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Automated detection of third 
molars and mandibular nerve by 
deep learning
Shankeeth Vinayahalingam1,3, Tong Xi1, Stefaan Bergé1, Thomas Maal1,3 & Guido de Jong2

The approximity of the inferior alveolar nerve (IAN) to the roots of lower third molars (M3) is a risk 
factor for the occurrence of nerve damage and subsequent sensory disturbances of the lower lip and 
chin following the removal of third molars. To assess this risk, the identification of M3 and IAN on dental 
panoramic radiographs (OPG) is mandatory. In this study, we developed and validated an automated 
approach, based on deep-learning, to detect and segment the M3 and IAN on OPGs. As a reference, 
M3s and IAN were segmented manually on 81 OPGs. A deep-learning approach based on U-net was 
applied on the reference data to train the convolutional neural network (CNN) in the detection and 
segmentation of the M3 and IAN. Subsequently, the trained U-net was applied onto the original OPGs 
to detect and segment both structures. Dice-coefficients were calculated to quantify the degree of 
similarity between the manually and automatically segmented M3s and IAN. The mean dice-coefficients 
for M3s and IAN were 0.947 ± 0.033 and 0.847 ± 0.099, respectively. Deep-learning is an encouraging 
approach to segment anatomical structures and later on in clinical decision making, though further 
enhancement of the algorithm is advised to improve the accuracy.

The removal of the third molar is one of the most frequently performed surgical procedures in oral surgery. In the 
United States 10 million third molars are removed from approximately 5 million people annually1 Across the past 
three generations, the worldwide rate of third molar impaction was hovering at around 24.4%2,3.

As with other forms of surgery, the surgical removal of the lower third molars is associated with risk for com-
plications. One of the most distressing complications following the removal of lower third molars is damage to 
the inferior alveolar nerve (IAN)4. IAN injuries cause temporary, and in certain cases, permanent neurosensory 
impairments in the lower lip and chin5, with an incidence of 3.5% and 0.91% respectively6. Therefore, preventing 
damage to the IAN is of utmost importance in the daily clinical practice.

Conventional two-dimensional panoramic radiograph, the orthopantomogram (OPG), is the most commonly 
used imaging technique to assess third molars and their relationship to the mandibular canal7–10. Previous studies 
have demonstrated that certain radiographic features on OPGs, such as darkening of the root, narrowing of the 
mandibular canal, interruption of the white line, are risk factors for IAN injuries11–13. A recent meta-analysis 
reported that darkening of the roots had a high specificity in predicting IAN injury14. However, the predictive 
factor was not satisfactory as an evident heterogenicity was seen across all the included studies. Apparently, high 
intra-observer and inter-observer variability of the radiographic signs exists. Examiners are not always able to 
identify and assess the specific signs in a reliable way on OPGs8.

Prediction and evaluation modelling methods based on deep-learning have proven to be useful in solving 
complex multifactorial problems in medicine15. Deep-learning has been applied to identify pulmonary nodes on 
high-resolution CTs and state-of-the-art performance has been achieved16. Parallel, there may be a high potential 
for the implementation of deep-learning in the detection of third molars, mandibular canals and the identifica-
tion of certain radiographic signs for potential IAN injuries. The combined use of deep learning and OPG may 
allow an improved risk assessment of IAN injuries prior to the removal of third molars.

The aim of this present study was to achieve an automated high-performance segmentation of the third 
molars, and the inferior alveolar nerves (IAN) on OPG images using deep-learning as a fundamental basis for an 
improved and more automated risk assessment of IAN injuries.
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Results
Lower M3 dentition detection.  The lower M3 had a mean DICE of 0.947 (SD = 0.049) for the training 
data and a DICE of 0.936 (SD = 0.025) for the validation data (Table 1). In the training data one M3 was missed. 
Although a mean lower M3 was composed of less than 1% of the total OPG pixels, a mean and median sensitivity 
of 95% was achieved in both the training and validation set (Fig. 3).

IAN detection.  The IAN detection had a mean DICE of 0.768 (SD = 0.119) for the training data and a DICE 
of 0.805 (SD = 0.108) for the validation data (Table 1). Median values for training and validation data were slightly 
higher than the mean values, 0.789 and 0.856 respectively. The IAN detection scored the lowest of all the detec-
tion networks; a mean DICE of well above 0.75 was obtained. Optical inspection showed three types of position 
agreements between the automatically and manually segmented IAN: good segmentations had only minor flaws 
and none of them around the third molar (root) region, while mediocre cases had greater position disagreements 
and the third molar region was largely unaffected, and the group of poor segmentations showed inaccurate seg-
mentation of IAN in the third molar region (Fig. 4). Considering the optical inspection as well as a sensitivity of 
0.838 (SD = 0.132) for training data and 0.847 (SD = 0.099) for validation data, and a median of 0.866 and 0.865 
respectively, the automated segmentations by using U-net were mostly satisfactory.

Discussion
Deep learning algorithms are evolving and are being increasingly applied in different medical fields, mainly to 
detect and segment clinically relevant anatomical structures or pathological changes, such as cancer17, tubercu-
losis18 or skin lesion19. However, the application of deep-learning in oral and maxillofacial surgery and dentistry 
is relatively scarce. Only the preliminary use of deep-learning in different topics such as caries detection or auto-
matic dental radiography analysis has been described20.

Deep-learning is consisted of convolutional neural networks that is successfully applied to analyse visual 
imagery. CNN networks are able to detect and segment certain patterns in a large data set, such as a 2D radio-
graph or 3D CT scan. CNN can identify a group of pixels or voxels that make up either the contour or the interior 
of objects of interest. By changing certain characterises of the CNN architecture, the way of automatic segmenta-
tion can be adjusted to detect certain voxel patterns in a volume of interest15.

One of the most cited segmentation CNN applied in the medical field is the “U-net”. U-net has a simple and 
clear architecture and is aimed particularly at segmenting osseous and soft tissue structures. Compared to other 
CNNs, the accuracy of segmentation U-net is significantly better21. Ronneberger applied U-net to segment the 
enamel, dentine and pulp on dental radiographs (bitewings) and obtained a mean dice-coefficient of 0.5621. In 
some cases, a dice-coefficient of 0.70 was obtained, indicating the potential of further improvements of the U-net 
architecture.

The potential of applying U-net in the automated segmentation of third molars and IAN is investigated in 
the present study. By changing the U-net architecture and improvements in the training of U-net in perform-
ing segmentations, encouraging results have been obtained in both the identification and segmentation of third 
molars and IAN. However, in some cases, U-net was unable to locate and segment both predetermined anatomi-
cal structures satisfactorily. Several factors are associated with the underperformance. Firstly, the lack of contrast 
on the OPGs between the mandible and the mandibular canal complicated the task of segmentation for both 
the observer and the CNN. OPGs do not have constant image intensity in the region of the mandibular canals. 
Secondly, the mandibular canal varies significantly in its shape and location among patients17. Thirdly, since only 
one segmenting observer and one correcting observer segmented the OPGs only once a certain degree of inter-
observer and interobserver variability might occur leading to a potentially lower DICE-coefficient. The OPGs 
were initially scaled and cropped to a lower resolution than the native OPG resulting in a loss of data which can 
be useful for segmentation. Due to the high DICE-coefficient for both the overall dentition and M3s as well as the 
use of the near native resolution for the IAN with a lower DICE it seems that the resolution might not be a severe 

Dataset

Dice coefficient Jaccard index

Mean Median SD 5–95% Perc. Mean Median SD 5–95% Perc.

M3 Training 94.7% 95.3% 4.9% 91.8–97.4% 90.3% 91.1% 6.8% 84.9–94.9%

M3 Validation 93.6% 93.4% 2.5% 89.4–96.9% 88.1% 87.6% 4.4% 80.8–93.9%

IAN Train 76,8% 78,9% 11,9% 53,3–91,2% 63,8% 65,2% 14,5% 36,4–83,9%

IAN Validation 80,5% 85,6% 10,8% 58,4–90,1% 68,7% 74,8% 14,0% 41,2–82,0%

Dataset
Sensitivity Specificity

Mean Median SD 5–95% Perc. Mean Median SD 5–95% Perc

M3 Training 95.4% 96.5% 5.4% 91.8–98.0% 99.9% 100.0% 0.0% 99.9–100.0%

M3 Validation 94.7% 95.0% 3.3% 88.9–98.6% 99.9% 99.9% 0.0% 99.8–100.0%

IAN Train 83,8% 86,6% 13,2% 58,2–98,8% 96,0% 96,2% 2,2% 91,9–99,3%

IAN Validation 84,7% 86,5% 9,9% 67,1–95,4% 96,7% 97,5% 2,5% 91,6–99,3%

Table 1.  DICE-coefficients of third molar and inferior alveolar nerve training and validation data. Mean, 
median, standard deviation, and 5–95% percentiles of the DICE coefficient, jaccard index, sensitivty and 
specificity of the segmentations per structure/dataset.
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issue on the performance of the segmentation. In case the OPGs would be analysed in full detail it is possible to 
resort to more powerful PC’s or use the overlap-title strategy as originally used for the U-nets21.

There are several approaches to improve the segmentation of third molars and the IAN in particular. The first 
method to counteract the variety in shape and boundary on native images is by minimizing the region of interest. 
It is not necessary for the CNN to segment the complete mandibular canal. The only essential area for the risk 
assessment is the region of the third molar and its roots. The second suggestion is to increase the training data 
set with annotated OPGs. Although the applied augmentation due to rotation resulted in a high-performing 
segmentation in case of third molar, the accuracy for the IAN remained to be lower. The increase of annotated 
OPGs may lead to a better overall performance21. Thirdly, the use of DICOM file format for OPGs can enhance 
the segmentations. In this study, the OPGs were exported from the electronic patient files in JPEG files exports, 
resulting in 256 greyscale values with 8-bit per channel. An alternative to this file format is DICOM, which can 
natively hold a much larger range of greyscale values. Using these native DICOM files can potentially result in a 
higher contrast, making the IAN better to segment both manually and automatically. Another approach towards 
an enhanced IAN segmentation could be the use of cone-beam CT (CBCT) scans instead of OPGs. Among other 
segmentation techniques U-nets can also be applied to 3D volumetric shapes like CBCT-scans22. The CNN used 
in this study is specialized in segmentation based on shape. Yet, this CNN has another beneficial characteristic of 
taking topography into consideration. The problematic point of shape and boundary could also be solved when 
3D data sets are provided, as the nerve appears as a circular cross-section in a CBCT scan. It could be possible that 
the 3D U-nets natively provide good segmentation in CBCT scans or that they yield the same shape and topology 

Figure 1.  The workflow of third molars and inferior alveolar nerve segmentation process.
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properties when used with double inputs. In this way, the anatomical positional relationship between the IAN and 
M3 could be evaluated. The main drawback of such an approach is the patient´s higher exposition to radiation.

It should be noted that alternative segmentation techniques exists to perform similar segmentations, such 
as watershed segmentation23, canny based segmentation24 or random forest regression voting constrained local 
models25, which were introduced as segmentation algorithms for OPGs in the past26–28. Since this study is more 
observational by character, comparative studies are required in the future, in order to the quality of different seg-
mentation methods, especially semantic segmentation29,30, before the clinical implementation.

The encouraging results obtained from the present study in the segmentation of third molars and the IAN, 
was the first step on the way to a successfully implement deep-learning in daily clinical practice. The exact loca-
tion and shape of the third molar roots in relation to the mandibular canal has to be determined accurately and 
in a reproducible way. Also risks patterns need to be identified. Individual risks need to be attributed to each 
factor and the CNN has to be able to sum up all the risk factors and the associated risks to give one final risk. 

Figure 2.  Color-coded OPGs with manually segmented teeth and inferior alveolar nerve.

Figure 3.  Overview of third molar segmentations. Green: manual segmentation, red: automatic segmentation, 
yellow: overlap between automatic and manual segmentation.
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Nevertheless the usage of deep-learning might not only provide professionals with additional information to 
optimize treatment planning and risk identification, but also automatically improve dental radiographs by dis-
missing unnecessary artefacts. The greatest advantage of deep-learning is the improvement in diagnostic without 
changing the present infrastructure and the wide range of application. For instance, the implementation of deep 
learning in caries management could enhance early caries detection and optimize the moment of intervention, 
thereby reduce the increasing global health burden induced by dental caries.

Material and Method
This study was conducted in accordance with the World Medical Association Declaration of Helsinki on 
medical research ethics. The approval of this study was waived by the Institutional Review Board (CMO 
Arnhem-Nijmegen) and informed consent were not required as all image data were anonymized and de-identifed 
prior to analysis (decision no. 2019–5232). All methods were carried out in accordance with relevant guidelines 
and regulations.

Patients.  Orthopantomograms (OPGs) of patients who were admitted at the Department of Oral and 
Maxillofacial Surgery of Radboud University Nijmegen Medical Centre in 2017 were randomly selected. The 
inclusion criteria were the presence of at least 12 adjacent teeth with at most one missing element in between, at 
least one lower third molar and a minimum age of 16. Permanent fixed lingual retention wires and/or fillings are 
quite common in the (Dutch) population so OPGs containing these were not excluded to give a good societal 
representation. Blurred and incomplete OPGs were excluded from further analyses.

The collected data were de-identified and anonymized prior to analysis. Patients who signed the opt-out for 
anonymized research were also excluded conform the institution’s policy. Digital panoramic radiographs were 
acquired with a Cranex Novus e device (Soredex, Helsinki, Finland), operated at 77 kV and 10 mA, using a CCD 
sensor. The OPGs were taken with patients standing upright, head supported by the 5-point head support, with 
the upper and lower incisors biting gently into the bite block. A total of 81 OPGs were analysed.

M3 and IAN detection workflow.  A workflow for the M3 detection and nerve segmentation was created 
using image processing and deep-learning networks (Fig. 1). In depth details of each step are described in the 
appendix. The core mechanic of the detection revolves around a deep-learning segmentation network called a 
U-net which is used in the subsequent steps21. The initial step 1 is the image acquisition and data pre-processing. 

Figure 4.  Overview of inferior alveolar nerve segmentations. Green: manual segmentation, red: automatic 
segmentation, yellow: overlap between automatic and manual segmentation.
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This step prepares the data for standardizing the size and applying contrast enhancement to the OPG (Fig. 1). 
This is followed by the overall dentition detection (step 2) by providing the pre-processed OPG to a 6-layer 
deep-learning U-net. The lower M3 detection is executed in step 3 using the same pre-processed OPG from step 2 
as well as the result (detected dentition mask) of step 2 by providing these to a specifically designed double input 
6-layer U-net. Using the detected third molars in step 3 an automated crop of the original OPG is made in the 
fourth step 4. A margin extending caudally around the M3 is taken from the OPG to include a part of the IAN. 
Furthermore, the pre-processed OPG is also used to make a rough (low accuracy) extraction of the IANs in step 5 
with a 5-layer U-net. The same cropped area of the original OPG around the third molar as taken in step 4 is also 
taken of the rough IAN segmentation of step 5 resulting in a cropped IAN for step 6. Finally in step 7 the refined 
IAN is detected in the crop from step 4 and step 6 using a 6-layer U-net. These steps result in the overall dentition 
(step 2), the isolated third molars (step 3) and the isolated IANs (step 7) which can be used for further analysis.

Deep-learning network training.  Each step holding a Deep-Learning network (Steps 2, 3, 5 and 7) has 
been trained using annotated data. Training data were obtained by manual segmentations as well as the results of 
running the manual segmentations through the workflow. The specific training conditions and rules can be found 
in the Appendix (see supplementary data).

For the training data all present teeth in the maxilla and mandible, and the mandibular canal, were manually 
segmented one by one on OPGs. Each segmented tooth and mandibular canal was attributed with a distinct col-
our, and labelled according to the FDI tooth numbering system with Adobe Photoshop CC 2017 (Adobe System 
Incorporated, San Jose, California) by one observer (SV) (Fig. 2). A second observer (TX) checked the segmen-
tations and made further refinements. The color-coded OPGs images were uniformly scaled and cropped to 2048 
by 1024 pixels using Adobe Photoshop CC 2017.

In the next step, all segmented teeth and the IAN were transformed to white and the background to black. In 
this way different Portable Network Graphics (PNG) files were created for the full dentition, and also separately 
for the lower third molars and the IAN.

The PNGs with all the segmented teeth were used as the gold standard for the training of the deep-learning 
network used in step 2 to obtain the full dentition. The PNGs with all the segmented teeth (as input) as well as 
those with the isolated third molars (as gold standard) were used for the first training of step 3. After the training 
reached its maximum DICE-coefficient31 using these data, the network was re-trained by using the result from 
step 2 in case all present M3’s were detected as an additional data input. For step 5 the network was trained using 
the manually segmented IANs on the whole OPGs resulting in low accuracy segmentations. The results of the low 
accuracy IANS from step 5 and M3s from step 3 were cropped in respectively step 6 and 4 and trained in step 7 
until the maximum DICE- coefficient was achieved.

Deep learning training data split.  The OPGs and crops were randomly split in a training group (70%) and 
a validation/test group (30%) prior to the data augmentation. Due to the amount of available scans the validation 
and test groups were taken as one single group. Data were subsequently checked for unequal distributions of 
missing third molars and corrected where needed.

Statistical analysis.  The segmentations were assessed by determining the overlap between the gold standard 
and the deep-learning segmentation using DICE coefficient31. The mean, median, standard deviation, and 5–95% 
percentiles of all the DICE coefficients, Jaccard-indices, sensitivity and specificity were reported for a training 
and test subset for the M3s (step 3) and the segmented IANs (step 7). The Jaccard index and DICE-coefficient are 
interchangeable but reported both for convenience32.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.

References
	 1.	 Friedman, J. W. The prophylactic extraction of third molars: A public health hazard. American Journal of Public Health 97, 

1554–1559 (2007).
	 2.	 Carter, K. & Worthington, S. Morphologic and demographic predictors of third molar agenesis: A systematic review and meta-

analysis. Journal of Dental Research 94, 886–894 (2015).
	 3.	 Santosh, P. Impacted mandibular third molars: Review of literature and a proposal of a combined clinical and radiological 

classification. Annals of Medical and Health Sciences Research, https://doi.org/10.4103/2141-9248.160177 (2015).
	 4.	 Hasegawa, T., Ri, S., Umeda, M. & Komori, T. Multivariate relationships among risk factors and hypoesthesia of the lower lip after 

extraction of the mandibular third molar. In Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, https://
doi.org/10.1016/j.tripleo.2011.02.013 (2011).

	 5.	 Ghaeminia, H. et al. Clinical relevance of cone beam computed tomography in mandibular third molar removal: A multicentre, 
randomised, controlled trial. Journal of Cranio-Maxillofacial Surgery 43, 2158–2167 (2015).

	 6.	 Gülicher, D. & Gerlach, K. L. Sensory impairment of the lingual and inferior alveolar nerves following removal of impacted 
mandibular third molars. International Journal of Oral and Maxillofacial Surgery 30, 306–312 (2001).

	 7.	 Eyrich, G. et al. 3-Dimensional imaging for lower third molars: Is there an implication for surgical removal? Journal of Oral and 
Maxillofacial Surgery, https://doi.org/10.1016/j.joms.2010.10.039 (2011).

	 8.	 Ghaeminia, H. et al. Position of the impacted third molar in relation to the mandibular canal. Diagnostic accuracy of cone beam 
computed tomography compared with panoramic radiography. International Journal of Oral and Maxillofacial Surgery 38, 964–971 
(2009).

	 9.	 Matzen, L. H., Schou, S., Christensen, J., Hintze, H. & Wenzel, A. Audit of a 5-year radiographic protocol for assessment of 
mandibular third molars before surgical intervention. Dentomaxillofacial Radiology, https://doi.org/10.1259/dmfr.20140172 (2014).

https://doi.org/10.1038/s41598-019-45487-3
https://doi.org/10.4103/2141-9248.160177
https://doi.org/10.1016/j.tripleo.2011.02.013
https://doi.org/10.1016/j.tripleo.2011.02.013
https://doi.org/10.1016/j.joms.2010.10.039
https://doi.org/10.1259/dmfr.20140172


7Scientific Reports |          (2019) 9:9007  | https://doi.org/10.1038/s41598-019-45487-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

	10.	 Sanmartí-Garcia, G., Valmaseda-Castellón, E. & Gay-Escoda, C. Does computed tomography prevent inferior alveolar nerve injuries 
caused by lower third molar removal? Journal of Oral and Maxillofacial Surgery, https://doi.org/10.1016/j.joms.2011.03.030 (2012).

	11.	 Ghaeminia, H. et al. The use of cone beam CT for the removal of wisdom teeth changes the surgical approach compared with 
panoramic radiography: A pilot study. International Journal of Oral and Maxillofacial Surgery, https://doi.org/10.1016/j.
ijom.2011.02.032 (2011).

	12.	 Pinto, P. X., Pinto, P. X., Mommaerts, M. Y., Wreakes, G. & Jacobs, W. V. G. J. A. Immediate postexpansion changes following the use 
of the transpalatal distractor. Journal of Oral and Maxillofacial Surgery, https://doi.org/10.1053/joms.2001.25823 (2001).

	13.	 Rood, J. P. & Shehab, B. A. The radiological prediction of inferior alveolar nerve injury during third molar surgery. The British 
journal of oral & maxillofacial surgery 28, 20–5 (1990).

	14.	 Liu, W., Yin, W., Zhang, R., Li, J. & Zheng, Y. Diagnostic value of panoramic radiography in predicting inferior alveolar nerve injury 
after mandibular third molar extraction: A meta-analysis. Australian Dental Journal 60, 233–239 (2015).

	15.	 Litjens, G. et al. A survey on deep learning in medical image analysis. Medical Image Analysis 42, 60–88 (2017).
	16.	 Shin, H. C. et al. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics 

and Transfer Learning. IEEE Transactions on Medical Imaging 35, 1285–1298 (2016).
	17.	 Men, K. et al. Deep Deconvolutional Neural Network for Target Segmentation of Nasopharyngeal Cancer in Planning Computed 

Tomography Images. Frontiers in Oncology 7 (2017).
	18.	 Foster, B. et al. Segmentation of PET images for computer-aided functional quantification of tuberculosis in small animal models. 

IEEE Transactions on Biomedical Engineering 61, 711–724 (2014).
	19.	 Khalid, S. et al. Segmentation of skin lesion using Cohen–Daubechies–Feauveau biorthogonal wavelet. SpringerPlus 5 (2016).
	20.	 Wang, C. W. et al. A benchmark for comparison of dental radiography analysis algorithms. Medical Image Analysis, https://doi.

org/10.1016/j.media.2016.02.004 (2016).
	21.	 Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Miccai 234–241 https://

doi.org/10.1007/978-3-319-24574-4_28 (2015).
	22.	 Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T. & Ronneberger, O. 3D U-net: Learning dense volumetric segmentation from 

sparse annotation. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes 
in Bioinformatics), https://doi.org/10.1007/978-3-319-46723-8_49 (2016).

	23.	 Li, H., Sun, G., Sun, H. & Liu, W. Watershed algorithm based on morphology for dental X-ray images segmentation. In International 
Conference on Signal Processing Proceedings, ICSP, https://doi.org/10.1109/ICoSP.2012.6491720 (2012).

	24.	 Karthikeyan, T. & Manikandaprabhu, P. A novel approach for inferior alveolar nerve (IAN) injury identification using panoramic 
radiographic image. Biomedical and Pharmacology Journal, https://doi.org/10.13005/bpj/613 (2015).

	25.	 Vila Blanco, N., Tomás Carmona, I. & Carreira, M. Fully Automatic Teeth Segmentation in Adult OPG Images. Proceedings 2 (2018).
	26.	 Lira, P., Giraldi, G. & Neves, L. A. Segmentation and Feature Extraction of Panoramic Dental X-Ray Images. IJNCR 1 (2010).
	27.	 Na’am, J., Harlan, J., Madenda, S. & Wibowo, E. P. The Algorithm of Image Edge Detection on Panoramic Dental X-Ray using 

Multiple Morphological Gradient (mMG) Method. International Journal on Advanced Science, Engineering and Information 
Technology, https://doi.org/10.18517/ijaseit.6.6.1480 (2016).

	28.	 Amer, Y. Y. & Aqel, M. J. An Efficient Segmentation Algorithm for Panoramic Dental Images. In Procedia Computer Science, https://
doi.org/10.1016/j.procs.2015.09.016 (2015).

	29.	 Arbelaez, P. et al. Semantic segmentation using regions and parts. In Proceedings of the IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition, https://doi.org/10.1109/CVPR.2012.6248077 (2012).

	30.	 D. G., L. Distinctive Image Features from. International Journal of Computer Vision, https://doi.org/10.1023/
B:VISI.0000029664.99615.94 (2004).

	31.	 Dice, L. R. Measures of the Amount of Ecologic Association Between Species. Ecology, https://doi.org/10.2307/1932409 (1945).
	32.	 Taha, A. A. & Hanbury, A. Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool. BMC Medical 

Imaging, https://doi.org/10.1186/s12880-015-0068-x (2015).

Author Contributions
Shankeeth Vinayahalingam: Study design, data collection, statistical analysis, writing the article. Tong Xi: Study 
design, statistical analysis, writing the article, supervision. Thomas Maal: Study design, article review, supervision. 
Stefaan Bergé: Supervision, writing article, article review. Guido de Jong: Study design, data collection, statistical 
analysis, writing the article.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-45487-3.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-45487-3
https://doi.org/10.1016/j.joms.2011.03.030
https://doi.org/10.1016/j.ijom.2011.02.032
https://doi.org/10.1016/j.ijom.2011.02.032
https://doi.org/10.1053/joms.2001.25823
https://doi.org/10.1016/j.media.2016.02.004
https://doi.org/10.1016/j.media.2016.02.004
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1109/ICoSP.2012.6491720
https://doi.org/10.13005/bpj/613
https://doi.org/10.18517/ijaseit.6.6.1480
https://doi.org/10.1016/j.procs.2015.09.016
https://doi.org/10.1016/j.procs.2015.09.016
https://doi.org/10.1109/CVPR.2012.6248077
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.2307/1932409
https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.1038/s41598-019-45487-3
http://creativecommons.org/licenses/by/4.0/

	Automated detection of third molars and mandibular nerve by deep learning

	Results

	Lower M3 dentition detection. 
	IAN detection. 

	Discussion

	Material and Method

	Patients. 
	M3 and IAN detection workflow. 
	Deep-learning network training. 
	Deep learning training data split. 
	Statistical analysis. 

	Figure 1 The workflow of third molars and inferior alveolar nerve segmentation process.
	Figure 2 Color-coded OPGs with manually segmented teeth and inferior alveolar nerve.
	Figure 3 Overview of third molar segmentations.
	Figure 4 Overview of inferior alveolar nerve segmentations.
	Table 1 DICE-coefficients of third molar and inferior alveolar nerve training and validation data.




