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Abstract

Recent large-scale genetic studies have allowed for the first glimpse of the effects of common 

genetic variability in dementia with Lewy bodies (DLB), identifying risk variants with appreciable 

effect sizes. However, it is currently well established that a substantial portion of the genetic 

heritable component of complex traits is not captured by genome-wide significant SNPs. To 

overcome this issue, we have estimated the proportion of phenotypic variance explained by genetic 

variability (SNP heritability) in DLB using a method that is unbiased by allele frequency or 

linkage disequilibrium properties of the underlying variants. This shows that the heritability of 

DLB is nearly twice as high as previous estimates based on common variants only (31% vs 

59.9%). We also determine the amount of phenotypic variance in DLB that can be explained by 

recent polygenic risk scores from either Parkinson’s disease (PD) or Alzheimer’s disease (AD), 

and show that, despite being highly significant, they explain a low amount of variance. 

Additionally, to identify pleiotropic events that might improve our understanding of the disease, 

we performed genetic correlation analyses of DLB with over 200 diseases and biomedically 

relevant traits. Our data shows that DLB has a positive correlation with education phenotypes, 

which is opposite to what occurs in AD. Overall, our data suggests that novel genetic risk factors 

for DLB should be identified by larger GWAS and these are likely to be independent from known 

AD and PD risk variants.

Introduction

Recent studies have highlighted the role of genetics in the common, but often 

underappreciated, form of dementia that is dementia with Lewy bodies (DLB). Associations 

with GBA, APOE and SNCA have all been reproducibly reported by independent groups 

(Bras et al., 2014; Hardy et al., 1994; Nalls et al., 2013), and a recent genome-wide 

association study (GWAS) identified several risk and candidate variants associated with the 

disease (Guerreiro et al., 2018). However, GWAS significant single nucleotide 

polymorphisms (SNPs) often explain only a small proportion of the total heritability 

estimated (usually from family-based studies) for a given trait, which results in the ‘missing 
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heritability’ issue (Manolio et al., 2009). One of the possible explanations for this issue is 

that, for complex diseases, SNPs with small effect sizes and well below genome-wide 

statistical significance account for most of the heritability of those traits (Boyle et al., 2017; 

Lee et al., 2011; Yang et al., 2013). However, given that each individual associated marker 

explains only a small proportion of the genetic variation with little predictive power, 

methods have been developed to test disorder prediction by summarizing variation across 

many loci (regardless of association p-values) into quantitative scores. One such approach is 

the generation of polygenic risk scores (PRSs). PRSs have been successfully applied to 

Parkinson’s (PD) (Escott-Price et al., 2015a) and Alzheimer’s diseases (AD) (Escott-Price et 

al., 2015b) and their usefulness will continue to increase as discovery datasets are 

augmented.

A separate, but related, concept is that of genetic correlation of traits. Here, what is 

estimated is the genetic covariance between traits that is tagged by common genome-wide 

SNPs (Lee et al., 2012). This allows us to identify pleiotropic effects between traits that 

might be unrelated by any other measurement. We have performed a preliminary study of 

genetic correlation between DLB and both PD and AD (Guerreiro et al., 2016), however 

performing similar analyses with other (even apparently unrelated) traits might provide 

novel insights for the underlying pathobiology of disease and perhaps for treatments across 

diseases.

The phenotypic variance of most complex human traits combines the genetic with the 

environmental variance (Mackay, 2001). While the effects of the environment are difficult to 

ascertain given their complexity and lack of adequate measurements, we are able to 

determine the genetic variance more accurately. Classically, genetic variance has been 

partitioned into sources of variation due to additive, dominance and epistatic effects. 

Additive genetic variance (h2
SNP) relates to an allele’s independent effect on a phenotype; 

dominance variance (δ2
SNP) refers to the effect on a phenotype caused by interactions 

between alternative alleles at a specific locus; epistatic variance refers to the interaction 

between different alleles in different loci. Most available cohorts for studies of human 

biology and disease are still underpowered to identify epistatic events, however, additive and 

dominance variance can be estimated from standard genome-wide genotyping data (Zhu et 

al., 2015).

Here, using data from the first GWAS in DLB that included haplotype reference consortium 

(HRC)-imputed genotypes (McCarthy et al., 2016), we have estimated the total heritability 

of this disease. We used a method (GCTA-LDMS) that is unbiased regardless of the minor 

allele frequency (MAF) and linkage disequilibrium (LD) properties of variants and thus 

greatly improves on previous estimates (Yang et al., 2015). Since it has been suggested that 

heritability estimates may be inflated by non-additive variation (Eichler et al., 2010), we 

have also estimated the dominance genetic variation in DLB. Additionally, to measure the 

proportion of variance explained by PRSs from PD and AD in a large DLB cohort, we 

measured the ability of PRS to discriminate case from control subjects. Lastly, to attempt to 

derive novel biological insights from unrelated traits, we have performed pairwise genetic 

correlation analysis of DLB with 235 phenotypes, including cognitive, anthropometric and 

education traits.
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Materials and Methods

Sample description

The DLB dataset was previously published (Guerreiro et al., 2018) and is comprised of 

1,216 cases and 3,791 controls matched for ancestry, imputed with HRC v1.1 and includes 

variants with minor allele frequency >= 0.001 and R2>=0.3, for a total number of 18.4 

million variants (median R2=0.92). We used AD summary statistics from the International 

Genomics of Alzheimer’s Project (IGAP) (Lambert et al., 2013), which is a large two-stage 

study based upon genome-wide association studies (GWAS) on individuals of European 

ancestry. In stage 1, IGAP used genotyped and imputed data on 7,055,881 single nucleotide 

polymorphisms (SNPs) to meta-analyse four previously-published GWAS datasets 

consisting of 17,008 Alzheimer’s disease cases and 37,154 controls (the European 

Alzheimer’s disease Initiative – EADI the Alzheimer Disease Genetics Consortium – 

ADGC, the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium – 

CHARGE, the Genetic and Environmental Risk in AD consortium – GERAD). PD summary 

statistics were derived from the International Parkinson’s Disease Genomics Consortium 

(IPDGC) previously published data and included 13,708 cases and 95,282 controls (Nalls et 

al., 2014).

DLB heritability estimates

We used the GCTA-LDMS method to estimate heritability based on imputed data (Yang et 

al., 2015, 2011) using an imputation quality above 0.3 and a disease prevalence of 0.1%. 

This method considers the LD-bias that occurs in the SNP-based estimates and is unbiased 

regardless of the properties of the underlying variants. We calculated segment-based LD 

scores using a segment length of 200kb (with 100kb overlap between two adjacent 

segments), which were used to stratify the SNPs into quartiles. We then estimated the 

genetic relationship matrix (GRM) for each sample using the SNPs in each quartile 

separately and further stratified by minor allele frequency bins (0.001–0.01, 0.01–0.1, 0.1–

0.2, 0.2–0.3, 0.3–0.4, 0.4–0.5). Lastly, we performed restricted maximum likelihood 

(REML) analysis using the multiple GRMs.

DLB dominance variance estimates

To estimate the dominance GRM between pairs of individuals, we used genome-wide 

imputed SNPs as implemented in GCTA-GREMLd (Zhu et al., 2015). This method 

calculates the additive and dominance GRMs and fits both GRMs in a mixed linear model to 

estimate additive and dominance variance simultaneously.

PRS analyses

Determining the polygenic risk of a given phenotype and applying it to another trait is an 

approach that allows to determine shared genetic aetiology between traits. We calculated 

PRSs on the base phenotypes (PD and AD), using GWAS summary statistics, and used these 

as predictors of the target phenotype (DLB) in a regression test. To construct and apply the 

PRSs we used PRSice v2.1 (Euesden et al., 2015). We performed clumping on the target 

data by retaining the SNP with the smallest p-value from each LD block (excluding SNPs 
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with r2 > 0.1 in 250kb windows). Each allele was weighted by its effect-size as estimated in 

the respective study (for PD and AD). Association of PRSs with case-control status was 

performed with logistic regression, and Nagelkerke’s pseudo-R2 was calculated to measure 

the proportion of variance explained.

Genetic correlation analysis

To estimate the genetic correlation between DLB and other complex traits and diseases, we 

used a method based on LD score regression and implemented in the online web utility 

LDHub v1.9.0 (Bulik-Sullivan et al., 2015; Zheng et al., 2017). The LD score regression 

method uses summary statistics from the DLB GWAS and the other available traits, 

calculates the cross-product of test statistics at each SNP, and then regresses the cross-

product on the LD score. After identifying the most significant correlations for DLB 

(p<0.01), we estimated the correlation of those traits with PD and AD.

Results

Quantifying the genetic heritability of DLB

We applied the GREML-LDMS approach to estimate the proportion of phenotypic variance 

explained by the HRC-imputed variants for DLB. Results from this approach showed that 

imputed variants with R2 greater than or equal to 0.3 and frequency above 0.1% explained 

59.9% (s.e.= 2.1%; p=6.8×10−6) of phenotypic variance for DLB. Lower frequency variants 

explained a large proportion of the phenotypic variance in DLB. This pattern was 

maintained for the higher quality imputed variants as well (Figure 1, Supplementary Table 

1).

To determine if non-additive variance in DLB would explain a subset of the total disease 

heritability, we calculated the disease dominance variance as implemented in the tool 

GCTA-GREMLd. This method uses genome-wide data to estimate the additive and 

dominance genetic relationship matrices (GRMs) and fits both GRMs in a mixed linear 

model to estimate h2
SNP and δ2

SNP simultaneously. Our results suggest that DLB does not 

show significant dominance variance with an overall estimate δ2
SNP=−0.05 (s.e. = 0.02).

Polygenic Prediction of Case-Control Status

We applied the PRSs derived from AD and PD data to determine if these would discriminate 

between DLB and controls. The AD score explained 1.33% of the variance (Nagelkerke’s 

pseudo-R2) and was highly significant (p = 5.8×10−31). Performing the same analysis while 

excluding the APOE locus brought the estimate down to 0.14%, while reaching only 

nominal significance. Using the PD polygenic risk score, we obtained an estimate of 0.37% 

of the variance in DLB being explained by that score, a result that was also significant 

(p=6.4×10−10). Interestingly, removing the GBA locus resulted in only a small reduction in 

the variance explained by the PD PRS (0.36%; p=1.23×10−9) at the best p-value threshold.

The bar plots of DLB variance explained by the AD and PD polygenic risk scores are 

presented in Figure 2.
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Unbiased genetic correlation

To test whether DLB has a shared genetic etiology with any of 235 other diseases or 

biomedical relevant traits, we used LD score regression as implemented in LDHub (http://

ldsc.broadinstitute.org/ldhub/). This method estimates the degree to which genetic risk 

factors are shared between pairs of diseases or traits, although it should be noted that it does 

not inform regarding how this shared genetic etiology arises. We selected the correlations 

with a p-value <0.01 in DLB and tested these in AD and PD (Figure 4).

The most significant correlation identified, and the only surpassing Bonferroni correction, 

between DLB and each of the 235 tested traits was with “Years of schooling” (Okbay et al., 

2016) reaching a p-value of 6.32×10−5 (Bonferroni corrected p-value=0.015) and a 

correlation estimate (rg) of 0.48 (s.e. = 0.12) (Table 2). Interestingly, these scores were 

found to be in the opposite direction in AD, but in the same direction in PD (AD: rg=−0.33, 

p-value=8.87×10−5; PD: rg=0.05, p-value=0.07) (Figure 3). A positive correlation was also 

obtained for “Childhood IQ” (Benyamin et al., 2014) in DLB and PD, whereas a negative 

correlation was identified in AD (DLB: 0.68, p-value=0.0009; AD: rg=−0.36, p-

value=0.0011; PD: rg=0.25, p-value=0.0013). Similarly, “Intracranial volume” (Hibar et al., 

2015) presented a positive correlation with both DLB and PD, but no discernible correlation 

with AD (DLB: 0.69, p-value=0.0052; AD: rg=−0.003, p-value=0.96; PD: rg=0.34, p-

value=0.0005). Conversely, “Citrate” (Kettunen et al., 2016) was positively correlated with 

both DLB and AD, but had no correlation with PD (DLB: 0.82, p-value=0.0033; AD: rg=

−0.21, p-value=0.25; PD: rg=−0.05, p-value=0.63).

Discussion

With this study we provide more accurate estimates of genetic heritability for DLB, quantify 

the variance explained by AD and PD polygenic risk and estimate pleiotropy between DLB 

and over 200 diseases and biomedical relevant traits.

Previous heritability estimates for DLB were calculated based on a smaller cohort genotyped 

at a relatively smaller number of sites and using GCTA’s GREML-SC (based on a single 

genetic relationship matrix). These earlier studies provided an estimate of 31% heritability 

for this disease (Guerreiro et al., 2016). It is now recognised that GREML-SC may, under 

certain circumstances (such as causal variants being enriched in regions with higher or lower 

LD than average or if the causal variants had a different MAF spectrum than the variants 

sampled), be biased (Yang et al., 2015). Because of this, we used a recently developed 

approach that corrects for the LD bias in the estimated SNP-based heritability and that is 

unbiased regardless of the properties (e.g. MAF and LD) of the underlying causal variants 

(GCTA GREML-LDMS) (Yang et al., 2015). We applied this tool to a larger cohort, that 

was imputed with the most recent imputation panel, providing more detailed genetic 

information. Using this approach we estimated that all HRC-imputed variants with MAF 

>0.001 explained 59.9% (s.e= 2.1%) of phenotypic variance for DLB, which is nearly 

double the previous estimate (Guerreiro et al., 2016). Our results also show that a large 

proportion of the variance is explained by variants with lower frequency (MAFs from 0.001 

to 0.01). Given that the current version of HRC allows for imputation of variants with 

frequencies as low as 0.0005 and aggregate R2 above 0.5 (McCarthy et al., 2016), this 
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indicates that performing GWAS in DLB with increased sample sizes will allow us to 

identify novel loci involved in conferring risk for disease without the need for large-scale 

whole-genome sequencing.

One of the explanations for the common issue of “missing heritability” is that non-additive 

heritability (such as dominance variance or epistatic variance) represents a substantial 

component of a trait’s total heritable genetic component. Our results suggest that dominance 

variance has a negligible effect on the genetic heritability of DLB, in line with findings from 

79 unrelated traits (Zhu et al., 2015). However, we cannot exclude that epistatic variance 

plays a role in DLB, given that our cohort is underpowered to detect epistatic events.

Recently, there has been growing interest in the use of PRSs as a way to perform risk 

prediction in various diseases and these have successfully been applied to AD (Escott-Price 

et al., 2015b) and PD (Escott-Price et al., 2015a). To determine how much of the phenotypic 

variance in our DLB cohort can be caused by AD and PD known genetic risk factors, we 

used PRSs from recent GWAS from each of these diseases. In both cases scores explained 

only relatively small proportions of variance (0.37–1.33%). In AD, excluding the APOE 
locus greatly reduced the amount of variance explained in DLB (0.14%), which is in 

accordance with the strong effect that locus has in the risk of both diseases (Guerreiro et al., 

2018; Lambert et al., 2013). Conversely, excluding the GBA locus in PD had only a modest 

effect, which likely results from the lower frequency in the general population of the variants 

that comprised this signal compared to APOE. Since the amount of variance explained by 

each of the PRS is relatively small, this adds to the growing body of evidence that suggests 

that, genetically, DLB is a unique condition and not simply a mix of PD and AD risk factors. 

These data also confirm the polygenic nature of DLB as well as quantify the amount of 

variance that polygenic risk from each of those diseases accounts for in DLB.

Given the large number of pleiotropic events that are being identified for a variety of 

diseases and traits (Guerreiro et al., 2014; Visscher et al., 2017), finding correlated 

conditions opens the door to a better understanding of disease pathobiology and perhaps 

may even suggest novel therapeutic targets. Assessing the genetic correlation of DLB with 

over 200 diseases and traits showed correlations that were in the same direction of those 

seen in PD while others were in the same direction as in AD. Due to the relatively small 

sample size in our cohort, the only correlation surpassing Bonferroni correction was for 

“Years of schooling”. It is interesting to note that these scores were positively correlated 

with DLB, while they have a well-established negative correlation with AD (Barnes and 

Yaffe, 2011; Norton et al., 2014). Similar positive correlations have been identified for 

bipolar disorder and autism spectrum disorders (Bulik-Sullivan et al., 2015), as well as for 

PD in the present data. Also in PD, there is evidence for the presence of increased 

intracranial volumes when compared to controls (Krabbe et al., 2005). Here, supporting 

those findings, we identify a positive genetic correlation between both PD and DLB 

(although not statistically significant) with intracranial volume, whereas in AD no evidence 

for genetic correlation was identified. Interestingly, the anthropometric characteristics 

obesity, body mass index (BMI) and body fat were negatively correlated with all 3 diseases. 

For BMI and PD, recent Mendelian randomization results have shown a negative effect 

(Noyce et al., 2017) which our results replicate and suggest they extend to both AD and 
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DLB. A similar finding was obtained for cancer traits, where lung cancer showed a general 

negative correlation with the three traits. This agrees with transcriptomic studies that showed 

that the cancer gene expression profile is almost an opposite mirror image to that of 

neurodegenerative disease (Aramillo Irizar et al., 2018). A positive correlation between both 

DLB and AD with citrate (Kettunen et al., 2016) was identified, although this was not the 

case for PD, where no evidence of correlation was found. Increased plasma levels of citrate 

have been shown to be associated with increased levels of oxidative stress (Convertini et al., 

2016), making it tempting to speculate that in AD and DLB oxidative stress may be involved 

in the neurodegenerative processes, while in PD it may be more akin to a consequence.

We note several limitations in our study. First, the DLB dataset, despite being the largest to 

date, is relatively small when compared to other recently published GWAS in PD or AD. 

This is reflected in a lower statistical power to identify novel associations; while the recent 

PD and AD GWAS were sufficiently powered to detect variants with effects as low as 1.4 

and frequencies of only 1%, at this frequency, the DLB dataset is only sufficiently powered 

to detect variants with large effects of 3 and above. The lower statistical power is also 

reflected in the standard errors of the analyses performed in this work. We are underpowered 

to detect rare variants and certainly rare variants with small effect sizes. Second, we are 

unable to provide definitive biological mechanisms underlying the genetic correlations 

identified. This means that it is possible that for some of the correlations observed, what we 

are seeing are proxy effects and not direct correlations. Lastly, this study focused on 

individuals of European/North American descent. It is likely that studies of populations of 

different ancestries will reveal not only novel loci, but perhaps also novel pleiotropic effects, 

which could improve our understanding of the pathobiology of DLB.

Conclusion

In summary, we provide updated estimates of the genetic heritability of DLB and show that 

dominance variance is not a substantial part of the heritability of this disease. We quantify 

the amount of phenotypic variance in DLB that can be attributed to PD and AD polygenic 

risk scores and show that this is relatively small. Lastly, we estimate genetic correlations 

between DLB and over 200 diseases and medically relevant traits, shedding light into the 

complex relationship between DLB and both PD and AD.
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• Genetic heritability of DLB is nearly 60%, double of previous estimates.

• Polygenic risk scores from PD and AD explain a low amount of variance in 

DLB.

• DLB has a positive correlation with education phenotypes, which is contrary 

to AD.
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Figure 1: 
Estimate of the DLB variance explained by HRC-imputed variants by MAF and LD. 

Segmental LD score increases from the 1st to 4th quartiles. Negative scores are not shown 

for simplicity but are present in Supplementary Table 1. The estimates of variance explained 

are from the GREML-LDMS analyses of fitting all the 24 genetic components 

simultaneously.
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Figure 2: 
Proportion of variance of DLB case-control status explained by PRSs from AD (A), AD 

excluding the APOE locus (B), PD (C) and PD excluding the GBA locus (D). The bars 

represent PRSs calculated for 9 subsets of markers at different p-value thresholds in the 

original GWAS publications. Best scores for each PRS are presented in (D). R2: 

Nagelkerke’s pseudo-R2; Threshold: P-value threshold in original GWAS.
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Figure 3: 
Correlation scores with p-value <0.01 in DLB. Shown are also the scores for those same 

traits in PD and AD.
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Table 1.

Significant genetic correlations for DLB, PD and AD.

DLB AD PD

TRAIT Category rg s.e. p-value rg s.e. p-value rg s.e. p-value

FATHERS AGE AT DEATH; PMID:27015805 aging 0.777 0.230 0.001

MOTHERS AGE AT DEATH; PMID:27015805 aging 0.626 0.234 0.007 0.250 0.092 0.007

BODY FAT; PMID:26833246 anthropometric −0.382 0.130 0.003

BODY MASS INDEX; PMID:20935630 anthropometric −0.287 0.093 0.002

HEIGHT; FEMALES AT AGE 10 AND 
MALES AT AGE 12; PMID:23449627

anthropometric −0.282 0.107 0.008

OBESITY CLASS 1; PMID:23563607 anthropometric −0.334 0.113 0.003

PRIMARY BILIARY CIRRHOSIS; PMID:
26394269

autoimmune −0.501 0.159 0.002

RHEUMATOID ARTHRITIS; PMID:24390342 autoimmune −0.358 0.101 0.000

ICV; PMID:25607358 brain_volume 0.691 0.247 0.005 0.343 0.098 0.001

MEAN ACCUMBENS; PMID:25607358 brain_volume 0.402 0.143 0.005

MEAN CAUDATE; PMID:25607358 brain_volume 0.266 0.075 0.000

MEAN PUTAMEN; PMID:25607358 brain_volume 0.251 0.082 0.002

LUNG CANCER; PMID:27488534 cancer −0.493 0.141 0.001

LUNG CANCER (ALL); PMID:24880342 cancer −0.579 0.193 0.003

LUNG CANCER (SQUAMOUS CELL); 
PMID:24880342

cancer −0.878 0.313 0.005

SQUAMOUS CELL LUNG CANCER; PMID:
27488534

cancer −0.739 0.224 0.001

CORONARY ARTERY DISEASE; PMID:
26343387

cardiometabolic −0.442 0.128 0.001

INTELLIGENCE; PMID:28530673 cognitive 0.281 0.102 0.006 −0.357 0.104 0.001

CHILDHOOD IQ; PMID:23358156 education 0.675 0.204 0.001 −0.362 0.111 0.001 0.256 0.080 0.001

COLLEGE COMPLETION; PMID:23722424 education −0.364 0.100 0.000

YEARS OF SCHOOLING (PROXY 
COGNITIVE PERFORMANCE); PMID:
25201988

education −0.300 0.081 0.000 0.138 0.048 0.004

YEARS OF SCHOOLING 2013; PMID:
23722424

education −0.290 0.092 0.002 0.137 0.048 0.005

YEARS OF SCHOOLING 2016; PMID:
27225129

education 0.481 0.120 0.000 −0.330 0.084 0.000

CITRATE; PMID:27005778 metabolites 0.821 0.280 0.003

ISOLEUCINE; PMID:27005778 metabolites −0.547 0.208 0.009

AGE OF FIRST BIRTH; PMID:27798627 reproductive 0.311 0.105 0.003 0.140 0.042 0.001
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