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Abstract

Dietary restriction (DR) remains the most reproducible and consistent laboratory intervention to 

extend lifespan and improve health in mammals. DR has been primarily characterized in males 

due to issues of cost, perceived heightened variability amongst females, and the misconception 

that the reproductive system is the only important difference between sexes in mammals. In reality, 

existing data point to clear sex differences in mammalian responses to DR. Here we discuss recent 

advances in our understanding of sex differences in the responses to DR in rodent models.

Introduction

Dietary restriction (DR) is an all-encompassing term describing interventions that improve 

health by restricting some aspect of nutrition. Such interventions include: calorie restriction 

(CR), involving reduced food intake without malnutrition (usually by 20–40% relative to ad 
libitum fed animals); intermittent fasting (IF), involving enforced periods of fasting such as 

every other day (EOD) feeding, periodic fasting (PF) or time restricted feeding (TRF); and 

dietary dilution of specific macronutrients such as protein or essential amino acids such as 

methionine without enforced food restriction. Classically, the success of a given DR 

intervention has been based upon its ability to increase lifespan. However, DR has a range of 

health benefits in preclinical models that are of equal or perhaps greater importance, 

including extension of healthspan, or time spent in good health in the last stages of life [1].

CR was the first intervention shown to increase lifespan in the early 20th century and 

remains the most consistent non-genetic intervention to delay aging in a variety of species 

today [2]. CR increases maximum and/or median lifespan in fruit flies, nematode worms, 

rodents, fish and non-human primates, and extends healthspan by delaying onset or reducing 

severity of a range of age-related diseases [2,3]. Because mammals on CR eat their 
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allotments quickly and spend an extended period of time between meals in the fasted state, 

CR can also be considered a form of IF. Other IF paradigms including EOD fasting and TRF 

result in similar longevity and/or health benefits even if overall calorie intake is not reduced 

[1,4]. In humans, DR studies tend to focus on improvements in health outcomes rather than 

lifespan extension due to the obvious limitations in assessing this metric. As with preclinical 

models, studies of DR in humans either find no sex differences, do not include sex 

differences as an experimental outcome [5,6], or include only one sex seeking an answer to a 

specific experimental question [7]. A recent study in non-obese humans suggests that a two-

year 25% CR regimen is feasible in non-obese humans; the only sex differences observed 

were a slightly lower BMI in the cohort that was predominantly women (69.7%) [6]. 

Notably, there are sex specific differences in brown and beige markers in adipose tissue of 

women, which are maintained after 8 weeks of CR [8]. It is encouraging to witness the 

inclusion of females in these very important clinical trials, but also to observe investigators 

reporting stratification of results by sex. This will invariably lead to discoveries on how sex 

affects the pathways which modulate the benefits of CR.

The molecular basis of the benefits of CR is thought to lie in the activation of nutrient 

sensing and stress response pathways resulting in increased metabolic efficiency, reduced 

inflammation, increased repair, and ultimately extended longevity (Figure 1) as reviewed in 

depth elsewhere [1,3]. Interestingly, pathways implicated in longevity have been shown to 

exhibit sexual dimorphism such as the nutrient-responsive mTOR [9], the Sirtuins 

(particularly SIRT-6) [10], IGF-1 [11], and growth hormone [12,13].

Dilution of dietary macronutrient content without enforced food restriction can also have 

beneficial health and longevity effects. For example, restriction of sulfur amino acids 

methionine and cysteine, also known as methionine restriction (MetR) which was first 

shown to extend lifespan in rats, also has health effects overlapping those of CR in multiple 

organisms [14]. Large-scale studies using the Geometric Framework to investigate optimal 

ratios of dietary macronutrients, reveal that low protein, high carbohydrate diets have the 

greatest effect on increasing lifespan [2] and that there are optimal macronutrient 

compositions to regulate fertility [15]

As with most biomedical preclinical research, females have been historically under-

represented in DR research. Thus, while it is established that different rodent strains show 

sexual dimorphism with respect to DR-mediated longevity [16,17], sex differences in DR-

mediated healthspan and other responses, as well as underlying mechanisms of such 

differences, are poorly understood. Recently, a number of studies have begun to shed light 

on such differences. This review will limit its scope to CR and MetR in the last two years 

(2015–2017), as these are two of the most thoroughly studied examples of DR in the 

literature. These studies are summarized in Table 1 and discussed below.

Sex differences in response to CR in preclinical models

Based on large-scale rodent CR studies in both sexes using multiple hybrid, inbred and 

recombinant inbred strains showing considerable sex and strain variation in CR-mediated 

longevity [16,17], it has been proposed that in mice, females respond better to CR [18–20] 
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whilst in rats the opposite is true [20]. However, there are many reported exceptions, making 

these generalizations unhelpful. Rather, sexual dimorphism in CR-mediated longevity 

appears to be far more complex, with potential interaction between additional factors 

including strain, dose, dietary composition and timing [21••].

Two recent mouse CR studies in strains with engineered defects in circadian clock (Bmal1-

KO) or DNA repair (Ercc1 hypomorph) components included males and females. CR-

mediated lifespan extension was observed in controls of both studies as well as in mice 

lacking DNA repair function, but not those lacking circadian rhythmicity, with similar 

effects in both sexes [22•,23]. In rhesus monkeys, one recent study found lifespan extension 

upon CR in both sexes, while another found healthspan extension without lifespan extension 

upon CR in both sexes, but a reduction in bodyweight and increase in insulin sensitivity 

upon CR only in males [24]. This implies a sex differences in mechanisms underlying health 

effects of CR in non-human primates.

Mitchell and colleagues recently reported sexual dimorphism in health and longevity 

benefits of 20% versus 40% CR in a large-scale study in two strains of mice [21••]. In the 

C57BL/6 mice, 20% CR increased lifespan in both males and females, whereas 40% CR had 

no effect on lifespan in females and increased lifespan in males but to a lesser extent than 

20% CR. In DBA/2J mice, CR increased lifespan in both sexes, but in a dose-dependent 

manner only in males, with females already maximal at 20% restriction. In terms of health-

related outcomes, 20% CR reduced body temperatures in C57BL/6 males but elevated 

temperature in females, while males had a greater reduction in major urinary proteins (a 

marker of reproductive capacity) than females. Interestingly they also report an uncoupling 

of health and lifespan benefits. In C57BL/6J females, fasting glucose and insulin show the 

same fold reduction with 20 or 40% CR, however only 20% CR extends lifespan while 40% 

CR in females is detrimental [21••]. Clearly there is a complex interplay between sex and 

amount of CR. The authors also observed sex-specific differences in protein ubiquitination, 

glucose homeostasis and IGFBP-1 levels [21••].

Sexual dimorphism is also apparent in studies of healthrelated outcomes of CR. One study 

exploring sex-dependent gene expression upon CR (30% for 2 months) in young C57BL/6 

mice found differential signaling of circadian clock genes and IGF-1 in females compared to 

males [25••]. Another study in rats exploring the effect of CR on blood clotting in the context 

of cardiovascular disease found similar reductions in vitamin K concentrations upon CR in 

both sexes, but a reduced prothrombin time in males but not females, implying a more robust 

response to CR in males than females [26]. Finally, a study exploring the effects of lifelong 

CR on frailty in mice found that frailty was significantly reduced with CR in male C57BL/6 

mice, but not females [27].

The mechanisms underlying sexual dimorphism in the response to lifespan and healthspan 

benefits of CR are not well understood. Proposed mechanisms include better mitochondrial 

control in females leading to increased sensitivity to CR [17]; increased sensitivity of 

females to manipulation of the nutrient sensing pathways such as IGF-1 [19,20]; differences 

in sex steroids [28]; and/or differences in adiponectin/leptin levels, immune function or body 

fat distribution [20] (Figure 1). There have even been suggestions that CR ‘feminizes’ the 
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gene expression profile in males [29], however this study does not actually include female 

mice so while the results are interesting, clearly more research is needed to understand the 

mechanisms underlying sexual dimorphism of CR responses.

Sex differences in response to MetR in preclinical models

An inherent difficulty in translating DR to humans is quite simply that most humans would 

find it incredibly difficult to reduce daily caloric intake by 20–40%. Thus interventions 

allowing for DR benefits without actual food restriction represent an attractive alternative. 

More than 20 years ago, Orentreich and colleagues reported that a reduction in the 

concentration of a single dietary essential amino acid, methionine (from 0.86% to 0.17% 

w/w), resulted in a 30% longer lifespan of male Fisher-344 rats [30]. While perhaps more 

aptly referred to as sulfur amino acid restriction (SAAR) due to the fact that the nonessential 

sulfur amino acid cysteine is absent in MetR diets, the phenomenon has been replicated in 

different rodent models [31]. Additional benefits of MetR that overlap with CR despite ad 
libitum access to food include reductions in bodyweight, fat mass and oxidative stress 

coupled with improvements in insulin sensitivity as well as changes in circulating insulin, 

glucose, leptin, adiponectin, IGF-1 and FGF-21 [31,32].

While the seminal work showing lifespan extension by MetR (0.1–0.15%) in mice from 6 

weeks of age used only females [33] a subsequent study showing lifespan extension by 

MetR initiated at 12mo of age only tested males for longevity and females for changes in 

hepatic gene expression [34]. A recent study of 10mo old male and female C57BL/6J wild-

type mice demonstrated sex specific differences in kidney gene expression as a function of 

an 8-week MetR diet (0.172%). Females significantly upregulated FGF-21 and its co-

receptor, b-Klotho, which controls energy expenditure, while male mice significantly 

upregulated SIRT-1 with potential renoprotective effects on lipid and glucose metabolism 

[35]. These sex differences in response to MetR diet may help explain the sexual 

dimorphism in the acute-to-chronic kidney disease transition [36].

A recent study of young and old male and female mice noted that bone morphology is 

altered in an age and gender specific manner. They demonstrated that although MetR mice 

may show reduced bone mass, when corrected for body size, there is no impairment in bio-

mechanical properties [37•]. This points to a hormonal regulation of bone morphology in 

response to MetR and highlights the importance of considering how sex steroids can alter 

experimental outcomes. Sexual dimorphism of hormonal responses was also observed in the 

response to short-term (up to 5 weeks) methionine deficiency in young mice [38]. While 

Met-deficient diets increase energy expenditure independent of sex, this was clearly linked 

to an increase in hepatic FGF21 expression and WAT Ucp1 only in males. Furthermore, 

while activation of hepatic FGF21 expression was intact in males with constitutive mTORC1 

activation, in females this alone was sufficient to activate FGF21 expression independent of 

diet [38]. While the molecular mechanism underlying these sex differences is not known, it 

is plausible to attribute these differences at least in part to sex hormones. Indeed, estrogen 

removal in animals or menopause in women is associated with metabolic disturbances 

including hepatic triglyceride accumulation and decreased insulin sensitivity [39].
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Sex differences in response to timing of food intake in preclinical models

In recent years, the idea of focusing on the timing of food intake, rather than total calorie 

intake or diet composition, has gained significant momentum for its potential clinical 

applicability. Such IF paradigms, including EOD feeding, PF and TRF, are based on the 

notion that while few people can abide long-term food restriction or altered composition, 

many may be able to do so for short periods of time. EOD-type feeding regimens usually 

involve a water-only or very low calorie period lasting ~24 h, followed by a normal feeding 

period for 1–2 days. PF lasts 2 or more days and is separated from the next cycle by at least 

1 week [4]. The benefits and limitations of these fasting protocols have been reviewed 

elegantly in two recent publications [4,40]. In contrast, TRF allows free access to food of 

any caloric content within a predefined window, for example 8 h feeding/16 h fasting per 

day, but with limited studies comparing sex differences.

Sex differences in response to IF have been noted with respect to weight loss and changes in 

levels of apoptotic markers in the liver with potential implications for cellular maintenance 

with age [41]. TRF improves metabolic fitness [4], and protects against diurnal sensitivity to 

UVB-induced DNA damage [42] in young adult male mice, as well as a model of 

postmenopausal obesity using ovariectomized female mice [43]. A recent study in nighttime 

fed mice found no sexual dimorphism in the forced swimming test [44], but a study of male 

mice subjected to TRF or CR found a compensatory increase in behavior with TRF/CR 

using an automated feeder system [45]. Clearly this disparity between sexes and types of 

behavior and how it relates to metabolic outcomes and aging among others requires further 

study. Gonadal sex hormones have been proposed to mediate the sex differences in food 

anticipatory activity (FAA) in rodents [46]. Recent studies have observed sex differences in 

FAA, but in a follow-up there were no differences between intact and gonadectomized mice 

in the onset or magnitude of FAA [46]. Clearly more research is warranted into this highly 

complex area.

Two additional recent IF studies that included females further illustrate the need to carefully 

consider both sexes. In the first study, IF initiated in the early phases of autoimmune 

encephalitis showed protective effects in female mice [47]. However, because only female 

mice were used in this study, sex-specific responses to DR [21•] and/or the etiology and 

progression of diseases [18] prevent generalization of the finding. In the second study, EOD 

feeding ameliorated some of the detrimental learning effects and protected against Ab 

deposition in brains of Alzheimer’s disease (AD) model mice [48]. However, because males 

and females were grouped together and sex was not considered as an independent variable, 

we learn nothing of the potential effect of sex on DR/AD interaction despite previous reports 

that female AD mice exhibit significantly greater Aβ burden and larger behavioral deficits 

than age-matched males (https://www.jax.org/strain/005864) [49]. Thus, both sexes should 

be studied, and sex treated as an independent variable in DR studies.

Concluding remarks

More than 20 years ago, the National Institutes of Health (NIH) established the Office of 

Research on Women’s Health with the idea that excluding women from clinical research was 
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bad for women and bad for science [50]. In recent years, the NIH has mandated that any 

NIH-funded pre-clinical research must include females [50]. A common theme we observed 

in the rodent DR literature was not the absence of female models per se, but rather the use of 

females to address specific experimental questions. Despite the recent increase in inclusion 

of both sexes in preclinical studies, we still have further to go, including reporting of sex as 

an independent variable. Understanding inherent biological differences between males and 

females is of the utmost importance due to the sexual dimorphisms in disease and aging 

processes. Only by understanding these differences can we develop appropriate therapeutics 

— be they dietary, genetic or pharmacological — for everyone.
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Figure 1. 
Possible sex effects on aspects of the CR/Met R mechanistic pathways. CR and MetR exert 

their beneficial health and lifespan effects, at least in part, by modulating the nutrient 

sensing and aging pathways of mammalian target of rapamycin (mTOR), AMP-activated 

protein kinase (AMPK), sirtuins (SIRTs) and insulin-like growth factor 1 (IGF-1) or 

fibroblast growth factor 21 (FGF21). Activation (AMPK, SIRT, IGF-1) or inhibition 

(mTOR) of these pathways results in potential health benefits including increased glucose 

homeostasis, decreased body weight, decreased inflammation and increased mitochondrial 

function. There are possible differential modulations of these aging pathways and their 

associated health responses in males and females. Studies suggest that overall females may 

have a greater response to CR, with females having an increased response to mTOR 

inhibition or IGF-1/FGF21 activation, and greater inflammatory and mitochondrial health 

responses. Studies suggest that males may have an increased response to SIRT activation, 

and a greater decrease in bodyweight and increase in glucose homeostasis in response to CR. 

More studies are needed to clarify these potential sex differences. The male (♂) or female 

(♀) symbols indicate if there is a reported sexual dimorphism in response to the pathway or 

outcome, with the plus symbols (+) indicating the degree of the effect. The combination of 
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the male (♂) or female (♀) symbol with the plus (+) symbols indicates the degree of the sex 

effect on the pathway or outcome, with ++ indicating a larger effect than +.
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