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Metabolome signature of autism in the human
prefrontal cortex
Ilia Kurochkin1,8, Ekaterina Khrameeva1,2,8, Anna Tkachev1,2, Vita Stepanova1,2, Anna Vanyushkina1,

Elena Stekolshchikova1, Qian Li3, Dmitry Zubkov1, Polina Shichkova1, Tobias Halene4, Lothar Willmitzer5,

Patrick Giavalisco6, Schahram Akbarian 4 & Philipp Khaitovich1,3,7

Autism spectrum disorder (ASD) is a common neurodevelopmental disorder with yet

incompletely uncovered molecular determinants. Alterations in the abundance of low

molecular weight compounds (metabolites) in ASD could add to our understanding of the

disease. Indeed, such alterations take place in the urine, plasma and cerebellum of ASD

individuals. In this work, we investigated mass-spectrometric signal intensities of 1,366

metabolites in the prefrontal cortex grey matter of 32 ASD and 40 control individuals. 15% of

these metabolites showed significantly different intensities in ASD and clustered in 16

metabolic pathways. Of them, ten pathways were altered in urine and blood of ASD indivi-

duals (Fisher test, p < 0.05), opening an opportunity for the design of new diagnostic

instruments. Furthermore, metabolic measurements conducted in 40 chimpanzees and 40

macaques showed an excess of metabolite intensity differences unique to humans, sup-

porting the hypothesized disruption of evolutionary novel cortical mechanisms in ASD.
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Autism spectrum disorder (ASD) is characterized by the
developmental disruption of complex cognitive traits,
especially those underlying communication and sociali-

zation. These traits are particularly developed in humans, sug-
gesting a disruption of recently evolved cognitive mechanisms in
ASD1–3. This notion is supported by the assessment of gene
expression patterns during cortical development in healthy
humans and ASD individuals in comparison to nonhuman
primates4.

ASD is a heterogeneous condition characterized by a broad
spectrum of symptom severity5. Accordingly, despite the reported
high heritability of the disease6–8, numerous genetic studies
indicate that most ASD cases are likely to be caused by a large
number of genetic variants, each of which has a small effect9,10.

In the absence of clear genetic determinants, investigations
looked for potential biochemical landmarks of disease by mon-
itoring concentrations of low weight molecular compounds
(metabolites) in urine, blood plasma and the brain. To date,
metabolite concentration differences in the urine of ASD indivi-
duals have mostly been studied using systematic metabolomics
profiling techniques, which yielded results for 20 to 622 meta-
bolites measured in 14 to 48 ASD individuals and comparable
control groups11–22. The pioneering study conducted by Yap
et al.11, using proton-nuclear magnetic resonance (NMR) and
involving 39 ASD individuals demonstrated alterations of amino
acid metabolism and the tryptophan and nicotinic acid metabolic
pathways. Similarly, another study by Ming et al.12 identified
differences in amino acid metabolism, as well as metabolic sig-
natures of oxidative stress, in the urine of 48 children with ASD
using a combination of liquid chromatography and gas chro-
matography coupled with mass spectrometry (LC–MS and
GC–MS). Changes in the purine metabolism pathway, pyrimidine
metabolism pathway and changes in several pathways involved in
the metabolism of tyrosine, asparagine, tryptophan and arginine
were further identified in the urine of 30 ASD individuals using a
combination of the NMR and LC–MS approaches were reported
by Dim et al.19. Most recently, Bitar et al.22, employing a com-
bination of the NMR and LC–MS approaches, reported con-
centration changes of metabolites related to oxidative stress,
including glutathione metabolism, changes in cysteine, methio-
nine, arginine, and proline metabolism pathways, as well as
changes in carbohydrate metabolism, including the metabolism of
propanoate, citrate, and sugars in the urine of 40 ASD
individuals.

The first study investigating metabolite concentration differ-
ences in blood identified changes associated with mitochondrial
dysfunction, as well as various metabolic pathway changes, such
as a disruption in the tricarboxylic acid (TCA) cycle in the plasma
samples of 52 children diagnosed with ASD using five mass
spectrometry-based methods were reported by West et al.23. In a
more recent study, Wang et al.24 identified the concentration
differences of 17 metabolites in the blood plasma of 73 ASD
individuals. Of them, 11 metabolites, including sphingosine 1-
phosphate and docosahexaenoic acid, were validated in an
independent cohort24.

The only study conducted in the brain, by Graham et al.25,
identified concentration differences of 37 metabolites in the cer-
ebellum of 11 ASD individuals and 11 controls using LC–MS.
These differences were not enriched in any biological pathway25.

In addition to studies assessing the concentration levels of
multiple metabolites, others focused on particular compounds,
such as markers of mitochondrial dysfunction that are believed to
be associated with the disease26–28. These studies reported an
elevated concentration of glutamate29,30, as well as glycolysis
products, such as lactate and pyruvate, in the serum of ASD
individuals31. Other findings included a decreased concentration

of carnitine, the fatty acid carrier from the cytosol to the mito-
chondria32, and glutathione, the reported key reactive oxygen
species neutralizer, in ASD individuals’ blood33. By contrast, the
concentration of palmitate, one of the key energy sources for
mitochondria, was increased in ASD plasma samples34.

Even though the existing studies provided substantial coverage
of the metabolite concentration differences detected in ASD
individuals in urine and blood, little is known about the rela-
tionship between these differences and metabolic alterations
taking place in the brain. The only study performed in the brain
focused on cerebellum and involved a limited number of indivi-
duals. In our study, we were able to compare metabolite intensity
differences detected in the prefrontal cortex (PFC) of the brain
with differences detected in urine and blood by the preceding
studies. Specifically, we investigated changes in intensities of 1366
metabolites detected using untargeted LC–MS in the prefrontal
cortex gray matter of 40 control and 32 ASD individuals. We
further analyzed the metabolite intensities in the PFC of 40
chimpanzees and 40 macaques to investigate the relationship
between metabolic alterations in ASD and brain metabolic fea-
tures unique to humans. This might be informative, as ASD
affects an array of cognitive functions particular to the human
brain. We identified numerous metabolite intensity changes dis-
tinguishing ASD individuals from the controls. Notably, the
majority of these differences clustered in metabolic pathways
previously identified in the urine and blood of ASD individuals.
Furthermore, several of these pathways contained an excess of
metabolite intensity changes unique to humans, indicating a
disruption of evolutionary novel cortical metabolic features
in ASD.

Results
Metabolic data description. We searched for metabolic altera-
tions in brains of ASD individuals by measuring intensities of
polar low-molecular-weight compounds in the postmortem PFC
samples of 40 controls and 32 ASD individuals (Supplementary
Data 1). The control and ASD samples were matched for sex and
sample quality, which were estimated using RNA integrity levels.
Each group covered a broad age range: 2–60 years for ASD
individuals and 0–61 years for controls (Supplementary Data 1).
All samples were represented by the cortical gray matter.

The measurements, conducted in a random order using liquid
chromatography coupled with mass spectrometry (LC–MS) in
positive and negative ionization modes, yielded 4065 and 1685
distinct MS peaks representing polar compounds (metabolites)
with molecular weights below 2000 Da. Among them, 801 and
209 metabolites were putatively annotated using probabilistic
matching to the Human Metabolome Database HMDB35 and the
LIPID MAPS Structure Database (LMSD)36 within a mass
tolerance of 10 ppm. The removal of metabolites with intensities
influenced by the measurement order, experimental batch effects,
and postmortem delay yielded 1366 confounder-free metabolic
peaks detected in both ionization modes (Fig. 1a, Supplementary
Data 2 and 3). Multidimensional scaling (MDS) of the ASD and
control samples using normalized intensities of these 1366
metabolites revealed a separation of very young individuals from
the rest (Fig. 1b). Correspondingly, age explained 25% of the total
metabolic variation among samples, while ASD accounted for
10%, postmortem delays (PMD) accounted for 8%, and other
factors such as sex, sample quality, and ethnicity accounted for
<5% each.

Metabolic changes in ASD. Of the 1366 detected metabolites,
202 (15%) showed significant intensity differences between ASD
and control samples (ASD-related metabolites, ANCOVA, BH-

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0485-4

2 COMMUNICATIONS BIOLOGY |           (2019) 2:234 | https://doi.org/10.1038/s42003-019-0485-4 | www.nature.com/commsbio

www.nature.com/commsbio


corrected p < 0.05, nominal p < 0.009). The unsupervised clus-
tering of the temporal intensity profiles of these 202 metabolites
revealed four modules (Fig. 1c). Genes linked to the ASD-related
metabolites using KEGG annotation were significantly over-
represented in a total of 16 pathways (the Kyoto Encyclopedia of
Genes and Genomes37) (hypergeometric test, BH-corrected p <
0.05, nominal p < 0.008, Fig. 2a, Supplementary Data 4 and 5). Of
the 16 enriched pathways, 10, including glutathione metabolism,
were identified at a similar significance level using 42 metabolites
from the module 3, characterized by an intensity decrease in ASD,
especially during the first 20 years of life. Notably, the glutathione
metabolism pathway contained not only significant intensity
differences of glutathione and linked metabolites, but also genetic
variants reported to be associated with ASD in enzymes cata-
lyzing the corresponding reactions, such as GPX1, GSTM1, GGT1,
and GSS (Fig. 2b, c). The concentrations of glutathione and
related metabolites display technical variability, for instance after
long-term storage of metabolite extracts (Norris et al. 2001)38. In
our study, however, the intensities of the corresponding meta-
bolites remained stable in brain samples with lengthy postmortem
delay (Supplementary Fig. 1). Module 4, which contained 52
metabolites, was enriched in four of the 16 pathways, including
strong enrichment in purine and pyrimidine metabolism path-
ways. By contrast, modules 1 and 2, characterized by elevated
intensities in ASD, were not substantially overrepresented within

the 16 pathways, but were enriched in the four additional
module-specific pathways, including amino acid and nicotina-
mide metabolism.

Metabolic predictors of ASD. Metabolite intensity differences
between ASD cases and unaffected controls might allow for the
classification of PFC samples of ASD individuals as a distinct
group using machine-learning algorithms. To test this, we con-
structed a predictive model based on logistic regression with lasso
regularization to assign each sample to the ASD or control group
using the metabolite intensities. We then performed stability
selection39, a procedure based on subsampling, to rank the
metabolites’ contribution to the model and to assess the accuracy
(Supplementary Fig. 2). Remarkably, the model distinguished
ASD and control cases with more than 95% accuracy, estimated
as the area under the ROC curve (ROC AUC), which corresponds
to the area under the curve mapping the true positive rate (sen-
sitivity) to the false positive rate (1-specificity) for different dis-
crimination thresholds (Fig. 2d). Thus, the AUC ROC provides a
measure of the diagnostic ability of the classifier.

The model’s metabolic predictors overlapped significantly with
metabolites showing significant intensity differences in ASD in
the ANCOVA analysis (Fisher test, p < 0.001). Consistently,
KEGG pathways enriched in the top 200 metabolic predictors
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Fig. 1 Identification of metabolite intensity differences in the prefrontal cortex of ASD individuals. a The number of metabolite peaks detected by LC–MS
procedure in positive ([+]) and negative ([−]) ionization modes, after the removal of peaks affected by confounding factors. Darker shades indicate
metabolite peaks putatively annotated using probabilistic matching to the LIPID MAPS database and HMDB. b The relationship among individuals plotted
as the first two dimensions of the multidimensional scaling (MDS) procedure based on intensities of 1366 metabolites. Circles represent individual
samples. Colors represent ASD individuals (gray) and control individuals (red). The size of each circle is proportional to the individual’s age (smaller circles
correspond to younger ages). c Hierarchical clustering dendrogram based on intensities of 202 ASD-related metabolites and intensity patterns in the four
cluster modules. The metabolite intensities within each module were standardized to mean= 0 and standard deviation= 1. Points represent mean
intensities in each individual (red—controls; black—ASD). Lines show cubic spline curves fitted to the data. Pink and gray shaded areas show one standard
deviation of the curve estimates

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0485-4 ARTICLE

COMMUNICATIONS BIOLOGY |           (2019) 2:234 | https://doi.org/10.1038/s42003-019-0485-4 | www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


were in good agreement with pathways obtained in the ANCOVA
analysis, with glutathione metabolism and purine metabolism
occupying the top positions for each of the two methods (Fig. 2a,
Supplementary Data 4).

Gene expression associated with metabolic changes in ASD. To
test whether the metabolite intensity differences between ASD
and control cases might be caused by gene expression differences,

we examined data from three brain regions: frontal cortex, tem-
poral cortex, and cerebellum, measured in 19 ASD individuals
and 17 controls, including 15 ASD individuals and 5 controls
from the present study40. In two cortical regions, but not in the
cerebellum, genes linked to ASD-related metabolites indeed
showed significantly more expression differences between ASD
individuals and controls than genes linked to metabolites showing
no intensity difference in ASD (KS-test, p < 0.05, Fig. 2e, Sup-
plementary Data 5 and 6).
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Evolution of metabolic changes in ASD. Previous work linked
gene expression differences in ASD to developmental gene
expression features unique to humans4. To assess this link at the
metabolite level, we analyzed metabolite intensities in the PFC of
40 chimpanzees with ages between 0 and 42 years, and 40 rhesus
macaques with ages between 14 weeks post-conception and 21
years (Supplementary Data 1). The chimpanzee and macaque
samples were measured together with human control and ASD
samples in a random order. A computational analysis of non-
human primates, conducted in parallel with the human samples,
yielded intensities in chimpanzee and macaque samples for 1366
metabolites confidently detected in human dataset. A multi-
dimensional scaling (MDS) analysis based on the intensities of
these metabolites revealed predominant sample separation
according to age and species identity (Fig. 3a).

The identification of significant metabolite intensity differences
and their placement on the evolutionary lineages (ANCOVA,
BH-corrected p < 0.05, nominal p < 0.01) revealed 170 human-
specific and 55 chimpanzee-specific differences defined using
strict criteria, and 756 human-specific and 410 chimpanzee-
specific differences defined using relaxed criteria. Human-specific
intensity differences detected in this study agreed well with the
differences calculated using the published metabolome dataset
(Fig. 3b, Pearson correlation R= 0.71, p < 0.01)41.

Genes linked to human-specific metabolites were significantly
overrepresented in a total of 27 KEGG pathways (hypergeometric
test, BH-corrected p < 0.05, nominal p < 0.015, Supplementary
Data 4). Notably, these pathways overlapped significantly with
pathways enriched in ASD-related metabolite intensity differ-
ences, and included purine, pyrimidine, and pyruvate metabolism
(Fisher test, p < 0.01, Fig. 3c).

While the ratio of human-specific metabolite intensity
differences to the chimpanzee-specific ones among 202 ASD-
related metabolites coincided with the one for all detected
metabolites, their distribution among the four ASD modules was
not uniform. Module 1 contained fewer human-specific metabo-
lite intensity differences compared with the average, while module
4 contained approximately five times more (Wilcoxon test, p <
0.01, Fig. 3d). Notably, module 4 was particularly enriched in
metabolic pathways overlapping between ASD-related and
human-specific differences, including purine and pyrimidine
metabolism (Fisher test, p < 0.1). To assess whether this excess of
human-specific differences is due to a smaller number of
compounds contained in module 4, we repeated analysis
randomly sampling 30 metabolites from each module (Supple-
mentary Fig. 3). While this procedure increased variation in all

modules, module 4 retained an excess of human-specific
metabolite intensity differences compared with the other modules
(Wilcoxon test, p < 0.01).

Discussion
In this study, we show that the metabolite composition of the gray
matter of the prefrontal cortex differs substantially between ASD
individuals and healthy controls. Despite the moderate statistical
power of the study, as many as 15% of metabolites present in the
prefrontal cortex alter their intensities significantly in ASD. These
metabolites form specific age-dependent intensity patterns and
cluster in specific KEGG pathways.

It is noteworthy that of the 16 pathways altered in the pre-
frontal cortex of ASD individuals based on ANCOVA results, 10
were reported in studies analyzing metabolite abundance of urine
and blood samples, which is significantly more than expected by
chance (Fisher test, p-value < 0.05). These pathways include glu-
tathione metabolism, purine metabolism, pyruvate metabolism,
propanoate metabolism, TCA cycle, galactose metabolism, starch
and sucrose metabolism, nicotinate and nicotinamide metabo-
lism, cysteine and methionine metabolism, and arginine and
proline metabolism. Metabolite intensity differences clustering in
these 10 pathways were all reported in the urine of ASD indivi-
duals11–22. Metabolite intensity differences clustering in the TCA
cycle, glutathione metabolism, and pyruvate metabolism path-
ways were further reported in the blood of ASD
individuals23,24,27,31,33. Intensity differences of individual meta-
bolites, such as glutathione and cysteine decrease, as well as a
glutathione disulfide and adenosine intensity increase in ASD
individuals identified in our study (Fig. 2c, Supplementary Fig. 4),
were similarly reported in blood33. Furthermore, the same
direction and magnitude of the relative intensity differences
between ASD individuals and controls were observed for glu-
tathione and glutathione disulfide in the cerebellum and temporal
cortex42. Similarly, intensity differences of 3-methoxytyramine
and 5,6-dihydrouridine that increased in the cerebellum of ASD
individuals25 are detected and reproduced in our dataset (Sup-
plementary Fig. 5). At the gene expression level, the differences
reported in the neocortex of ASD individuals40 are greater for
genes linked to ASD-related metabolites found in our study
compared with genes linked to the other detected metabolites.
Taken together, these observations support the previous results
and indicate a general agreement between ASD-related metabolite
intensity differences detected in the brain and differences detected
in the blood and urine analyses. Purine metabolism is particularly

Fig. 2 Characterization of metabolite intensity differences identified in the prefrontal cortex of ASD individuals. a Summary of top functional pathways
enriched in genes linked to metabolites represented in different categories using KEGG annotation. The categories include: all 202 ASD-related metabolites
identified using ANCOVA (All); ASD-related metabolites within each module (modules 1–4); and ASD metabolic predictors identified using logistic
regression (log-regression). The size of each circle is proportional to the number of genes within the pathway linked to metabolites in a given category
(smaller circles correspond to a smaller number of genes). The color of each circle indicates the BH-corrected enrichment p-values. b Simplified schematic
representation of the glutathione pathway based on the KEGG annotation. Circles represent metabolites. Circle colors indicate the direction and
significance of the difference. The double coloring of L-γ-glutamyl-L-amino acid and L-amino acid represent intensity changes of different compounds that
fall under this putative annotation. Stars mark genes containing genetic variants associated with the ASD according to SFARI and GRASP databases49,50.
c The intensities of five metabolites from the glutathione metabolism pathway showing differences in ASD: glutathione, L-γ-glutamylcysteine, L-
cysteinylglycine, glutathione disulfide, and 5-oxoproline. Boxes show the first and the third quartiles and the median of the data; the whiskers extend to the
minimum and maximum data values located within 1.5 interquartile range from the box. Dots indicate actual intensity values for individual samples. Colors
represent ASD individuals (gray) and control individuals (red). Stars indicate the significance of differences between metabolite intensity in ASD individuals
and controls (ANCOVA, BH-corrected p-value: ** < 0.01; ns > 0.01). d Average area under the receiver operating characteristic curve (ROC AUC)
calculated using logistic regression with optimal parameters performed 500 times on different subsets of the individuals. e Distributions of the proportions
of genes showing expression difference in ASD (|log2 fold change|>0.2) among genes linked to each of 202 ASD-related metabolites (gray curve) and the
other metabolites detected in our study (red curve). Expression data was taken from ref. 40. Panels show the distribution in three brain regions: left—
frontal cortex, center—temporal cortex, right—cerebellum
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interesting, as purinergic signaling is involved in neurodevelop-
ment processes, including cell proliferation, differentiation and
neuron-glia cross-talk43,44. Moreover, purinergic signaling was
shown to be altered in multiple psychiatric disorders, including
ASD45.

Currently, to the best of our knowledge, no studies have
investigated autism-associated metabolic alterations in brain and
blood, neither in patients nor in animal models. More generally,
few studies addressing the relationship between metabolic
alterations in brain and blood yield different conclusions. The
Alzheimer disease study conducted in nearly 1000 individuals
revealed parallel alterations in brain and blood for several of the
26 metabolites linked with the diagnosis46. Similarly, stress-
induced changes in the neurotransmitter concentration levels in
the mouse brain were also detected in serum47. By contrast, the
metabolite analysis in the mouse model of Parkinson disease
identified significant alterations in brain in 14 metabolic

pathways, only one of which was also altered in blood48. Our data
show the relationship between metabolic alterations in brain and
blood at the pathway level, rather than at the level of individual
metabolites. It is appealing to suggest that such a relationship
might be caused by several key pathway intermediates capable of
crossing the blood–brain barrier. Alternatively, the link between
metabolic alterations in blood and brain could be caused by
mutations in metabolic enzymes present in both tissues. Notably,
GWAS studies indeed reported multiple mutations linked to ASD
within genes encoding metabolic enzymes49,50.

Our analysis further yields a number of novel observations.
First, we uncover novel metabolite intensity differences com-
plementary to previously reported ones. For instance, within the
glutathione pathway, we show that in addition to a glutathione
intensity decrease, two other metabolites, L-cysteinylglycine and
L-γ-glutamyl-L-cysteine, display intensity differences in ASD.
Notably, enzymes catalyzing reactions involving glutathione,
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between the average intensity values within each species. Dots represent individual metabolites detected in both datasets (n= 31). Colors indicate plot
quadrants. c Summary of top functional pathways enriched in genes linked to metabolites represented in two categories using KEGG annotation. The
categories include: all 202 ASD-related metabolites identified using ANCOVA (ASD-related) and human-specific metabolites (human-specific). The size of
each circle is proportional to the number of genes within the pathway linked to metabolites in a given category (smaller circles correspond to a smaller
number of genes). The color of each circle indicates BH-corrected enrichment p-values. d The ratio of human-specific and chimpanzee-specific metabolites
represented in different categories: all 1366 detected metabolites (Whole Metabolome); all 202 ASD-related metabolites identified using ANCOVA
(ANCOVA); and ASD-related metabolites within each module (modules 1–4). Boxes show the first and the third quartiles and the median of the data, the
whiskers extend to the minimum and maximum data values located within 1.5 interquartile range from the box. Dashed gray lines indicate the inter-whisker
range of the detected metabolites
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L-cysteinylglycine, and L-γ-glutamyl-L-cysteine were shown to
contain genetic variants previously linked to ASD, including
polymorphisms in such genes as GPX1, GSTM1, GGT1, and
GSS51–53.

Second, we identify a number of metabolic pathways that were
not previously linked to ASD, including pyrimidine metabolism,
beta-alanine metabolism, and three pathways related to drug
metabolism by cytochromes. Metabolic processes in these path-
ways are connected to the reported ones. For instance, changes in
pyrimidine metabolism might be linked to purine metabolism
alterations, as both pathways involve the essential precursors for
RNA and DNA synthesis and are well interconnected. Further-
more, pyrimidine nucleotides are involved in polysaccharide and
phospholipid synthesis, detoxification processes, as well as pro-
teins’ and lipids’ glycosylation54. Notably, functional deficiency of
pyrimidine pathway genes, such as uridine monophosphate
synthase (UMPS), dihydropyrimidine dehydrogenase (DPYD),
Dihydropyrimidinase (DPYS), beta-ureidopropionase 1 (UPB1),
leads to neurological aberrations, including ASD-like features in
case of DPD deficiency (DPYD gene deficiency)55. Metabolic
changes in the beta-alanine pathway might be linked to the
pyrimidine metabolism pathway, as the main sources of beta-
alanine include the catabolism of cytosine and uracil. Moreover,
beta-alanine intensity is decreased in DPD (DPYD gene defi-
ciency), DHP (DPYS gene deficiency), and BUP-1 (UPB1 gene
deficiency) induced pyrimidine pathway deficiencies55. In addi-
tion, key enzymes participating in cytochrome mediated drug
metabolism are also involved in the glutathione metabolism
pathway.

Third, we show that machine-learning algorithms can accu-
rately identify metabolic features characteristic of ASD indivi-
duals represented in our dataset. The metabolites selected by the
predictive model cluster in 14 of the 16 pathways discovered
using ASD-related metabolites identified by ANCOVA and
overlap with eight pathways reported in urine and blood samples.
It is important to note that our study does not involve individuals
with other cognitive disorders, which share comorbidities with
some of ASD individuals, such as schizophrenia56. Therefore, our
predictive model might include metabolite abundance alterations
shared among disorders.

Fourth, by conducting brain metabolome measurements in
nonhuman primates, we show that ASD-related metabolites
falling within module 4 contain an almost eightfold excess of
metabolite intensity differences unique to humans, compared
with the chimpanzee-specific differences. Accordingly, a number
of pathways enriched in ASD-related metabolite intensity differ-
ences, including purine, pyruvate metabolism, TCA cycle, and
galactose metabolism, also showed an excess of human-specific
metabolite intensity differences. This result is notable, given that
ASD tends to affect cognitive abilities particularly pronounced in
humans4. Generally, we find almost three times more metabolite
intensity differences specific to humans, compared with chim-
panzees. These results agree with previously reported excess of
human-specific metabolite concentration differences in PFC41

and align well with the hypothesis postulating disruption of
recently evolved cognitive mechanisms underlying communica-
tion and socialization in ASD1–4.

The main limitations of our study include its relatively small
sample size, caused by the limited availability of brain tissue
samples from ASD individuals. Accordingly, we can only estimate
general traits present in the majority of individuals and cannot
assess the presence of discrete molecular endophenotypes of ASD.
Yet, the differences we detect correlate with disease severity,
specifically with Autism Diagnostic Interview-Revised (ADI-R)
score (Supplementary Fig. 6), indicating the possible connection
between the metabolic alterations and the disorder

manifestations. Importantly, the intensity patterns of modules
were not driven by cases with extreme ADI-R scores: modules
based only on individuals with moderate ADI-R scores closely
reproduced all reported abundance profiles (Supplementary
Fig. 7). Our results clearly highlight the need for further studies of
metabolite intensity differences in autism involving more ASD
individuals, as well as individuals affected by other common
cognitive disorders to assess the disease-specificity of the
alterations.

Our study demonstrates that the metabolic changes detected in
blood might be informative of the metabolite intensity changes
taking place in the brain. This result opens an opportunity for the
design of ASD diagnostic tools based on the concentration
measurements for a limited set of informative metabolites in
blood or urine samples. The creation of reliable and objective
ASD diagnostic tests would greatly facilitate the medical treat-
ment of patients and selection of better-customized treatment
routines. Furthermore, it would open the door for widespread
metabolic biomarker-based clinical practices, providing the col-
lection of standardized metabolic data from a large number of
individuals. This, in turn, would create an essential resource for
the construction of complex predictive models, leading to
improved specificity in disease classification and treatment
selection. Finally, better knowledge of the molecular changes
taking place in the disease will lead to the more rapid develop-
ment of better medical treatments. It should be mentioned,
however, that design of such diagnostic assays would require
extensive validation using independent sets of samples, and pre-
ferably include data for the brain, blood, and urine samples col-
lected using the same experimental, analytical, and statistical
frameworks.

Methods
Samples. This study was reviewed and approved by the Institutional Animal Care
and Use Ethics Committee at the Shanghai Institute for Biological Sciences, CAS.
Informed consent for the use of human tissues for research was obtained in writing
from all donors or their next of kin. All nonhuman primates used in this study
suffered sudden deaths for reasons other than their participation in this study and
without any relation to the tissue used.

We used PFC samples dissected from the frozen postmortem brains of 40
cognitively unaffected human controls (0–62 years old), 32 ASD cases (2–60 years
old), 40 chimpanzees (0–43 years old), and 40 rhesus macaques (0–21 years old).
Special care was taken to dissect gray matter only.

Control human samples were obtained from the NICHD Brain and Tissue Bank
for Developmental Disorders at the University of Maryland, USA, the Maryland
Brain Collection Center, Maryland, USA, and the Harvard Brain Tissue Resource
Center. ASD samples were obtained from the NICHD Brain and Tissue Bank for
Developmental Disorders and the Harvard Brain Tissue Resource Center. All the
control and ASD brain samples used in this study were also part of recently
published transcriptomic4 and lipidomic56 studies.

Chimpanzee samples were obtained from the National Chimpanzee Brain
Resource (NS092988), the Alamogordo Primate Facility, New Mexico, USA, the
Anthropological Institute and Museum of the University of Zürich-Irchel,
Switzerland, the Biomedical Primate Research Centre, the Netherlands,
Department of Anthropology, The George Washington University, Washington,
DC, and Burgers’ Zoo in Arnhem, the Netherlands. Rhesus monkey samples were
obtained from the Suzhou Experimental Animal Center, China. PFC dissections
were made from the frontal part of the superior frontal gyrus. For all samples we
preferentially dissected and analyzed gray matter material.

To identify metabolites affected by postmortem delay in primates, we
additionally collected two rhesus macaque samples, dissected 5–6 h after death.
Other macaque samples used in this study had postmortem delay (PMD) lower
than 20 min.

Sample preparation. Metabolites were extracted from frozen tissue powder using
a methanol: methyl-tert-butyl-ether (1:3 (vol/vol)) solution as described in ref. 57.
In brief, 10–15-mg tissue samples were dissected on dry ice from the frozen tissue
without thawing. Dissected samples were weighed and transferred to pre-cooled 2
ml round bottom reinforced Precellys tubes containing 2.8 mm. zirconia beads.
After the addition of a fixed volume (0.5 ml) of pre-cooled (−20 °C) extraction
buffer to each tube, we performed two cycles of homogenization using the fol-
lowing parameters: stirring intensity 5000 rpm, homogenization temperature 7 °C,
cycle time 45 s, and 15 s break. Several blank extraction samples were added to the
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end of each batch (48 samples). The blank samples were represented by the same 2
ml round bottom reinforced Precellys tubes without any sample material subjected
to all extraction procedures. After the addition of a fixed volume (0.5 ml) of
extraction buffer, the homogenates were vortexed and incubated for 30 min at 4 °C
on an orbital shaker followed by a 10-min ultra-sonication in an ice-cooled
sonication bath. For each sample, the homogenate was transferred to a pre-labeled
2 ml Eppendorf tube followed by the addition of 700 μl of an H2O:methanol (3:1
(vol/vol)) solution containing 0.7 μg of corticosterone and ampicillin. Finally, to
separate the organic phases from aqueous phases and to precipitate proteins, after a
brief vortexing, the homogenates were centrifuged for 10 min at 14,000 × g at 4 °C.
Subsequently, 300 μl of the lower aqueous phase containing hydrophilic com-
pounds were transferred to a pre-labeled 1.5 ml Eppendorf tube and the solvent
was evaporated using a speed vacuum centrifuge at room temperature. Dry
metabolic extracts were stored at −80 °C prior to MS analysis. For quality control,
we further constructed a pooled sample composed by the aliquots of metabolite
extracts from all samples used in the analysis.

Mass spectrometry analysis. The dried extracts were resuspended in 200 µl of
ice-cold 20% aqueous solution of acetonitrile prior to MS analysis. After a brief
rigorous vortexing, the samples were incubated for 30 min at 4 °C on an orbital
shaker followed by a 10 min ultra-sonication in an ice-cooled sonication bath and
centrifugation for 10 min at 14,000 × g at 4 °C. For the MS analysis, 40 µl of
supernatant was transferred to 350 μl autosampler glass vials (Glastechnik Gra-
fenroda, Germany). A chromatography separation of metabolites prior to MS was
performed using Acquity I-Class UPLC system (Waters, UK). Metabolites were
separated on a normal phase unbounded silica column RX-SIL (100 mm × 2.1 mm,
1.8 µm, Agilent, USA) coupled to a guard precolumn with the same phase para-
meters. We used two mobile phases for the chromatographic separation. Buffer A
was water containing 10 mM ammonium acetate and 0.2 mM ammonium
hydroxide in water:acetonitrile (95:5 (vol/vol)) solution (pH value 8.0), and buffer
B was 100% acetonitrile. The gradient separation was 0 min 0% A, 0.01–10 min
linear gradient from 0 to 100% A, 10–14 min 100% A, 14–17 min linear gradient
from 100 to 0% A, and 17–25 min 0% A. After a 3-min wash with 100% buffer A,
the column was re-equilibrated with 100% buffer B. The flow rate was set to 500 µl/
min. The column temperature was maintained at 40 °C. The mass spectra were
acquired in positive and negative mode using a heated electrospray ionization
source in combination with Q Exactive Hybrid Quadrupole-Orbitrap mass spec-
trometer (Thermo Scientific, Germany). Negative ion mode samples were run after
the positive ion mode cohort with 6 µl injection of non-diluted samples. Spray
voltage was set to 4.5 kV in positive mode and to 3 kV in negative mode. The
remaining MS settings were the same in both ionization modes: S-lens RF level—
70; heated capillary—250 °C; aux gas heater temperature—350 °C; sheath gas flow
rate—45 arbitrary units; aux gas flow rate—10 arbitrary units; sweep gas flow rate
—4 arbitrary units. Full scan resolutions were set to 70,000 at 200m/z. The full
scan target was 106 with a maximum fill time of 50 ms. The spectra were recorded
using full scan mode, covering a mass range from 100 to 1500m/z. For quality
control, pooled samples were injected four times prior to each ionization mode run
to condition the column and after the completion of both ionization modes. In
addition, a pooled sample was injected after every 48 sample injections to assess the
sensitivity and retention time consistency of the system, sample reproducibility,
and the compound stability over the time of the MS analysis.

Mass spectrometry data processing. MS peaks obtained in positive and negative
modes were aligned across samples as described in refs. 57,58. This procedure was
applied to all samples, including control and ASD individuals, chimpanzees, and
macaques. We used RefinerMS software (Version 6.0, GeneData, Basel, Switzer-
land) to generate a list of chromatographic peaks with associated m/z, retention
time and intensity values. Putative annotation of metabolites was based on the
computational matching of m/z values to the Human Metabolome Database
(HMDB)35 and the LIPID MAPS Structure Database (LMSD)36 with a mass tol-
erance of 10 ppm, allowing [M+H], [M+NH4], and [M+Na] modifications as
possible adducts in positive ionization mode, and [M−H], [M+ Formic acid-H],
[M-H2O-H], and [M+Na-2H] modifications in negative ionization mode57,59.

To eliminate the effects of the measurement order on metabolite intensities, we
computed this effect for each metabolite by fitting a support vector regression
model with a Gaussian kernel and one set of parameters for all metabolites to the
log2 transformed, centered to the mean= 0, and scaled to standard deviation= 1
intensity values. The resulting functions were clustered using a k-means algorithm.
After a visual evaluation, the clusters obviously affected by the measurement order
were discarded. The intensity values of the remaining metabolites showing
measurement order effect were corrected by subtracting the average of the
corresponding cluster. The metabolite intensities were then recalculated to the
original magnitude scale. After this procedure, a total of 1405 peaks remained. To
correct for the variation related to the tissue weight, the metabolite intensities were
normalized across samples using upper-quartile normalization separately in
each mode.

To eliminate metabolites affected by a postmortem delay, we compared
metabolite intensities in macaque PFC samples collected from 42 individuals of
different ages with a short PMD of <20 min after death (40 individuals) and with a
prolonged PMD of 5–6 h (two individuals). For each metabolite, we assessed the

difference between intensities in samples obtained after prolonged PMD and the
ones interpolated at the corresponding age from a spline curve fitted to the
intensities measured in samples with a short PMD with four degrees of freedom.
Metabolites with intensities in samples with prolonged PMD falling outside the
95% confidence interval of spline curve predictions were excluded from further
analysis. This procedure excluded 39 (2.8%) of the 1405 metabolites
(Supplementary Fig. 8).

Statistics and reproducibility. The resulting 1366 metabolites were used to
explore relationships among samples with a multidimensional scaling algorithm
(MDS) (Figs. 1b, 3a). To estimate the variance explained by various factors, we
applied principal variance component analysis (PVCA) as described in ref. 4.

To identify metabolites with intensity differences between ASD samples and
unaffected controls, we used an analysis of covariance (ANCOVA) as described in
refs. 4,60. Briefly, for each metabolite we chose the best polynomial regression
model with age as a predictor and intensities as a response based on adjusted R2

criterion. Next, we used the F-test to evaluate whether the addition of disease/
control status parameter significantly improved this model. The test was performed
twice, using ASD samples as a reference for choosing the best polynomial
regression model in one run, and control samples in the other. The resulting p-
values were adjusted by the Benjamini-Hochberg (BH) approach. If the metabolite
passed the BH-corrected p-value threshold of 0.05 in both cases, the compound was
classified as an ASD-related metabolite.

To identify patterns of age-related intensity differences for ASD-related
metabolites, we performed hierarchical clustering with 1− Pearson correlation
coefficient as the distance measure using both ASD and control samples. We used
complete-linkage method of hierarchical clustering and cut the tree at four clusters
(Fig. 1c). Segregation to a large number of clusters did not reveal novel patterns
and yielded clusters with low numbers of metabolites (n < 20).

To test the overrepresentation of ASD-related metabolites in metabolic
pathways, we performed a pathway enrichment analysis using R package
clusterProfiler61 based on the enzymes that were directly linked to these
metabolites according to the KEGG database annotation37. Genes directly linked to
all the metabolites detected in our study were used as the background. The results
were corrected for multiple testing using BH correction (Fig. 2a).

To test whether the disease status can be predicted using metabolite
intensities, we implemented logistic regression with l1 regularization, which is a
linear model with an additional penalty on its coefficients that makes it possible
to train the model while simultaneously performing feature selection. Because
the feature selection showed substantial variability among different training
subsets of the data, we performed stability selection as described in refs. 39,
which is a procedure based on multiple subsampling of the data. Briefly, the
dataset was divided into the training and test sets and the model was trained
using the training set with a fixed parameters (C= 100). For each trained model,
we tested the performance of the classifier using a test set. By combining the
results of all the data subsampling combinations (n= 500), we calculated the
mean performance and, for each metabolite, the empirical probability of being
incorporated into the model with a non-zero coefficient (Fig. 2d). We then
ranked the metabolites according to this empirical probability. Based on model
performance assessment, we chose a cutoff of the top 200 metabolites to define
the set of model predictors.

We used two sets of cutoffs (stringent and relaxed) to identify species-specific
metabolite intensity differences. To identify differences using the stringent cutoff,
we used the ANCOVA approach described in refs. 4,60 for each species pair twice,
using either species as a reference. If the test was significant for both human/
chimpanzee and human/macaque pairs but not significant for the chimpanzee/
macaque pair, then the metabolite was classified as showing human-specific
intensity difference. Similarly, if the test was significant for both human/
chimpanzee and chimpanzee/macaque pairs, but not significant for the human/
macaque pair, then the metabolite was classified as showing chimpanzee-specific
intensity difference. To conduct age alignment between species, we used the age
scaling procedure described in ref. 62. To identify differences using the relaxed
cutoff, we calculated distances between species using macaque metabolite
intensities as a baseline. A metabolite was classified as showing human-specific
intensity difference if its human-macaque distance was larger than chimpanzee-
macaque distance, and the direction of changes relative to the macaque coincided
in humans and chimpanzees. Similarly, a metabolite was classified as showing a
chimpanzee-specific intensity difference if its chimpanzee-macaque distance was
larger than human-macaque distance, and the direction of changes relative to
macaque coincided between humans and chimpanzees. For each metabolite, the
distance was calculated as the absolute difference between average z-transformed
intensities within species. To assess human-specificity in each module, we
performed 1000 subsamplings of the same number of samples (n= 30) from each
of the three species and calculated the ratio of human-specific to chimpanzee-
specific intensity differences for each subsampling (Fig. 3d).

We tested the overrepresentation of human-specific metabolite intensity
differences defined using stringent criteria in KEGG pathways using R package
clusterProfiler61 as described above. To test the significance of the overlap between
ASD-related and human-specific pathways, we performed Fisher’s exact test
(Fig. 3c).
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To compare ASD-related metabolites with genes differentially expressed in
ASD, we estimated gene expression levels using published dataset deposited in the
Gene Expression Omnibus (GEO) under accession number GSE2852140. The
dataset contains transcriptome data for 19 ASD samples and 17 control samples
from three brain regions: the cerebellum, the frontal cortex, and the temporal
cortex. To test whether genes linked to ASD-related metabolites tended to show an
excess of expression levels particular to ASD, we calculated the proportion of genes
with ASD-dependent expression linked to each metabolite. Genes showing absolute
log2 fold change between the average expression of ASD samples and control
samples >0.2 were defined as genes with ASD-dependent expression in this analysis
(Fig. 2e).

To compare intensities of metabolites detected in our study with a previously
published dataset of metabolite concentrations in humans, chimpanzees, and
macaques41, we matched metabolites between the datasets using putative
annotation. We then calculated log2 fold changes between the average metabolite
intensities in humans and the average metabolite intensities in macaques (Fig. 3b).
To test whether log2 fold change values agreed between datasets, we calculated the
Pearson correlation coefficient and performed Fisher’s exact test.

To compare metabolome alterations in ASD detected in our study with
published metabolite concentration changes in the urine and blood of ASD
individuals, we performed Fisher’s exact test based on the overlap of KEGG
metabolic pathways enriched in ASD-related metabolites in our study and in the
union of published ones11–24.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are included in this published article
(and its supplementary information files).

Code availability
Source code of software that has been written for data processing and analysis is freely
available at https://cb.skoltech.ru/~khrameeva/autism/code/.
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