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Abstract

Structural magnetic resonance imaging (sMRI) has been widely used for computer-aided diagnosis 

of neurodegenerative disorders, e.g., Alzheimer’s disease (AD), due to its sensitivity to 

morphological changes caused by brain atrophy. Recently, a few deep learning methods (e.g., 

convolutional neural networks, CNNs) have been proposed to learn task-oriented features from 

sMRI for AD diagnosis, and achieved superior performance than the conventional learning-based 

methods using hand-crafted features. However, these existing CNN-based methods still require the 

pre-determination of informative locations in sMRI. That is, the stage of discriminative atrophy 

localization is isolated to the latter stages of feature extraction and classifier construction. In this 

paper, we propose a hierarchical fully convolutional network (H-FCN) to automatically identify 

discriminative local patches and regions in the whole brain sMRI, upon which multi-scale feature 

representations are then jointly learned and fused to construct hierarchical classification models 

for AD diagnosis. Our proposed H-FCN method was evaluated on a large cohort of subjects from 

two independent datasets (i.e., ADNI-1 and ADNI-2), demonstrating good performance on joint 

discriminative atrophy localization and brain disease diagnosis.
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1 Introduction

Alzheimer’s disease (AD), characterized by the progressive impairment of cognitive 

functions, is the most prevalent neurodegenerative disorder that ultimately leads to 

irreversible loss of neurons [1]. Brain atrophy associated with dementia is an important 

biomarker of AD and its progression, especially considering that the atrophic process occurs 

even earlier than the appearance of amnestic symptoms [2]. Structural magnetic resonance 

imaging (sMRI) can non-invasively capture profound brain changes induced by the atrophic 

process [3], based on which various computer-aided diagnosis (CAD) approaches [4], [5], 

[6] have been proposed for the early diagnosis of AD as well as its prodromal stage, i.e., 

mild cognitive impairment (MCI).

Existing sMRI-based CAD methods usually contain three fundamental components [4], i.e., 

1) pre-determination of regions-of-interest (ROIs), 2) extraction of imaging features, and 3) 

construction of classification models. Depending on the scales of pre-defined ROIs in sMRI 

for subsequent feature extraction and classifier construction, these methods can be further 

divided into three categories, i.e., 1) voxel-level, 2) region-level, and 3) patch-level 

morphological pattern analysis methods. Specifically, voxel-based methods [7], [8], [9], 

[10], [11] attempt to identify voxel-wise disease-associated microstructures for AD 

classification. This kind of methods typically suffers from the challenge of over-fitting, due 

to the very high (e.g., millions) dimensionality of features/voxels compared with the 

relatively small (e.g., tens or hundreds) number of subjects/images for model training. In 

contrast, region-based methods [12], [13], [14], [15], [16], [17], [18] extract quantitative 

features from pre-segmented brain regions to construct classifiers for identifying patients 

from normal controls (NCs). Intuitively, this kind of methods focuses only on empirically-

defined brain regions, and thus may fail to cover all possible pathological locations in the 

whole brain. To capture brain changes in local regions for the early diagnosis of AD, patch-

based methods [19], [20], [21], [22], [23] adopt an intermediate scale (between the voxel-

level and region-level) of feature representations for sMRI to construct classifiers. However, 

a critical issue for such patch-level pattern analysis is how to identify and combine 

discriminative local patches from sMRI [22].

On the other hand, the conventional voxel-, region-, and patch-based CAD methods have 

several common disadvantages. 1) Feature representations defined solely at a single (i.e., 

region- or patch-) level are inadequate in characterizing global structural information of the 

whole brain sMRI at the subject-level. 2) Hand-crafted features are independent of, and may 

not be well coordinated with, subsequent classifiers, thus potentially leading to sub-optimal 

diagnostic performance.

In recent years, deep convolutional neural networks (CNNs) are showing increasingly 

successful applications in various medical image computing tasks [24], [25], [26], [27], [28], 
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[29], [30]. Capitalizing on task-oriented, high-nonlinear feature extraction for classifier 

construction, CNNs have also been applied to developing advanced CAD methods for brain 

disease diagnosis [31], [32], [33], [34]. However, considering that the early stage of AD 

could only cause subtle structural changes in the brain, it is difficult to train a conventional 

end-to-end CNN model without any guidance for AD classification. Therefore, relying on 

domain knowledge and experts’ experience, most existing CNN-based methods empirically 

pre-determine informative regions (e.g., hippocampus [31], [33]) or patches (e.g., located by 

certain anatomical landmark detector [34]) in sMRI to construct diagnostic models. That is, 

the stage of discriminative localization [35] of brain atrophy is methodologically 

independent of the latter stages of feature extraction and classifier construction, which may 

hamper the effectiveness of the deep neural networks in brain disease diagnosis.

In this paper, we propose a deep learning framework to unify discriminative atrophy 

localization with feature extraction and classifier construction for sMRI-based AD 

diagnosis. Specifically, a hierarchical fully convolutional network (H-FCN) is proposed to 

automatically and hierarchically identify both patch- and region-level discriminative 

locations in whole brain sMRI, upon which multi-scale (i.e., patch-, region-, and subject-

level) feature representations are jointly learned and fused in a data-driven manner to 

construct hierarchical classification models. Based on the automatically-identified 

discriminative locations in sMRI, we further prune the initial H-FCN architecture to reduce 

learnable parameters and finally boost the diagnostic performance. A schematic diagram of 

our H-FCN method is shown in Fig. 1. In the experiments, our proposed method was trained 

and evaluated on two independent datasets (i.e., ADNI-1 and ADNI-2) for multiple AD-

related diagnosis tasks, including AD classification, and MCI conversion prediction. 

Experimental results demonstrate that our proposed H-FCN method can not only effectively 

identify AD-related discriminative atrophy locations in sMRI, but also yield superior 

diagnostic performance compared with the state-of-the-art methods.

The rest of the paper is organized as follows. In Section 2, we briefly review previous 

studies on sMRI-based CAD methods for AD diagnosis. In Sections 3 and 4, we introduce 

the studied datasets and our proposed H-FCN method, respectively. In Section 5, our 

proposed H-FCN method is evaluated and compared with the state-of-the-art methods. In 

addition, the components and parameters of our network are analyzed in detail. In Section 6, 

we discuss the relationship between our proposed method and previous studies and analyze 

the main limitations of the current study. The paper is finally concluded in Section 7.

2 Related Work

In this section, we briefly review previous work on sMRI-based CAD methods for AD 

diagnosis, including the conventional learning-based and deep-learning-based methods.

2.1 Conventional Learning-based Methods

In terms of the scales of adopted feature representations, the voxel-, region-, and patch-based 

methods are representative categories of sMRI-based CAD methods in the literature.
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Typically, voxel-based methods extract voxel-wise imaging features from the whole brain 

sMRI to construct classifiers for distinguishing patients from normal controls (NCs). For 

example, Klöppel et al. [8] used gray matter (GM) density map of the whole brain, generated 

by voxel-based morphometry (VBM) [36], to train a linear support vector machine (SVM) 

[37] for identifying sMRI scans of AD. Hinrichs et al. [9] integrated a spatial regularizer into 

the linear programming boosting (LPboosting) model [38] for AD classification using GM 

density map. Li et al. [10] extracted both volumetric and geometric measures at each vertex 

on the cortical surface to construct a linear SVM for discriminating MCI from NC. The 

voxel-level morphological pattern analysis usually has to face the challenge of high-

dimensional features, especially for the volumetric sMRI with millions of voxels. Hence, 

dimensionality reduction approaches [39], [40], [41] are desirable for dealing with the 

potential over-fitting issue caused by the high-dimensional, voxel-level feature 

representations. In another word, the diagnostic performance of voxel-based methods may 

largely rely on dimensionality reduction.

Region-based methods employ imaging features extracted from brain regions, while these 

regions are usually predetermined based on biological prior knowledge or anatomical brain 

atlases [42]. For example, Magnin et al. [43] and Zhang et al. [14] parcellated the whole 

brain into several non-overlapping regions by non-linearly aligning each individual sMRI 

onto an anatomically labeled atlas, and then extracted regional features to train the SVM 

classifiers for AD diagnosis. Fan et al. [12] adopted the watershed algorithm [44] to group 

sMRI voxels into an adaptive set of brain regions, from which regional volumetric features 

were extracted to perform SVM-based AD classification. Koikkalainen et al. [45] and Liu et 

al. [17] spatially normalized each individual sMRI onto multiple atlases, and then extracted 

regional features in each atlas space to construct ensemble classification models for 

AD/MCI diagnosis. Wang et al. [13] and Sørensen et al. [16] performed AD diagnosis based 

on sMRI hippocampal features, considering that the influence of the AD pathological 

process on the hippocampus has been biologically validated. Also, several studies performed 

AD diagnosis based on the fusion of complementary information provided by the 

hippocampus and other brain regions in sMRI. For example, in [46], features extracted from 

the hippocampus and posterior cingulate cortex were combined to learn SVM classifiers for 

AD/MCI diagnosis. In [47], the classifiers trained independently based on hippocampal and 

CSF features were combined, followed by another classifier to further refine the diagnostic 

performance.

It is worth mentioning that the early stage of AD would induce subtle structural changes in 

local brain regions, instead of isolated voxels or the whole brain [9], [22]. Accordingly, 

several previous studies proposed to perform AD diagnosis by using imaging features 

defined at the patch-level, i.e., an intermediate scale between the voxel-level and region-

level. For example, Liu et al. [21] extracted both the patch-wise GM density maps and 

spatial-correlation features to develop a hierarchical classification model for AD/MCI 

diagnosis. Tong et al. [22] adopted local intensity patches as features to develop a multiple 

instance learning (MIL) model [48] for AD classification and MCI conversion prediction. 

Zhang et al. [23] first detected anatomical landmarks in sMRI, and then extracted 

morphological features from the local patches centered at these landmarks to perform SVM-

based AD/MCI classification. The pre-selection and combination of local patches to capture 
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global information of the whole brain sMRI is always a key step in these existing patch-

based methods.

2.2 Deep-Learning-based Methods

The conventional learning-based methods adopt handcrafted features (e.g., GM density map 

[8], [9], cortical thickness [10], or hippocampal shape measurements [13]) to construct 

classifiers, which may yield sub-optimal diagnostic performance due to potential 

heterogeneities between independently-extracted features and subsequent classifiers.

Recently, CNN-based methods have been proposed to extract high-level region/patch-wise 

features in a data-driven manner for brain disease diagnosis. For example, Li et al. [31] and 

Khvostikov et al. [33] pre-extracted hippocampal region to train CNNs using sMRI and 

multimodal neuroimaging data, respectively. Liu et al. [34] extracted local image patches 

centered at multiple pre-defined anatomical landmarks to develop the CNN-based models 

for AD classification and MCI conversion prediction.

Apart from CNNs, some other deep learning methodologies have also been applied to 

developing CAD methods for AD diagnosis. For example, deep Boltzmann machine [49] 

was used by Suk et al. [50] to learn shared feature representations between patches extracted 

from sMRI and positron emission tomography (PET) images, based on which an ensemble 

SVM classifier was further trained for AD/MCI classification. Liu et al. [51] extracted hand-

crafted features from pre-segmented brain regions, and further fed these low-level features 

into stacked auto-encoders [52] for producing higher-level features for AD classification. Lu 

et al. [53] developed a multi-scale deep neural network for early diagnosis of AD, where 

low-level patch-wise features extracted from PET images were used as network input.

However, similar to the conventional learning-based methods, these existing deep-learning-

based methods still require the pre-determination of the ROIs prior to network training. That 

is, localization of discriminative brain regions in sMR images is still independent of feature 

extraction and classifier construction, which may hamper the corresponding diagnostic 

performance.

3 Materials

In this section, we introduce the sMRI datasets as well as the image pre-processing pipeline 

used in our study.

3.1 Studied Datasets

Two public datasets downloaded from Alzheimer’s Disease Neuroimaging Initiative1 (i.e., 

ADNI-1 and ADNI-2) [54] were studied in this paper. Note, subjects that appear in both 

ADNI-1 and ADNI-2 were removed from ADNI-2. The demographic information of 

subjects in both ADNI-1 and ADNI-2 is presented in Table 1.

1.http://adni.loni.usc.edu
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ADNI-1: The baseline ADNI-1 dataset consists of 1.5T T1-weighted MR images acquired 

from totally 821 subjects. These subjects were divided into three categories (i.e., NC, MCI, 

and AD) in terms of the standard clinical criteria, including mini-mental state examination 

scores and clinical dementia rating. According to whether MCI subjects would convert to 

AD within 36 months after the baseline evaluation, the MCI subjects were further specified 

as stable MCI (sMCI) subjects that were always diagnosed as MCI at all time points (0–96 

months), or progressive MCI (pMCI) subjects that finally converted to AD within 36 months 

after the baseline. To sum up, the baseline ADNI-1 dataset contains 229 NC, 226 sMCI, 167 

pMCI, and 199 AD subjects.

ADNI-2: The baseline ADNI-2 dataset include 3T T1-weighted sMRI data acquired from 

636 subjects. According to the same clinical criteria as those used for ADNI-1, the 637 

subjects were further separated as 200 NC, 239 sMCI, 38 pMCI, and 159 AD subjects.

3.2 Image Pre-Processing

All sMRI data were processed following a standard pipeline, which includes anterior 

commissure (AC)-posterior commissure (PC) correction, intensity correction [55], skull 

stripping [56], and cerebellum removing. An affine registration was performed to linearly 

align each sMRI to the Colin27 template [57] to remove global linear differences (including 

global translation, scale, and rotation differences), and also to resample all sMRIs to have 

identical spatial resolution (i.e., 1 × 1 × 1 mm3).

4 Method

In this part, we introduce in detail our proposed H-FCN method, including the architecture 

of our network (Section 4.1), a specific loss function for training the network (Section 4.2), 

the network pruning strategy (Section 4.3), and the implementation details (Section 4.4).

4.1 Architecture

Our proposed hierarchical fully convolutional network (H-FCN) is developed in the linearly-

aligned image space. As shown in Fig. 1, it consists of four sequential components, i.e., 1) 

location proposals, 2) patch-level sub-networks, 3) region-level sub-networks, and 4) 

subject-level sub-network.

Briefly, image patches widely distributed over the whole brain (Section 4.1.1) are fed into 

the patch-level sub-networks (Section 4.1.2) to produce the feature representations and 

classification scores for these input patches. The outputs of the patch-level sub-networks are 

grouped/merged according to the spatial relationship of input patches, which are then 

processed by the region-level sub-networks (Section 4.1.3) to produce the feature 

representations and classification scores for each specific region (i.e., a combination of 

neighboring patches). Finally, the outputs of the region-level sub-networks are integrated 

and processed by the subject-level sub-network (Section 4.1.4) to yield the classification 

score for each subject. The architecture of our proposed H-FCN is detailed as follows.

4.1.1 Location proposals—Our proposed H-FCN method adopts a set of local image 

patches as the inputs for the network. To generate location proposals for the extraction of 
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anatomically-consistent image patches from different subjects, we first need to construct the 

voxel-wise anatomical correspondence across all linearly-aligned sMRIs (with each image 

corresponding to a specific subject). To this end, each linearly-aligned sMRI is further non-

linearly registered to the Colin27 template. Based on the resulting deformation fields, for 

each voxel in the template, we find its corresponding voxel in each linearly-aligned sMRI, 

thus building the voxel-wise anatomical correspondence in the linearly-aligned image space.

After that, image voxels widely distributed over the whole template brain image are used as 

location proposals (i.e., yellow squares shown in Fig. 1). We further locate corresponding 

voxels in each linearly-aligned sMRI, and extract same-sized (e.g., 25 × 25 × 25) patches 

centered at these location proposals to construct our hierarchical network. Notably, the 

motivation of using location proposals that are widely distributed over the whole brain is to 

ensure that H-FCN can include and then automatically identify all discriminative locations 

in a data-driven manner. But, beyond that, there is no explicit assumption regarding the 

specific discriminative power of each location proposal. This is different from existing 

region- and patch-based methods (e.g., [16], [22], [34], [46]) in nature, as those previous 

studies select/rank ROIs according to their informativeness (usually pre-defined based on 

domain knowledge).

On the other hand, it is also worth mentioning that prior knowledge could also be included 

in our H-FCN model to reduce the computational complexity and boost the learning 

performance. The reason is that prior knowledge can help efficiently filter out obviously 

uninformative voxels from selected location proposals, especially considering that a 

volumetric sMR image usually contains millions of voxels. Therefore, in one of our 

implementations, we adopt anatomical landmarks defined in the whole brain image [23] as 

prior knowledge for generating location proposals. Under the constraint that the distance 

between any two landmarks is no less than 25, the number of location proposals is further 

reduced to 120 to control the number of learnable parameters. We denote this kind of 

implementation as with-prior H-FCN (wH-FCN for short) in this paper.

We also implement another version of H-FCN, where the template image is directly 

partitioned into multiple non-overlapped patches, and their central voxels are then warped 

onto the linearly-aligned subject as location proposals. We denote this variant 

implementation as no-prior H-FCN (nH-FCN for short). Note that wH-FCN and nH-FCN 

share the same number (i.e., 120) of input image patches, the same patch size (i.e., 25 × 25 × 

25) and similar network structure. The difference is that they use different location 

proposals. Both wH-FCN and nH-FCN make no explicit assumption regarding the specific 

discriminative capacities of the input location proposals, which should be further determined 

by the network in a data-driven manner.

4.1.2 Patch-level sub-networks—As the PSN modules shown in Fig. 1, all patch-level 

sub-networks developed in our H-FCN (both wH-FCN and nW-FCN) have the same 

structure, i.e., fully convolutional network [58], for efficiency of training. In addition, in our 

implementation, all these PSN modules share the same weights to limit the number of 

learnable parameters, especially considering a relatively large number of input patches.
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Specifically, each PSN module contains six convolutional (Conv) layers, including one 

4×4×4 layer (i.e., Conv1), four 3×3×3 layers (i.e., Conv2 to Conv5), and one 1×1×1 layer 

(i.e., Conv6). The number of channels for Conv1 to Conv6 is 32, 64, 64, 128, 128, and 64, 

respectively. All Conv layers have unit stride without zero-padding, which are followed by 

batch normalization (BN) and rectified linear unit (ReLU) activations. Between Conv2 and 

Conv3, as well as between Conv4 and Conv5, a 2×2×2 max-pooling layer is adopted to 

down-sample the intermediate feature maps. At the end, a classification layer (i.e., Class P) 

is realized via 1 × 1 × 1 convolutions (with C channels, where C is the number of categories) 

followed by sigmoid activations.

As the result, each local image patch is processed by the corresponding PSN module to yield 

a patch-level feature representation (i.e., output of Conv6; size: 1×1×1×64), based on which 

a patch-level classification score (size: 1 × 1 × 1 × C) is further produced by the subsequent 

classification layer (i.e., Class P). Intuitively, the diagnostic/classification score accuracy of 

each PSN module indicates the discriminative capacity of the corresponding location 

proposal.

4.1.3 Region-level sub-networks

To construct the region-level sub-networks, we concatenate each patch-level feature 

representation with the corresponding patch-level classification score across channels, i.e., 

as a 1 × 1 × 1 × (64 + C) tensor. These patch-level outputs are then used as the inputs for the 

subsequent region-level sub-networks. In particular, here the classification scores for each 

specific patch can be regarded as high-level, task-oriented features, which is similar to the 

auto-context strategy used in image segmentation [59], [60]. That is, as complementary to 

the patch-level feature representations, the subsequent classification scores could potentially 

provide more direct and higher semantic information with respect to the diagnostic task. 

Also, using both of them as the inputs for the region-level sub-networks, the patch-level 

classification scores could be jointly optimized with the patch-level feature representations 

under multi-scale supervision (which will be detailed in Section 4.2).

Then, we group spatially-nearest patches, e.g., in a 2 × 2 × 2 neighborhood of each patch, to 

form a specific region (or second-level patch). Accordingly, the corresponding patch-level 

outputs are concatenated by taking into account their spatial relationship, e.g., as a 2×2×2×

(64+C) tensor. As shown in Fig. 1, for each specific region, a region-level Conv layer (i.e., 

Conv R) is then applied on the concatenated tensor to generating a region-level feature 
representation (size: 1×1×1×64), based on which a region-level classification score is further 

produced by the subsequent classification layer (i.e., Class R). Similar to the patch-level sub-

networks, the diagnostic score accuracy of each region-level sub-network indicates the 

discriminative capacity of the corresponding region. Notably, the specific regions (or 

second-level patches) described here are partially overlapped. The shapes of them are 

deformable, depending on the location proposals. Specifically, in nH-FCN, these regions are 

regular partitions of the template image, which are further deformed for each subject in the 

linearly-aligned image space. In nH-FCN, these regions have irregular shapes, determined 

by the locations of pre-defined anatomical landmarks.
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4.1.4 Subject-level sub-network—Finally, all region-level feature representations 

(size: 1×1×1 × 64) and classification scores (size: 1 × 1 × 1 × C) are concatenated. They are 

further processed by the subject-level Conv layer (i.e., Conv S in Fig. 1) to obtain a subject-
level feature representation (size: 1 × 1 × 1 × 64), based on which a subject-level 
classification score (size: 1×1×1×C) is produced by the ultimate classification layer (i.e., 

Class_S in Fig. 1).

It is worth noting that, in our proposed H-FCN method, the discriminative power of the sub-

networks defined at different scales is expected to increase monotonously, as posterior sub-

networks are trained to effectively integrate outputs of preceding sub-networks to produce 

higher-level features for the diagnostic task.

4.2 Hybrid Loss Function

We design a hybrid cross-entropy loss to effectively learn our proposed H-FCN, in which the 

subject-level labels are used as weakly-supervised guidance for the training of patch-level 

and region-level sub-networks. Specifically, let Xn, yn n = 1
N  be a training set containing N 

samples, where Xn and yn ∈ {1, …, C} denote, respectively, the sMRI for the nth subject and 

the corresponding class label. The learnable parameters for the patch-, region-, and subject-

level sub-networks are denoted, respectively, as Wp, Wr, and Ws. Then, our hybrid cross-

entropy loss is designed as:

ℒ Wp, Wr, Ws =

− λp

N ∑
n = 1

N 1
C ∑

c = 1

C
δn, clog 𝒫p yn = c Xn; Wp, Wr, Ws

− λr

N ∑
n = 1

N 1
C ∑

c = 1

C
δn, clog 𝒫r yn = c Xn; Wr, Ws

− 1
N ∑

n = 1

N 1
C ∑

c = 1

C
δn, clog 𝒫s yn = c Xn; Ws ,

(1)

where δn,c is a binary indicator of the ground-truth class label, which equals 1 iff yn = c. 

Function 𝒫p( ⋅ | ⋅ ), 𝒫r( ⋅ | ⋅ ), and 𝒫s( ⋅ | ⋅ ) denote the probability obtained, respectively, by 

the patch-, region-, and subject-level sub-networks, in terms of a given subject (e.g., Xn) 

being diagnosed as a specific class (e.g., yn = c). Thus, given a training set Xn, yn n = 1
N , the 

first to the last terms of Eq. (1) denote, respectively, the average loss for all patch-level sub-

networks, the average loss for all region-level sub-networks, and the loss for the subject-

level subnetwork.

As can be inferred from the form of 𝒫p( ⋅ | ⋅ ) and 𝒫r( ⋅ | ⋅ ), the training loss from higher-

level sub-networks are back-propagated and merged into lower-level sub-networks to assist 

the updating of their network parameters. Tuning parameters λp and λr control, respectively, 
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the influences of patch-level and region-level training losses, which were empirically set as 1 

in our experiments.

4.3 Network Pruning

After training the initial H-FCN model by minimizing Eq. (1) directly, the discriminative 

capabilities of input location proposals can be automatically inferred in a data-driven 

manner. Based on the resulting diagnostic/classification scores on the training set for each 

patch-level and region-level sub-networks, we further refine the initial H-FCN by pruning 

sub-networks to remove uninformative patches and regions. An illustration of such network 

pruning step is denoted by small red crosses in Fig. 1.

Specifically, we select the top Tr regions and Tp patches with the lowest diagnostic losses on 

the training set. Then, we delete those uninformative (i.e., not listed in the top Tr) region-

level sub-networks, and hence the connections between those uninformative regions and the 

preceding patches are simultaneously removed. We further prune the uninformative (i.e., not 

listed in the top Tp) patch-level sub-networks that connect to the remaining (informative) 

region-level sub-networks. Finally, we remove the sub-networks for regions (as well as their 

corresponding patch-level connections) that are completely included in other regions to form 

the pruned H-FCN model.

The pruned H-FCN model yielded in the above manner contains much less learnable 

parameters than the initial H-FCN model. It is worth noting that those informative regions 

remained in the pruned H-FCN model may have different shapes and sizes, as they are 

constructed on the outputs of varying numbers of informative patches. Also, these regions 

are potentially overlapped. In our experiments, we selected top 10 regions (i.e., Tr = 10) and 

top 20 patches (i.e., Tp = 20) to prune the network.

4.4 Implementations

The proposed networks were implemented using Python based on the Keras package2, and 

the computer we used contains a single GPU (i.e., NVIDIA GTX TITAN 12GB). The Adam 

optimizer with recommended parameters was used for training, and the size of mini-batch 

was set as 5. The networks were trained on one complete dataset (e.g., ADNI-1), and then 

tested on the other independent dataset (e.g., ADNI-2). We randomly selected 10% training 

samples as the validate set. The diagnostic models and the corresponding tuning parameters 

(e.g., the patch size) were chosen in terms of the validation performance.

In the training stage, the definition of the voxel-wise correspondence for the extraction of 

anatomically-consistent image patches requires about 10 minutes for each subject. We 

trained the networks for 100 epochs, which took around 14 hours (i.e., 500 seconds for each 

epoch). In the application stage, the diagnosis for an unseen testing subject only requires less 

than 2 seconds, based on its non-linear registration deformation field (for the definition 

voxel-wise correspondence) and trained networks.

2.https://github.com/fchollet/keras
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4.4.1 Training strategy—For the task of AD classification (i.e., AD vs. NC), the initial 

wH-FCN model was trained from scratch by minimizing Eq. (1) directly. After identifying 

the most informative patches and regions, the pruned wH-FCN model was trained in a deep 

manner. That is, the sub-networks at each scale of the pruned network were first trained 

sequentially by freezing the preceding sub-networks (i.e., at finer scales) and minimizing the 

corresponding term in Eq. (1). After that, by using the learned parameters as initialization, 

all sub-networks were further refined jointly.

4.4.2 Transfer learning—Compared with the task of AD classification, the task of MCI 

conversion prediction is relatively more challenging, since structural changes of MCI brains 

(between those of NC and AD brains) caused by dementia may be very subtle. Considering 

that the two classification tasks are highly correlated, recent studies [19], [34] have shown 

that the supplementary knowledge learned from AD and NC subjects can be adopted to 

enrich available information for the prediction of MCI conversion. Accordingly, in our 

implementation, we transferred the network parameters learned for AD diagnosis (i.e., AD 

vs. NC classification) to initialize the training of the network for pMCI vs. sMCI 

classification.

4.4.3 Data augmentation—To mitigate the over-fitting issue, 0.5 dropout was activated 

for the Conv6, Conv R, and Conv S layers in Fig. 1. Also, the training samples were 

augmented on-the-fly using three main strategies, i.e., i) randomly flipping the sMRI for 

each subject, ii) randomly distorting the sMRI with a small scale for each subject, and iii) 

randomly shifting at each location proposal within a 5 × 5 × 5 neighborhood to extract 

image patches. It is worth mentioning that the operation of randomly shifting was designed 

specifically for our proposed method. When combined with the first two operations, it could 

effectively augment the number and diversity of available samples for training our H-FCN 

model. Moreover, as introduced in Section 4.1.2, the patch-level sub-networks shared 

weights across different patch locations in our implementations. This could also help reduce 

the over-fitting risk, considering the number of learnable parameters was effectively reduced 

and the input image patches were extracted at different brain locations with various 

anatomical appearances. In addition, based on identified discriminative locations, the 

network pruning strategy introduced in Section 4.3 further reduced the number of learnable 

parameters to tackle the over-fitting challenge.

5 Experiments and Analyses

In this section, we first compare our H-FCN method with several state-of-the-art methods. 

Then, we validate the effectiveness of the important components of our method, including 

the prior knowledge for location proposals, the network pruning strategy, and the transfer 

learning strategy. After that, we further evaluate the influence of the network parameters 

(e.g., the size and number of input image patches) as well as the training data partition on 

the diagnostic performance. Finally, we verify the multi-scale discriminative locations 

automatically identified by our H-FCN method.
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5.1 Experimental Settings

Our H-FCN method was validated on both tasks of AD classification (i.e., AD vs. NC) and 

MCI conversion prediction (i.e., pMCI vs. sMCI). The classification performance was 

evaluated by four metrics, including classification accuracy (ACC), sensitivity (SEN), 

specificity (SPE), and area under receiver operating characteristic curve (AUC). These 

metrics are defined as ACC = TP+TN
TP+TN + FP + FN , SEN = TP

TP+FN , and SPE = TN
TN+FP , where TP, 

TN, FP, and FN denote, respectively, the true positive, true negative, false positive, and false 

negative values. The AUC is calculated based on all possible pairs of SEN and 1-SPE 

obtained by changing the thresholds performed on the classification scores yielded by the 

trained networks.

5.2 Competing Methods

The proposed wH-FCN method was first compared with three conventional learning-based 

methods, including 1) a method using region-level feature representations (denoted as ROI) 

[14], 2) a method using voxel-level feature representations, i.e., voxel-based morphometry 

(VBM) [36], and 3) a method using patch-level feature representations, i.e., landmark-based 

morphology (LBM) [23]. Besides, wH-FCN was further compared with a state-of-the-art 

deep-learning-based method, i.e., 4) deep multi-instance learning (DMIL) model [34].

1) Region-based method (ROI): Following previous studies [14], the whole brain 

sMRI data were partitioned into multiple regions to extract region-scale features for SVM-

based classification. More specifically, each sMRI was first segmented into three tissue 

types, i.e., gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF), by using 

the FAST algorithm [61] in the FSL package3. Then, the anatomical automatic labeling 

(AAL) atlas [62], with 90 pre-defined ROIs in the cerebrum, was aligned to each subject 

using the HAMMER algorithm [63]. Finally, the GM volumes in the 90 ROIs were 

quantified, and further normalized by the total intracranial volume (estimated by the 

summation of GM, WM, and CSF volumes), to train linear SVM classifiers.

2) Voxel-based morphometry (VBM): In line with [36], all sMRI data were spatially 

normalized to the Colin27 template to extract local GM density in a voxel-wise manner. 

After that, a statistical group comparison based on t-test was performed to reduce the 

dimensionality of the high-dimensional voxel-level feature representations. Finally, linear 

SVM classifiers were constructed for disease diagnosis.

3) Landmark-based morphometry (LBM): In the LBM method [23], morphological 

features (i.e., local energy pattern [64]) were first extracted from a local image patch 

centered at each pre-defined anatomical landmark. These patch-level feature representations 

were further concatenated and processed via z-score normalization process [65] to perform 

linear SVM-based classification.

3.http://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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4) Deep multi-instance learning (DMIL): The DMIL method [34] adopted local 

image patches to develop a CNN-based multi-instance model for brain disease diagnosis. 

Specifically, multiple image patches were first localized by anatomical landmarks. Then, 

each input patch was processed by a CNN to yield the corresponding patch-level feature 

representations. These patch-level features were finally concatenated and fused by fully 

connected layers to produce subject-level feature representations for AD classification and 

MCI conversion prediction. In line with [34], totally 40 landmarks were selected to construct 

the classifier.

Notably, our implementation of wH-FCN shared the same landmark pool with the LBM and 

DMIL methods. However, the key difference between them is that, based on prior 

knowledge, both the LBM and DMIL methods first pre-selected the top 40 landmarks as 

inputs. In contrast, our wH-FCN method regarded all anatomical landmarks equally as 

potential location proposals, without explicit assumption concerning their discriminative 

capacities.

5.3 Diagnostic Performance

In this group of experiments, the baseline ADNI-1 and ADNI-2 datasets were used as the 

training and testing sets, respectively. Results of AD vs. NC and pMCI vs. sMCI 

classification obtained by the competing methods (i.e., ROI, VBM, LBM, and DMIL) and 

our wH-FCN method are presented in Table 2.

Several observations can be summarized from Table 2. 1) Three patch-based methods (i.e., 

LBM, DMIL, and wH-FCN) yield better classification results than both the ROI method and 

VBM method. This shows that, as an intermediate scale between the region-level and voxel-

level feature representations, the patch-level feature representations could provide more 

discriminative information regarding subtle brain changes for brain disease diagnosis. 2) For 

both diagnosis tasks, deep-learning-based methods (i.e., DMIL and wH-FCN) outperform 

other three traditional learning-based methods (i.e., the ROI, VBM, and LBM methods) with 

relatively large margins, demonstrating that learning task-oriented imaging features in a 

data-driven manner is beneficial for subsequent classification tasks. 3) Compared with the 

state-of-the-art DMIL method, our proposed wH-FCN method has competitive performance 

in the fundamental task of AD classification. More importantly, our wH-FCN method yields 

much better results on the more challenging task, i.e., MCI conversion prediction. 

Specifically, the performance improvements brought by our method with respect to ACC, 

SEN, and SPE are all statistically significant (i.e., p-values < 0.05) in pMCI vs. sMCI 

classification. The main reason could be that the integration of discriminative localization, 

feature extraction, and classifier construction into a unified deep learning framework is 

effective for improving diagnostic performance, since, in this way, the three important steps 

can be more seamlessly coordinated with each other in a task-oriented manner. The DMIL 

method slightly outperforms our wH-FCN method in the task of AD vs. NC classification, 

with p-values > 0.5 for both ACC and AUC. It perhaps due to the reason that the AD 

classification task has less strict requirement for task-oriented discriminative localization 

than the MCI conversion prediction task, considering the structural changes in brains with 

AD should be easier to be captured. Another reason could be that DMIL constructed specific 
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CNNs (i.e., with different network parameters) for image patches extracted at different brain 

locations. Nevertheless, as a compromise, such kind of implementations inevitably increases 

the computational complexity, especially when a relatively large number of local patches are 

extracted as the network inputs.

5.4 Effectiveness of Prior Knowledge for Location Proposals

As introduced in Section 4.1.1, in the implementation of our wH-FCN method, the 

anatomical landmarks were used as prior knowledge to assist the definition of relatively 

informative location proposals, i.e., to efficiently filter out uninformative locations. To 

evaluate the effectiveness of this strategy, we also designed another version of our proposed 

network (i.e., nH-FCN) for comparison, in which the location proposals were defined 

without any prior knowledge.

In Fig. 2, the two variants of our method (i.e., nH-FCN and wH-FCN) are compared on both 

the tasks of AD classification and MCI conversion prediction. According to Fig. 2 and Table 

2, we can have at least two observations. 1) Compared with the state-of-the-art method (i.e., 

DMIL), our nH-FCN and wH-FCN consistently lead to competitive performance, especially 

on the challenging task of MCI conversion prediction. For example, in the case of DMIL vs. 
nH-FCN, the ACC and SEN for MCI conversion prediction is 0.769 vs. 0.791 and 0.421 vs. 
0.526, respectively. In some sense, this reflects the robustness of our proposed method in 
terms of location proposals. 2) Our wH-FCN outperforms nH-FCN on both tasks, e.g., the 

AUC for AD classification is 0.951 vs. 0.938, and for MCI conversion prediction is 0.781 vs. 
0.777. It indicates that wH-FCN may include more informative patches as the initial inputs, 

compared with nH-FCN that does not consider any prior knowledge on discriminative 

locations in sMRI. Also, it potentially implies that, if we could initialize the network with 

more informative location proposals, the diagnostic performance of our proposed H-FCN 

method could be further improved.

5.5 Effectiveness of Hierarchical Network Pruning

As introduced in Section 4.3, a key component of our proposed method is the network 

pruning strategy to hierarchically prune uninformative region-level and patch-level sub-

networks, thereby reducing the number of learnable parameters and ultimately boosting the 

diagnostic performance.

In this group of experiments, we evaluated the effectiveness of the network pruning as well 

as the hierarchical architecture used in our proposed wH-FCN method. Specifically, using 

the task of AD diagnosis as an example, we performed a two-fold evaluation, including 1) 

the comparison between the initial network without network pruning and the refined 

network with network pruning, and 2) the comparison of classification performance for sub-

networks defined at different (i.e., patch-, region-, and subject-) levels.

The corresponding experimental results are presented in Fig. 3, from which we can have the 

following observations. 1) Our network pruning strategy effectively improves the 

classification performance of the sub-networks defined at the three different scales, where 

the improvement for the patch-level and region-level sub-networks is especially significant. 

This implies that those uninformative patches and regions in the initial network were largely 
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removed due to the network pruning strategy. 2) From the patch-level to the subject-level, 

the sub-networks defined at different scales lead to monotonously increased classification 

performance in terms of all the four metrics. This indicates that, capitalizing on the 

hierarchically integration of feature representations from lower-level sub-networks, our 

proposed method can effectively learn more discriminative feature representations for the 

diagnosis task at hand.

5.6 Effectiveness of Transfer Learning

As introduced in Section 4.4.1, we used the network parameters learned from the task of AD 

classification as initialization to train networks for the relatively challenging task of MCI 

conversion prediction, considering that the two tasks are highly correlated according to the 

nature of AD.

In this group of experiments, we verified the effectiveness of the transferred knowledge for 

the network training. To this end, we trained another network from scratch for MCI 

conversion prediction, and compared the resulting classification performance with that 

obtained by the previous network trained with transferred knowledge.

The corresponding results are presented in Fig. 4, based on which we can find that 

initialization of networks with transferred knowledge could further boost a little bit of 

diagnostic performance. This is intuitive and reasonable, especially under the circumstance 

that the two diagnosis tasks are correlated. The possible reason is that the training data in the 

task of pMCI vs. sMCI classification are implicitly enriched since the supplementary 

information of AD and NC subjects is also included.

5.7 Influence of the Number of Image Patches

In this group of experiments, we investigated the influence of the number of input image 

patches (denoted as P) on the classification performances achieved by our wH-FCN method. 

Using AD classification as an example, we orderly selected P from {40, 60, 80, 100, 120} in 

wH-FCN and recorded the corresponding results. Experimental results quantified by ACC 

and AUC are summarized in Fig. 5.

From Fig. 5, we can observe that both the values of ACC and AUC are clearly increased 

when changing P from 40 to 80. For example, we have ACC = 0.850 and AUC = 0.883 when 

P = 40, while ACC = 0.903 and AUC = 0.946 when P = 80. This implies that less location 

proposals are not enough to yield satisfactory results, potentially because 1) limited number 

of local patches cannot comprehensively characterize the global information at the subject-

level, and 2) limited number of location proposals may fail to include some actually 

discriminative locations at the very beginning. We can also observe that the performance of 

our method is relatively stable between P = 80 and P = 120, considering that the 

improvements of ACC and AUC are slow. The main motivation for choosing P = 120 in our 

implementations is to largely include potentially informative locations, as well as to account 

for the computational complexity and memory cost during the training.
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5.8 Influence of the Size of Image Patches

In previous implementations of our H-FCN method, the size of input image patches was 

fixed as 25×25×25. To evaluate the influence of patch size, in this group of experiments, we 

trained networks using local patches with the size of 15×15×15, 25×25×25, 35×35×35, and 

45×45×45, one by one. Correspondingly, the classification results in terms of ACC and AUC 

are reported in Fig. 6.

From Fig. 6, we can see that our proposed H-FCN method is not very sensitive to the size of 

input patch in a wide range (i.e., from 15 × 15 × 15 to 45 × 45 × 45), and the overall better 

result is obtained using patches with the size in the range of [25×25×25,35×35×35]. Also, 

H-FCN using relatively smaller image patches (i.e., 15 × 15 × 15) cannot generate good 

results, implying that too small image patches could not capture global structural 

information of the whole brain. On the other hand, the performance of H-FCN using larger 

image patches (i.e., 45×45×45) is also slightly decreased. It may be because too large image 

patches inevitably include more uninformative voxels, which could affect the identification 

of subtle brain changes in these large patches.

5.9 Influence of Data Partition

In all the above experiments, we trained and tested the classification networks on the 

baseline ADNI-1 and ADNI-2 datasets, respectively. To study the influence of training data 

as well as the generalization ability of our proposed method, in this group of experiments, 

we reversed the training and testing sets to train the network on ADNI-2, and then apply the 

learned network on ADNI-1 for AD classification.

Accordingly, the classification results on the testing set (i.e., ADNI-1) are summarized in 

Table 3, in which our proposed wH-FCN method is compared with a state-of-the-art patch-

based method (i.e., LBM). We can observe that our proposed wH-FCN method still 

outperforms the competing method in this scenario. In addition, by comparing the results 

achieved by wH-FCN trained on ADNI-2 (Table 3) with the results achieved by wH-FCN 

trained on ADNI-1 (Table 2), it can be seen that the diagnostic results are comparable (e.g., 

0.895 vs. 0.903 for ACC, and 0.945 vs. 0.951 for AUC). The network constructed on 

ADNI-1 is slightly better, possibly due to the fact that more training subjects are available in 

ADNI-1 than in ADNI-2. These experiments suggest that our proposed H-FCN model has 

good generalization capacity in sMRI-based AD diagnosis.

5.10 Automatically-Identified Multi-Scale Locations

Our proposed H-FCN method can automatically identify hierarchical discriminative 

locations of brain atrophy at both the patch-level and region-level. In Fig. 7, we visually 

verify those automatically-identified locations in distinguishing between AD and NC as well 

as between pMCI and sMCI.

Specifically, the first, second, and third rows of Fig. 7 present the discriminative atrophy 

locations identified, respectively, by the wH-FCN trained for AD classification, the nH-FCN 

trained for AD classification, and the wH-FCN trained from scratch for MCI conversion 

prediction. Also, the left and right panels of Fig. 7 denote, respectively, the patch-level and 
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region-level discriminative atrophy locations identified by our method. From Fig. 7, we can 

have the following observations. 1) In all three different cases, our proposed H-FCN method 

consistently localized multiple locations at the hippocampus, ventricle, and fusiform gyrus. 

It is worth noting that the discriminative capability of these brain regions in AD diagnosis 

has already been reported by previous studies [7], [23], [31], [69], which implies the 

feasibility of our proposed method. 2) For AD classification, although different location 

proposals were used, the two different implementations of our proposed method (i.e., wH-

FCN and nH-FCN) identified multiple patches and regions that are largely overlapped or 

localized at similar brain regions. 3) The patches and regions identified by our wH-FCN 

trained from scratch for MCI conversion prediction (i.e., the third row) were largely 

consistent with those identified by our wH-FCN trained for AD classification (i.e., the first 

row), although totally different subjects were used to train the networks in the two different 

but highly-correlated tasks. Statements in both 2) and 3) imply the robustness of our 

proposed method in identifying discriminative atrophy locations in sMRI for AD-related 

brain disease diagnosis.

Also, based on the identified patch-level discriminative locations, it is intuitive to further 

localize AD-related structural abnormalities at a finer scale (i.e., voxel-level). As an 

example, Fig. 8 presents the discriminative patches localized by our wH-FCN method in six 

patients with AD, and the corresponding voxel-level AD heatmaps generated by the method 

proposed in [35] for these patches. To generate such voxel-level heatmaps, we used the 

identified patches to train a 3D FCN described in Fig. S3 of the Supplementary Materials. 

The architecture of this 3D FCN is similar to the PSN module used in our H-FCN, but with 

several essential modifications. Specifically, in this 3D FCN method, we removed the 

pooling layers and included zero-padding in the convolutional (Conv) layers to preserve the 

spatial resolution of the input patches for the following feature maps. We then used a global 

average pooling layer followed by a fully connected (FC) layer (without bias) to produce the 

classification score. After training, the voxel-level AD heatmaps were finally calculated 

based on the FC weights and the outputs of the last Conv layer, using the operation proposed 

in [35]. From Fig. 8, we can observe that, based on the discriminative patches localized by 

our H-FCN method, we could further identify more detailed discriminative locations at the 

voxel level, e.g., the hippocampus, and the corners and boundaries of the ventricle. 

Potentially, we may also replace the PSN module (shown in Fig. 1) with the above FCN to 

directly produce the voxel-level AD heatmaps in our H-FCN, while it will inevitably 

increase the computational complexity for training, due to the high spatial resolutions of 

intermediate feature maps.

Moreover, we further verified the effectiveness of another two strategies (i.e., the voxel-wise 

anatomical correspondence for location proposals and the hierarchical architecture) used in 

our H-FCN method, and also analyzed the influence of the size of regional inputs on the 

diagnostic performance. These experimental results can be found in Section 1 to Section 3 of 

the Supplementary Materials.
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6 Discussion

In this section, we first summarize the main differences between our proposed H-FCN 

method and previous studies on AD-related brain disease diagnosis. We also point out the 

limitations of our proposed method as well as potential solutions to deal with these 

limitations in the future.

6.1 Comparison with Previous Work

Compared with the conventional region- and voxel-level pattern analysis methods [7], [8], 

[9], [10], [11], [12], [13], [14], [16], [17], [18], [41], [45], our proposed H-FCN method 

adopted local image patches (an intermediate scale between voxels and regions) as inputs to 

develop a hierarchical classification model. Specifically, multi-scale (i.e., patch-, region-, 

and subject-level) sub-networks were hierarchically constructed in our proposed method, by 

using outputs of preceding sub-networks as inputs. In this way, local-to-global 

morphological information was seamlessly integrated for comprehensive characterization of 

brain atrophy caused by dementia. Also, different from conventional patch-level pattern 

analysis methods [19], [21], [22], [23] using manually-engineered imaging features, our 

proposed H-FCN method can automatically learn high-nonlinear feature representations, 

which are more consistent with subsequent classifiers, leading to more powerful diagnosis 

capacity.

Our proposed H-FCN method is also different from existing deep-learning-based AD 

diagnosis methods in the literature [31], [33], [34], [50], [51], [66], [68]. First and foremost, 

in contrast to existing CNN-based methods that require the pre-determination of informative 

brain regions [31], [33] or local patches [34] for feature extraction, our proposed method 

integrated automatic discriminative localization, feature extraction, and classifier 

construction into a unified framework. In this way, these three correlated tasks can be more 

seamlessly coordinated with each other in a task-oriented manner. In addition, rather than 

using solely the mono-scale feature representations, our proposed method extracted and 

fused complementary multi-scale feature representations to construct a hierarchical 

classification model for brain disease diagnosis.

In Table 4, we briefly summarize several state-of-the-art results reported in the literature for 

AD classification and/or MCI conversion prediction using baseline sMRI data of ADNI, 

including seven conventional learning-based methods (i.e., voxel-level analysis [9], [41], 

region-level analysis [17], [45], and patch-level analysis [19], [21], [22]), and five deep-

learning-based methods (i.e., [33], [50], [51], [66], [68]). It is worth noting that the direct 

comparison between these methods is impossible due to the utilization of different datasets. 

That is, the results in Table 4 are not fully comparable, since these studies were performed 

with the varying number of subjects, and also the varying partition of training and testing 

samples, and the definition of pMCI/sMCI may be partially different as well. However, by 

roughly comparing our study (i.e., the last row of Table 4) with these state-of-the-art 

methods, we can still have several observations. First, in contrast to the studies using only 

fractional sMRI data of ADNI-1, our proposed method was evaluated on a much larger 

cohort of 1,457 subjects from both ADNI-1 and ADNI-2, which should be more challenging 

but more fair. Second, using a more challenging evaluation protocol (i.e., independent 
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training and testing sets), our method also obtained competitive classification performance, 

especially for MCI conversion prediction. Third, compared with [68] that constructed an 

end-to-end CNN model using the whole brain sMRI data and [33] that constructed a CNN 

model using hippocampal sMRI data, our proposed method yielded better diagnostic results. 

This implies that, due to the use of hierarchical architecture and automatic discriminative 

localization, our method is more sensitive to subtle structural changes in sMRI caused by 

dementia.

6.2 Limitations and Future Work

While our proposed H-FCN method achieved good results in automatic discriminative 

localization and brain disease diagnosis, its performance and generalization capacity could 

be further improved in the future by carefully dealing with the following limitations or 

challenges.

First, in our current implementation, the size of input image patches was fixed for all 

location proposals. Considering the structural changes caused by dementia may vary across 

different locations, it is reasonable to extend our proposed method by using multi-scale 

image patches. To flexibly design sub-networks with shared-weights for multi-scale image 

patches, we could potentially modify our network architecture by including global pooling 

layers. Second, the network pruning strategy used in our current method may be too 

aggressive, since removed patches or regions will no longer be considered, while those 

pruned patches/regions could contain supplementary information (when combined with 

other distinctive patches/regions) for robust model training. Therefore, it is interesting to 

design a more flexible pruning strategy to re-use those removed patches/regions based on 

some criteria. Third, the non-linear registration step was required for establishing the voxel-

wise anatomical correspondence across different subjects, which inevitably increased the 

computational complexity in the testing phase. To accelerate our proposed method for 

predicting unseen subjects, we could alternatively construct another automatic detection 

model (e.g., in [70]), using the training sMRIs and identified discriminative locations as the 

input and ground truth, respectively. Then, we could directly predict the identified 

discriminative locations for unseen subjects in the linearly-aligned image space, without 

using any time-consuming non-linear registration in the testing phase. Forth, in our current 

method, the location proposal module is isolated to the subsequent network. It should be a 

promising direction to further unify this important module into our current deep learning 

framework to automatically and specifically generate location proposals for each individual 

subjects. To this end, we could potentially develop a multi-task learning model. For 

example, we could include a weakly-supervised FCN (e.g., [35]) constructed on the whole 

brain sMRI to generate location proposals on high-resolution feature maps. Then, based on 

the location proposals and feature maps produced by this FCN, we could further construct 

our proposed H-FCN model for precise discriminative localization and brain disease 

diagnosis. Furthermore, it is worth mentioning that the datasets studied in this paper have 

different imaging data distributions due to the use of different scanners (i.e., 1.5T and 3T 

scanners) in ADNI-1 and ADNI-2. Hence, including domain adaptation [71] module into 

our current method could further improve its generalization capability.
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7 Conclusion

In this study, a hierarchical fully convolutional network (H-FCN) was proposed to 

automatically identify multi-scale (i.e., patch- and region-level) discriminative locations in 

sMRI to construct the hierarchical classifier for AD diagnosis and MCI conversion 

prediction. On the two public datasets with 1,457 subjects, the effectiveness of our proposed 

method on joint discriminative localization and disease diagnosis has been extensively 

evaluated. Compared with several state-of-the-art CAD methods, our proposed method has 

demonstrated better or at least comparable classification performance, especially in the 

relatively challenging task of MCI conversion prediction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Illustration of our hierarchical fully convolutional network (H-FCN), which includes four 

components: 1) location proposals, 2) patch-level sub-networks, 3) region-level sub-

networks, and 4) subject-level sub-network.
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Fig. 2. 
Comparison between no-prior locations proposals (i.e., nH-FCN) and with-prior location 

proposals (i.e., wH-FCN). (a) and (b) show the classification results for AD diagnosis and 

MCI conversion prediction, respectively.
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Fig. 3. 
Results of AD classification produced by our wH-FCN method with and without the 

network pruning strategy, respectively. For each case, the average classification performance 

of the sub-networks defined at different scales are presented.

Lian et al. Page 28

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2020 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Comparison between our wH-FCN models trained without and with transferred knowledge, 

respectively, for MCI conversion prediction. In the latter case, the parameters of the network 

for AD classification were transferred to initialize the training of the network for MCI 

conversion prediction.
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Fig. 5. 
Results of AD classification obtained by our wH-FCN method in terms of different numbers 

of input image patches (i.e., P = 40,60, …, 120).
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Fig. 6. 
Results of AD classification obtained by our wH-FCN method in terms of different sizes of 

input image patches (i.e., 15 × 15 × 15, 25 × 25 × 25, 35 × 35 × 35, and 45 × 45 × 45).
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Fig. 7. 
Discriminative locations automatically identified by our proposed method at the patch-level 

(i.e., the left panel) and region-level (i.e., the right panel). The first to third rows correspond, 

respectively, to our proposed wH-FCN model trained for AD classification, our proposed 

nH-FCN model trained for AD classification, and our proposed wH-FCN model trained 

from scratch for MCI conversion prediction.
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Fig. 8. 
Voxel-level AD heatmaps for the discriminative patches automatically-identified by our H-

FCN method in six different subjects. The heatmaps and the image patches have the same 

spatial resolution (i.e., 25×25×25). Note that voxels with warmer (or more yellow) colors in 

these heatmaps have higher discrminative capacities.
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TABLE 1

Demographic information of the subjects included in the studied datasets (i.e., the baseline ADNI-1 and 

ADNI-2). The gender is reported as male/female. The age, education years, and mini-mental state examination 

(MMSE) values [54] are reported as Mean ± Standard deviation (Std).

Dataset Category Gender Age Education MMSE

ADNI-1

NC 127/102 75.8±5.0 16.0±2.9 29.1±1.0

sMCI 151/75 74.9±7.6 15.6±3.2 27.3±1.8

pMCI 102/65 74.8±6.8 15.7±2.8 26.6±1.7

AD 106/93 75.3±7.5 14.7±3.1 23.3±2.0

ADNI-2

NC 113/87 74.8±6.8 15.7±2.8 26.6±1.7

sMCI 134/105 71.7±7.6 16.2±2.7 28.3±1.6

pMCI 24/14 71.3±7.3 16.2±2.7 27.0±1.7

AD 91/68 74.2±8.0 15.9±2.6 23.2±2.2
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TABLE 2

Results for AD classification (i.e., AD vs. NC) and MCI conversion prediction (i.e., pMCI vs. sMCI).

Method
AD vs. NC classification pMCI vs. sMCI classification

ACC SEN SPE AUC ACC SEN SPE AUC

ROI 0.792 0.786 0.796 0.867 0.661 0.474 0.690 0.638

VBM 0.805 0.774 0.830 0.876 0.643 0.368 0.686 0.593

LBM 0.822 0.774 0.861 0.881 0.686 0.395 0.732 0.636

DMIL 0.911 0.881 0.935 0.959 0.769 0.421 0.824 0.776

wH-FCN 0.903 0.824 0.965 0.951 0.809 0.526 0.854 0.781
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TABLE 3

Results for AD classification (i.e., AD vs. NC) on the baseline ADNI-1, using the baseline ADNI-2 as the 

training set.

Method ACC SEN SPE AUC

LBM 0.820 0.824 0.817 0.887

wH-FCN 0.895 0.879 0.910 0.945
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