
Breast cancer risk in relation to plasma metabolites among 
Hispanic and African American women

Hua Zhao1,*, Jie Shen1, Steven C Moore3, Yuanqing Ye1, Xifeng Wu1, Krista A Zanetti4, 
Francisco J. Esteva5, Debasish Tripathy2, and Wong-Ho Chow1

1Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 
77030;

2Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 
Houston, TX 77030;

3Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892

4Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD 
20892

5Perlmutter Cancer Center at New York University Langone Health, New York, NY 10016

Abstract

The metabolic etiology of breast cancer has been explored in the past several years using 

metabolomics. However, most of these studies only included non-Hispanic White individuals. To 

fill this gap, we performed a two-step (discovery and validation) metabolomics profiling in plasma 

samples from 358 breast cancer patients and 138 healthy controls. All study subjects were either 

Hispanics or non-Hispanic African Americans. First, a panel of 14 identified metabolites 

significantly differed between breast cancer cases and healthy controls in both the discovery and 

validation sets. Most of these identified metabolites were lipids. In the pathway analysis, citrate 

cycle (TCA cycle), arginine and proline metabolism, and linoleic acid metabolism pathways were 

observed, and they significantly differed between breast cancer cases and healthy controls in both 

sets. From those 14 metabolites, we selected 9 non-correlated metabolites to generate a metabolic 

risk score. Increased metabolites risk score was associated with a 1.87 and 1.63-fold increased risk 

of breast cancer in the discovery and validation sets, respectively (Odds ratio (OR) =1.87, 95% 

Confidence interval (CI): 1.50, 2.32; OR=1.63, 95%CI: 1.36, 1.95). In summary, our study 

identified metabolic profiles and pathways that significantly diffed between breast cancer cases 

and healthy controls in Hispanic or non-Hispanic African American women. The results from our 

study might provide new insights on the metabolic etiology of breast cancer.
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Introduction

Breast cancer is the most common form of cancer and the second most common cause of 

cancer death in women worldwide. The expected number of new breast cancer cases is 

predicted to increase in the next two decades [1]. Especially, the cancer incidence among 

Hispanic and African American populations continues to grow, mainly estrogen receptor 

positive (ER+) breast cancer, despite the mortality rate decline in some populations [2]. 

Although racial disparities in breast cancer are well-established, the contributing factors 

largely remain to be determined. A better understanding of the differences in the biological 

characteristics of breast cancers among racial groups could provide important insights into 

observed racial differences.

The investigation of metabolites may help solve the mystery of breast cancer racial disparity. 

Metabolites are the end products of intercellular pathways and are sensitive to host and 

environmental stimuli, thus, metabolite profiles may reflect changes in phenotype and 

function and serve as indicators of the overall physiological alterations in chronic disease 

[3]. Some of those stimuli are racial specific, then the corresponding metabolic profiles may 

be racial specific too. Thus, studying racial difference in metabolic profiles may shed light 

on the racial difference in host and environmental exposure. Furthermore, evidence has 

shown that metabolic profiles are at least partially genetically determined [4].

In breast cancer, metabolomics profiling in circulation (e.g. serum and plasma) has been 

successfully applied in identifying cancer risk factors [5–7] as well as prognostic factors [8–

10] and early detection biomarkers [11,12,7,13]. Unfortunately, racial minorities, including 

Hispanics and non-Hispanic African Americans are rarely included in those studies. Such 

omission leads to a missed opportunity to explore the role of metabolomics in racial 

disparity of breast cancer.

In the current study, we conducted a two-step (discovery and validation) metabolomics 

analysis in plasma samples from 358 breast cancer patients and 138 healthy controls. All 

study subjects were either Hispanics or non-Hispanic African Americans. Our goal was to 

identify metabolic profiles that could distinguish between breast cancer cases and controls.

Materials and Methods

Study population

Breast cancer patients were recruited from The University of Texas M. D. Anderson Cancer 

Center (Houston, TX) from patients with newly diagnosed (defined by the presence of 

malignant breast epithelial cells) and histologically confirmed (by microscopic analysis and 

molecular subtype) breast cancer. The blood samples were drawn prior to any cancer 

treatment. Specifically, the breast cancer patients included in the discovery set were selected 

from an existing breast cancer early detection study from 2003 to 2012 [14]. Written 
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informed consent was obtained from each study subject. A total of 134 cases were included 

in the discovery set. They were selected according to the availability of plasma samples and 

clinical characteristics at baseline, as well as race and ethnicity (Hispanics and non-Hispanic 

African Americans). Self-reported ethnic background was used to define the race and 

ethnicity. The validation set included 224 breast cancer patients selected from an ongoing 

breast cancer case control study that has been recruiting participants since 2012. The same 

selection criteria were used. In addition to the cases, each study also recruited control 

subjects. Controls for the discovery study were identified from healthy women who 

participated in breast cancer screening at MD Anderson Cancer Center and were found to be 

negative for the disease. Controls for the validation study were identified largely from 

female residents of Harris County using random digit dialing. In the current study, the 

discovery set had 57 Hispanic or non-Hispanic African American female controls selected 

from the existing breast cancer early detection study, and the validation set had 81 Hispanic 

or non-Hispanic African American female controls selected from the ongoing breast cancer 

case control study. The selection criteria included the availability of plasma samples and 

epidemiological characteristics at baseline, as well as race and ethnicity (Hispanics and non-

Hispanic African Americans). The study protocol was approved by the Institutional Review 

Board at M D Anderson Cancer Center.

Metabolomics Analysis

Metabolomics profiling was conducted on plasma samples at Metabolon Inc (Durham, NC) 

using ultra high performance liquid chromatography/mass spectroscopy and gas 

chromatography/mass spectroscopy. The protocol was described previously [7]. Forty 

batches of case‐control pairs and quality control (QC) replicate samples (N=16) were 

analyzed. Raw data was extracted, peak‐identified and QC processed on the assay platform 

as previously described [15,16]. After excluding metabolites that had ≥30% missing values, 

561 identified compounds remained for analysis. The missing values were treated as the 

result of low signal intensity. They were replaced by half of the minimum positive values 

detected in the data. Based on existing literature, metabolites were categorized as eight 

mutually exclusive chemical classes (amino acids, carbohydrates, cofactors and vitamins, 

energy metabolites, lipids, nucleotides, peptides and xenobiotics). The median and 

interquartile range of the coefficient of variation (CV) across the metabolites was 10% (4–

20%), similar to previous reports analyzed by Metabolon [17].

Statistical Analysis

Any missing values were assumed to be below the limits of detection, and these values were 

imputed with the compound minimum (minimum value imputation). Basic statistical 

analysis of log-transformed data was conducted using MetaboAnalyst 3.0 (http://

www.metaboanalyst.ca/). Non-parametric Wilcoxon rank tests comparing metabolites 

differences between cases and controls were used in metabolomics data analyses and 

performed independently for the discovery and validation sets. To control the multiple 

comparison, we set the false discovery rate (FDR) at 0.05 [18]. To assess the association 

with breast cancer risk, logistic regression analysis was used, adjusting for age, obesity 

status and race differences. The assumptions of logistic regression, including the 

independence of each observation, collinearity among the independent variables, and 
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linearity of independent variables and log odds, were assessed. Using significant metabolites 

in both discovery and validation sets, we applied partial least squares – discriminant analysis 

(PLS-DA) to assess the difference between the case and control groups. Metabolic pathway 

analysis was conducted to identify the enriched metabolite sets and significant metabolic 

pathways that could differentiate breast cancer cases and controls. The latest version of The 

Human Metabolome Database (HMDB) 3.0 was used in metabolic pathway analysis [19]. In 

addition, pathway topology analysis was used to estimate the impact of a certain metabolite 

or a group of metabolites in a certain metabolic pathway, and relative-betweeness centrality 

test was used to estimate the impact [20]. To further assess whether associations were 

independent, we evaluated the pairwise correlations between all metabolites significantly 

associated with breast cancer risk in both discovery and validation sets among the controls. 

Metabolites whose pairwise correlations greater than 0.5 were considered highly correlated 

and to have possible redundancy. The selection of 0.5 as the cutoff point is based on our 

previously published studies [21,22]. Using 9 non-redundant metabolites, we generated a 

metabolic risk score. For each metabolite, using the median level in the controls as the cutoff 

point, we stratified the study subjects into high and low level categories. Next, based on the 

relationship between metabolite levels and breast cancer risk, we scored the study subjects 

as either high or low breast cancer risk (0 or 1) and summed scores across 9 metabolites to 

generate a metabolic risk score (range: 0–9). Then, we generated a metabolic risk score 

based on the number of high level of those 9 metabolites. Logistic regression analysis was 

applied to assess the relationship between the metabolic risk score and breast cancer risk, 

adjusted for co-variates above. All analyses were performed with STATA software version 

10.1 (STATA, College Station, TX).

Results

Characteristics of the study populations

The discovery set included 134 breast cancer patients and 57 healthy controls, and the 

validation set included 224 breast cancer patients and 81 healthy controls. Characteristics of 

case and control groups were described in Table 1. All study subjects are either Hispanic or 

non-Hispanic African American women. Specifically, 77 (57.46%) cases and 38 (66.67%) 

controls were Hispanics in the discovery set, and 133 (58.48%) cases and 24 (29.63%) 

controls were Hispanics in the validation set. In the discovery set, the mean ages were 51 

and 51 for the cases and controls. And in the validation set, the mean ages were 51 and 58 

for the cases and controls, subsequently. In the discovery set, 71 (52.99%) cases and 25 

(43.96%) controls were obese. Similarly, in the validation set, 133 (59.64%) cases and 45 

(55.56%) controls were obese.

Metabolites differed between breast cancer cases and controls

In the discovery set, we identified a total of 31 metabolites whose levels significantly 

differed between breast cancer cases and controls, after adjusting age, BMI category, race/

ethnicity, and multiple comparison (Table 2). Among them, 9 were significantly higher in 

the cases than controls, and 22 were significantly lower in the cases than controls. The top 

three metabolites higher in the cases than controls were thioproline, inosine, and 3-

hydroxyoctanoate. Higher levels of those three metabolites were associated with 3.90, 2.83, 
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and 1.69-fold increased odds of breast cancer. On the other hand, the top three metabolites 

lower in the cases than controls were cysteines-sulfate, sphingomyelin, and 

threonylphenylalanine. Higher levels of those three metabolites were associated with 76, 70, 

and 56% decreased odds of breast cancer. In the validation set, 14 of those 31 metabolites 

were confirmed. Among them, 7 were higher in the cases than controls, and 7 were lower in 

the cases than controls. In the validation set, the top 3 metabolites whose levels were most 

significantly increased in breast cancer cases than controls were linoleate (18:2n6) 

(OR=1.98, 95%CI: 1.46, 2.70), dihomo-linoleate (OR=1.82, 95%CI: 1.34, 2.47), and 10-

nonadecenoate (19:1n9) (OR=1.76, 95%CI: 1.31, 2.36). On the other hand, the top 3 

metabolites in the validation set whose levels were most significantly decreased in breast 

cancer cases than controls were bilirubin (OR=0.48, 95%CI: 0.34, 0.69), glucuronate 

(OR=0.56, 95%CI: 0.35, 0.90), and 1-(1-enyl-stearoyl)-2-dihomo-linolenoyl-GPE 

(OR=0.65, 95%CI: 0.46, 0.92). In terms of metabolic pathways, 10 metabolites were lipids 

(including 6 fatty acids), 1 amino acid, 1 xenobiotics, 1 cofactors and vitamins, and 1 

carbohydrate. Using those 14 metabolites, we generated the 3-D plot to differentiate the 

breast cancer cases and controls. We found that the cases and controls were separated with 

three components. Component 1, 2 and 3 could account for 30, 16.2, and 14.4% of the 

difference between the cases and controls. We also investigated whether the significant 

metabolites differed between African American and Hispanic women among the controls. 

However, none of them differed.

Metabolic pathways differed between breast cancer cases and controls

Next, metabolic pathway analysis was conducted to identify the enriched metabolic 

pathways that differed between breast cancer cases and controls (Table 3). In the discovery 

set, we identified 12 metabolic pathways with P value less than 0.10. The top 3 most 

significant pathways were Glycerophospholipid metabolism (P<0.001), Sphingolipid 

metabolism (P<0.001), and Citrate cycle (TCA cycle) (P<0.001). Using P values of 0.10 and 

0.05 as the cutoff points, 6 and 3 of the 12 identified metabolic pathways in the discovery set 

were confirmed in the validation set. After further considered the impact factor (the 

significance of each individual metabolite in a relative metabolic pathway), the most 

significant and consistent metabolic pathways were Linoleic acid metabolism, Arginine and 

proline metabolism, and Citrate cycle (TCA cycle). Particularly, the significant metabolites 

involved in linoleic acid metabolism had the highest impact factor, 0.656 in both sets, 

suggesting the identified significant metabolites involved in linoleic acid metabolism 

pathway are significantly involved in breast cancer development.

Metabolites risk score differed between breast cancer cases and controls

To further analyze the relationships among those 14 identified significant metabolites, we 

performed the pairwise correlation analysis among the controls (Figure 1). Using correlation 

coefficient (γ) of 0.5 as the cutoff point, 9 metabolites were found to have median to low 

correlation (γ<0.50) with any of the other metabolites. This includes glucuronate, stearate 

(18:0), 3-hydroxyoctanoate, 1-palmitoyl-GPA (16:0), 1-(1-enyl-stearoyl)-2-dihomo-

linolenoyl-GPE, sphingomyelin, bilirubin, urea, and 3-methylxanthine. Using those 9 

metabolites, we generated a metabolic risk score. The method used to generate the risk score 

was detailed in previous Statistical Analysis section. Using the risk score as a continuous 
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variable, we found that increased risk score was 1.87-fold and 1.63-fold more likely 

observed in breast cancer cases than controls after adjusting for age, race, and BMI category 

in the discovery and validation sets, respectively (adjusted OR=1.87,95%CI=1.50–2.32; 

adjusted OR=1.63,95%CI=1.36–1.95) (Table 3). Next, we stratified the study subjects into 3 

strata based the risk score among the control subjects: low (0 to 4), medium (5–6) and high 

(at least 7). When compared with study subjects with low risk scores, medium risk scores 

were more likely observed in the breast cancer cases than controls in both discovery and 

validation sets (adjusted OR=8.68, 95%CI=3.31–22.75; and adjusted OR=4.12, 

95%CI=2.06–8.22). The odd was further elevated when we compared high to low risk score 

group. Those with high risk score were associated with 18.44-fold and 6.96-fold increased 

odds of breast cancer in the discovery and validation sets, respectively (adjusted OR=18.44, 

95%CI=6.75–50.37; adjusted OR=6.96, 95%CI=3.27–14.81).

Discussion

In the current two-stage study of metabolomics profiling in plasma samples from 358 breast 

cancer patients and 138 healthy controls, we identified metabolic signatures and pathways 

significantly associated with breast cancer risk. Intriguingly, all seven metabolites, namely 

3-hydroxyoctanoate 3-hydroxybutyrate (BHBA), stearate (18:0), 3-hydroxydecanoate, 

linoleate (18:2n6), 10-nonadecenoate (19:1n9), and dihomo-linoleate, whose levels were 

increased in breast cancer cases than controls, were lipids. The finding is consistent with our 

previous study in non-Hispanic Whites and African Americans that showed the levels of all 

7 metabolites were higher in breast cancer cases than the controls [7]. The agreement 

between two studies suggested that lipids may play a key role in breast carcinogenesis.

Among the 7 lipids mentioned above, 6 were fatty acids, including 2 monohydroxy fatty 

acids, 2 long chain fatty acids, and two polyunsaturated fatty acids. Elevated levels of 

monohydroxy and long chain fatty acids may indicate altered fatty acid β-oxidation in 

patients with breast cancer [7]. Fatty acid β-oxidation has been reported to support 

functional mitochondria and is essential for the accelerated proliferation of cancer cells 

[23,24]. Interestingly, in a recent study, Wang et al reported that fatty Acid β-Oxidation 

plays a critical role in breast cancer stem cell self-renewal and chemoresistance [25]. 

Therefore, altered fatty acids β-oxidation may promote the aggressive tumorigenic 

phenotypes and breast carcinogenesis [26]. Similar observations were also seen in several 

other breast cancer case control analyses [27,28]. Furthermore, another significant 

metabolite, ketone body 3-hydroxybutyrate (BHBA), which is the end product of 

ketogenesis and downstream of fatty acid β-oxidation, was also found associated with breast 

cancer risk in our study. The higher BHBA level in the cases is another sign of altered fatty 

acid β-oxidation in breast cancer subjects. Consistent with our previous study [7], the 

essential fatty acids linoleate (18:2n6) and dihomo-linolenate (20:3n3 or n6) were 

significantly higher in the cases than controls. Linolenic acid has been suggested to promote 

the tumorigenic phenotype of breast cancer [29]. In a genome-wide association study, 

genetic variants in genes involved in the regulation of linolenic acid metabolism were 

associated with breast cancer risk [30].

Zhao et al. Page 6

Breast Cancer Res Treat. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Another finding of interest is that all 5 significant amino acids in the discovery set were 

associated with decreased risk of breast cancer. Although only urea remained statistically 

significant in the validation set, the impact on breast cancer risk is still evident. In fact, this 

observation is consistent with the notion that amino acids play important roles in 

carcinogenesis. For example, Maddocks and colleagues found that restriction of dietary 

Serine and Glycine could reduce tumor growth in xenograft and allograft models [31]. In 

circulation, amino acids have been reported to be reduced in patients of a variety of cancers 

[32–34]. The reduced levels of amino acids may reflect the increased amino acid demand by 

tumors and therefore amino acid malnutrition seen in tumors. In the current study, our 

observation on urea is consistent with a previous report that showed plasma urea level was 

significantly lower in breast cancer cases than healthy women [35]. However, the biological 

relevance of urea in breast carcinogenesis is still unclear.

Our study is first to report the association between plasma bilirubin and breast cancer risk. 

Endogenous antioxidant bilirubin has shown to inhibit cancer development [36]. Bilirubin 

was associated with reduced breast cancer risk in our study, which was consistent with its 

anti-carcinogenic property [37,38]. Serum bilirubin has been reported to associated with 

reduced lung cancer risk in two prospective studies [39,40] and reduced cancer mortality in a 

population-based set [41]. However, how bilirubin modulates breast carcinogenesis remains 

largely unknown.

In the pathway analysis, 3 metabolic pathways were significantly associated with higher risk 

of breast cancer risk in both sets, including Citrate cycle (TCA cycle), Arginine and proline 

metabolism, and Linoleic acid metabolism. Even though fumarate was the only significant 

metabolite directly involved in the TCA cycle, several other significant metabolites were 

involved in biological pathways relevant to the TCA cycle, including fatty acid β- oxidation, 

amino acid metabolism and ketone bodies [42]. Dysfunction of mitochondrial based 

metabolic pathways, including TCA cycle and oxidative phosphorylation, has been 

frequently observed in breast cancer [43–47,42]. Arginine and proline metabolism pathway 

plays an important role in cancer by impacting various regulatory targets, influencing 

apoptosis, autophagy, and regulating redox homeostasis [48]. In breast cancer, altered 

proline and arginine metabolism has also been linked to metastasis formation [49]. It’s not a 

surprise that Linoleic acid metabolism was significantly associated with breast cancer risk. 

As mentioned above, the omega-3 polyunsaturated fatty acids linoleate (18:2n6) and 

dihomo-linolenate (20:3n3 or n6) have been reported to upregulate breast cancer growth, 

enhance tumor progression, and play an important role in breast tumorigenesis [50].

Recently, two breast cancer metabolomics studies have been published using samples from 

the Prostate, Lung, Colorectal and Ovarian (PLCO) cohort [5,6]. A few diet and BMI related 

metabolites were found associated with the risk of breast cancer. Although both studies 

identified lipids as the top significant metabolites, they were not overlapped. More than 90% 

of the study participants included in their studies were postmenopausal non-Hispanic Whites 

aged 55–74 years old. While our study only included Hispanics and non-Hispanic African 

Americans with mean age less than 55 years old. It is possible that the difference in 

population demographics may contribute to the difference in significant metabolites. As one 

example, 3-hydroxyoctanoate was one of the significant metabolites identified in our study. 
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While in their studies, 2-hydroxyoctanoate, which was fried food–associated, was found 

associated with estrogen receptor positive (ER+) breast cancer.

In summary, we identified a panel of plasma metabolites associated with breast cancer risk 

among African American and Hispanic women, which may provide new insights in breast 

tumorigenesis in different populations. The major limitations of this study are that the 

plasma samples were collected after diagnosis, and matched tissue samples were not 

available. However, validity of using plasma as the surrogate tissue has been reported [51]. 

Due to the nature of case control study, we cannot infer the causal relationship between 

metabolites and breast cancer risk. Other limitations may include the lack of dietary data and 

single metabolite measurement, etc. Thus, we need to be very cautious to interpret our 

results. Even though our study had biggest sample size among similar studies to compare the 

blood metabolic signatures between breast cancer cases and controls, validation of our 

results in larger and prospective populations in the future are warranted.

Finally, it seems that metabolite profiles didn’t differ between African American and 

Hispanic women among the controls. However, the number of controls in two races (n=138 

in total) are very too small, so it is very likely that we don’t have enough power to detect the 

difference. In our previous metabolomics study in African American (n=24) and Caucasian 

(n=36) female controls, metabolite profiles were found significantly differed between them 

[7]. Clearly, whether metabolic profiles differ by the race/ethnicity and whether the potential 

difference may play a role in the association between plasma metabolites and breast cancer 

risk are still unclear. Future large multi-ethnic studies are needed.
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Figure 1. 
Pair-wise correlation analysis to assess the redundancy among significant metabolites.
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Table 1

Selected demographic variables by case-control status by study

Discovery Validation

Case Control P-value* Case Control P-value*

(N=134) (N=57) (N=224) (N=81)

Age, mean(SD) 51.1(12.0) 51.1(6.7) 0.990 50.6(10.7) 58.4(14.8) <0.001

BMI, mean(SD) 31.1(6.2) 30.4(7.0) 0.499 32.8(7.7) 33.4(8.3) 0.599

BMI category N(%)

 normal(<25) 18(13.43) 17(29.82) 28(12.11) 10(12.35)

 overweight(25–<3 0) 45(33.58) 15(26.32) 63(28.25) 26(32.10)

 obese(30+) 71(52.99) 25(43.86) 0.027 133(59.64) 45(55.56) 0.790

Race

 African Americans 57(42.54) 19(33.33) 93(41.52) 57(70.37)

 Hispanic 77(57.46) 38(66.67) 0.234 131(58.48) 24(29.63) <0.001

Family history of breast cancer

 0 113(84.33) 50(87.72) 195(87.05) 70(86.42)

 1 21(15.67) 7(12.28) 0.544 29(12.95) 11(13.58) 0.885

ER

 positive 100(74.63) 157(70.09)

 negative 34(25.37) 67(29.92)

PR

 positive 77(57.46) 134(59.82)

 negative 57(42.54) 90(40.18)

HER2

 positive 30(22.38) 35(15.63)

 negative 104(77.61) 189(84.37)

Stage

 I 44(32.83) 72(32.14)

 II 44(32.83) 90(40.18)

 III & IV 46(34.33) 62(27.68)

*
Student T test was used to calculate the P value for continuous variables; and Chi square was used to calculate the P value for categorical 

variables.
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Table 3.

Metabolic pathways associated with breast cancer risk

Discovery Validation

Metabolic pathway P value Impact factor P value Impact factor

Glycerophospholipid metabolism 2.17E-05 0.314 0.071 0.205

Sphingolipid metabolism 2.12E-04 0.283 Not observed

Citrate cycle (TCA cycle) 9.65E-04 0.236 0.012 0.090

Butanoate metabolism 0.013 0.108 0.076 0.040

D-Arginine and D-ornithine metabolism 0.014 0.500 Not observed

Alanine, aspartate and glutamate metabolism 0.017 0.003 0.119 0.003

Ascorbate and aldarate metabolism 0.019 0.049 0.310 0.033

Arginine and proline metabolism 0.031 0.096 0.011 0.120

Pyruvate metabolism 0.037 0.320 Not observed

Linoleic acid metabolism 0.046 0.656 0.005 0.656

Nicotinate and nicotinamide metabolism 0.081 0.017 0.095 0.038

Caffeine metabolism 0.084 0.045 0.413 0.015
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Table 4.

Metabolite risk score associated with breast cancer risk

Discovery Validation

Continuous variable 1.87 (1.50–2.32) <0.001 1.63 (1.36–1.95) <0.001

Categorical variable

 Low (0–4) Reference Reference

 Medium (5–6) 8.68 (3.31–22.75) <0.001 4.12 (2.06–8.22) <0.001

 High (7–8) 18.44 (6.75–50.37) <0.001 6.96 (3.27–14.81) <0.001

*
Logistic regression was used to calculate the ORs and P value. Age, obesity status and race were adjusted.
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