP0 [21,29] 

in the human lens. Several proteins in the lens such as AQP0 [20,29,30], connexins (Cx46 

and 50; [31,32]), crystallins [33] and beaded filament proteins (filensin and CP49; [34,35]) 

undergo end-cleavage. Under normal conditions, this process does not affect lens 

transparency. The significance of the end-cleavage, the functions of the intact and cleaved 

forms and the necessity for the presence of intact and the end cleaved forms in the lens 

throughout the lifespan have kindled the curiosity of scientists. The functional status of 

intact and cleaved AQP0 i.e., whether both types can perform both functions or each type 

does a specific function, currently exists as a scientific debate. Electron diffraction structural 

studies indicate that C-terminal end-cleaved AQP0 functions as an adhesion protein but is 

closed as a water pore [13]. Another conclusion arrived by X-ray crystallographic analyses 

[36] is that intact AQP0 besides being an open water channel may also participate in CTCA. 

Michea et al. [37,38] conducted in vitro experiments using liposomes; AQP0 adhered to 

negatively charged liposomes demonstrating that intact AQP0 may participate in CTCA via 

electrostatic interaction. It has been suggested that the extracellular loops of AQP0 interact 

with the lipids of the opposing plasma membrane [36–40]. Our previous in vitro studies 

showed that intact AQP0 is capable of both water permeability and CTCA functions [8,16]. 

Recently, we found that FCMVs prepared from the WT attached to adhesion-deficient L-

cells [10] corroborating the in vitro studies [10,12] and verifying the electrostatic 

mechanism of CTCA between the positively charged residues in the extracellular loops of 

AQP0 and the negatively charged lipids in the adjacent plasma membrane. The current 

results stretch the field even further; FCMVs with end-cleaved AQP0 showed water 

permeability comparable to that of the WT and significantly higher CTCA than the FCMVs 

of WT. These results demonstrate that intact and cleaved forms of AQP0 are capable of both 

functions and end-cleavage could be a necessary step for enhanced CTCA at the lens 

interior.

Correlating the current data to what happens at the inner cortical and nuclear regions of the 

lens, where the concentrations of the cleaved-AQP0 are more, our results reflect the 

physiological phenomenon of increased CTCA (Fig. 3) in these regions. Lens ultrastructural 

studies revealed that AQP0 can form thin junctions between fiber cell membranes. In the 

WT, while there are small areas of thin junctions in the outer cortex (11–13 nm; [39–42], 

large patches of square array thin junctions are formed at the inner cortical and nuclear 

regions which have mature fiber cells with cleaved AQP0 [39,40, 43,44]. Formation of thin 

junctions could impact compaction of the fiber cells and refractive index gradient (RING) 

adjustment of the continuously spherically growing lens to avoid spherical aberration [12]. 

We imaged and analyzed the lenses of the AQP0+/∆C and AQP0∆C/∆C mice and found that 

lenses of the latter had developed abnormal distortion aberration starting at the lens nuclear 

region by P5, and by P20 developed cataract which was more severe than in AQP0−/− [16]. 

The appearance of distortion aberrations while focusing is a consequence of the loss of 

RING. It is paradoxical that it is the cortical region of AQP0∆C/∆C lens which does not 

possess its normal share of intact (full length) AQP0; nonetheless, the distortion aberration 

occurs first at the nuclear region (Fig.1). This observation highlights the necessity for the 
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spatial distribution of intact and end-cleaved AQP0 from the outer cortex to the inner 

nucleus in the appropriate ratio for lenticular homeostasis. Presence of cleaved AQP0 at the 

cortex, which normally contains intact AQP0 and a few small areas of thin junctions, might 

be now allowing the formation of large areas of square array thin junctions with enhanced 

adhesion thereby tipping the balance for the conducive adhesion from the cortex to the 

nucleus and jeopardizing the development of a proper RING. In the AQP0+/∆C lens, there is 

no cataract at P10 (Fig. 1) indicating that presence of intact AQP0 must have allowed the 

creation of a favorable ratio of intact to cleaved AQP0 from the outer cortex to the nucleus at 

that early age. From our experimental data, it is rational to infer that truncations of N- and 

C-terminal ends of AQP0 are natural events in the fiber cell maturation process to adjust lens 

RING [12,30] and biomechanics [45] for precise focusing. C-terminal post-translational 

cleavages were present in the human lens as early as 2 years of age [29] and in mouse at P10 

[16] suggesting that AQP0 end-truncation is a normal fiber cell-maturation-related event. 

The end-cleavage could be a mechanism to compact the old fiber cells because new fiber 

cells are being added throughout the lifespan. Since end cleavages occur after trafficking of 

AQP0 to the membrane in the WT, the ends could be important for trafficking and spacial 

distribution; as seen from the experiments end-cleavage does not affect the Pf and CTCA 

functions.

In conclusion, data collected using the AQP0∆C/∆C mouse lens FCMVs on Pf and adhesion 

functions show that post-translationally end-cleaved AQP0 can function as a water channel 

and a CTCA molecule. End-cleavages help to modulate the CTCA function of AQP0 to 

establish appropriate RING in the lens.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

AQP0 aquaporin 0

CTCA cell-to-cell adhesion

P10 postnatal day 10

AQP0–1-246 C-terminally end-cleaved-AQP0

WT wild type

AQP0+/− AQP0 heterozygous

AQP0-KO AQP0 knockout

KI knockin
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AQP0∆C/∆C C-terminally end-cleaved-AQP0 KI homozygous mouse 

model

AQP0+/∆C C-terminally end-cleaved-AQP0 KI heterozygous mouse 

model

Pf water permeability

FCMV fiber cell membrane vesicle

Cx connexin

CP49 phakinin

RING refractive index gradient
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Highlights

Lenses expressing only C-terminally end-cleaved AQP0 show loss of transparency

C-terminally end-cleaved AQP0 does not affect membrane water permeability

C-terminally end-cleaved AQP0 significantly increased fiber cell-to-cell adhesion
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Fig. 1. 
Lens transparency. Lenses from WT, AQP0+/−, AQP0−/−, AQP0+/∆C and AQP0∆C/∆C mice 

pups at P10 were photographed using darkfield illumination. Bar, 425 µm.
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Fig. 2. 
Lens fiber cell membrane water permeability. Lens fiber cell membrane vesicles from WT, 

AQP0+/−, AQP0−/−, AQP0+/∆C and AQP0∆C/∆C pups at P10 were tested. Each bar represents 

mean ± SD. Star represents the degree of significance in comparison, P < 0.001.
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Fig. 3. 
Lens fiber cell membrane vesicle (FCMV) adhesion assay. Adhesion of WT, AQP0+/−, 

AQP0−/−, AQP0+/∆C and AQP0∆C/∆C mouse lens FCMVs to a monolayer of parental L-cells. 

Each bar represents mean ± SD. Star represents the degree of significance in comparison, P 

< 0.001.
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Table 1.

Lens fiber cell membrane water permeability (Pf) of WT, AQP0+/−, AQP0−/−, AQP0+/∆C and AQP0∆C/∆C mice 

(C57 strain).

 Genotype  Fiber Cell Membrane Water Permeability (µm/s)

 Wild Type  39.90 ± 8.91

 AQP0+/−
 19.20 ± 6.13

*

 AQP0−/−
 8.70 ± 3.0

*

 AQP0+/∆C  35.70 ± 9.89

 AQP0∆C/∆C  34.40 ± 12.49

*
P< 0.001
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