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ABSTRACT Striated muscle contraction occurs when myosin thick filaments bind to thin filaments in the sarcomere and
generate pulling forces. This process is regulated by calcium, and it can be perturbed by pathological conditions (e.g., myopa-
thies), physiological adaptations (e.g., b-adrenergic stimulation), and pharmacological interventions. Therefore, it is important to
have a methodology to robustly determine the impact of these perturbations and statistically evaluate their effects. Here, we pre-
sent an approach to measure the equilibrium constants that govern muscle activation, estimate uncertainty in these parameters,
and statistically test the effects of perturbations. We provide a MATLAB-based computational tool for these analyses, along with
easy-to-follow tutorials that make this approach accessible. The hypothesis testing and error estimation approaches described
here are broadly applicable, and the provided tools work with other types of data, including cellular measurements. To demon-
strate the utility of the approach, we apply it to elucidate the biophysical mechanism of a mutation that causes familial hypertro-
phic cardiomyopathy. This approach is generally useful for studying muscle diseases and therapeutic interventions that target
muscle contraction.
SIGNIFICANCE Pioneering work by McKillop and Geeves described an elegant approach to determine the equilibrium
constants governing muscle regulation; however, the approach lacked a mechanism for error analysis or statistical
hypothesis testing. This limitation makes it difficult to rigorously determine the effects of perturbations in muscle regulation,
such as disease. Here, we provide an approach to measure the equilibrium constants that govern muscle activation with
increased resolution, estimate uncertainty in these parameters, and statistically test the effects of perturbations. We
provide a MATLAB-based computational tool for these analyses, along with easy-to-follow tutorials that make this
approach accessible. Our tool opens the door for quantitative comparisons of the effects of perturbations in muscle
regulation, including studies of muscle diseases and therapeutic interventions.
INTRODUCTION

Force production in cardiac and skeletal muscle is tightly
regulated to ensure that contraction occurs in a controlled
and concerted manner. Dysfunction of this regulation can
lead to a wide array of diseases, including cardiomyopa-
thies, and there are currently several therapies in develop-
ment that target this regulation (1–3). Given the role of
perturbations of muscle regulation in health and disease,
Submitted February 21, 2019, and accepted for publication May 1, 2019.

*Correspondence: greenberg@wustl.edu

Samantha K. Barrick and Sarah R. Clippinger contributed equally to this

work.

Editor: David Warshaw.

2246 Biophysical Journal 116, 2246–2252, June 18, 2019

https://doi.org/10.1016/j.bpj.2019.05.002

� 2019 Biophysical Society.
there is an outstanding need for tools that can resolve statis-
tically significant changes in this regulation.

At the molecular scale, force production in muscle is
powered by the molecular motor myosin, which contracts
the sarcomere by pulling thin filaments (i.e., actin filaments
decorated with tropomyosin and the troponin complex) to-
ward the M-line of the sarcomere. The interaction between
myosin and the thin filament is regulated in a calcium-
dependent manner, in which calcium influx into the cyto-
plasm leads to activation of the thin filament and subsequent
muscle contraction. In their landmark work, McKillop and
Geeves (4) used a battery of biochemical and biophysical
techniques to demonstrate that thin-filament activation is a
multistep process, requiring contributions from calcium
binding to troponin as well as actomyosin binding. Their
model is known as the ‘‘three-state model’’ (Fig. 1). In the
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FIGURE 1 Schematic of the three-state model of

muscle regulation. Red, yellow, and green repre-

sent the blocked, closed, and open states of tropo-

myosin, respectively. The equilibrium constants

KB and KT describe transitions between states of

tropomyosin on the thin filament, whereas KW

and KS describe myosin binding. To see this figure

in color, go online.
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absence of calcium, tropomyosin is primarily in the blocked
state, obscuring the myosin-binding site on the thin filament
and inhibiting muscle contraction. Calcium binding to the
troponin complex causes tropomyosin to shift to the closed
state on the thin filament, exposing part of the myosin-bind-
ing site. Tropomyosin can either move spontaneously to the
open position, where it permits myosin strong binding, or it
can be pushed there by myosin binding. Myosin first binds
weakly to the thin filament, then isomerizes to a strongly
bound, force-generating state. The binding of one myosin
to the thin filament pushes tropomyosin into the open posi-
tion, exposing adjacent myosin-binding sites and leading to
cooperative activation. The three states of tropomyosin
positioning along the thin filament were subsequently
confirmed using structural techniques (5).

The three-state model provides a useful framework to un-
derstand the mechanism of perturbations in skeletal and car-
diac thin-filament regulation, such as drug treatments (1,6),
protein isoform changes (7), disease-causing mutations (8),
and post-translational modifications (9,10). The formalism
laid out by McKillop and Geeves enables the determination
of the equilibrium constants that govern transitions between
states and thus the population of thin-filament regulatory
units in each state (Fig. 1). However, it has been challenging
to precisely define the values of these equilibrium constants,
in part because of the number of free parameters in the
model. Furthermore, the original McKillop and Geeves
approach did not provide a methodology for assessment of
uncertainty in parameter values or hypothesis testing.
Such a methodology is necessary for the rigorous assess-
ment of the effects of perturbations.

Here, we have modified the approach of McKillop and
Geeves to better resolve the effects of perturbations in tropo-
myosin positioning along the thin filament. We provide a
MATLAB-based computational tool and a user guide that
enables users to determine the equilibrium constants that
govern thin-filament activation, estimate uncertainty in
these parameters, and statistically test the effects of pertur-
bations. We demonstrate the utility of our approach by
applying it to investigate the biophysical mechanism of a
mutation in troponin T, DE160, that causes familial hyper-
trophic cardiomyopathy (HCM) (11). This approach allows
for the robust determination of differences between WT and
mutant proteins, which is an important step toward devel-
oping novel therapies to treat HCM and other devastating
muscle diseases.
MATERIALS AND METHODS

Determination of equilibrium constants using
the McKillop and Geeves analysis

In the classic McKillop and Geeves analysis, the values of the equilibrium

constants that govern muscle activation (Fig. 1) were determined from

biochemical measurements. KB was calculated based on stopped-flow mea-

surements of the rates of myosin binding to regulated thin filaments (RTFs)

at low (pCa 9) and high (pCa 4) calcium (see Supporting Materials and

Methods for details). KW, KT, and nH (i.e., the size of the cooperative

unit) were calculated from titrations of pyrene-labeled RTFs with myosin

performed at saturating calcium (pCa 3; cal) and in the absence of calcium

(2 mM EGTA; nocal) (see Supporting Materials and Methods for details).

The relationship between the fraction of myosin-bound subunits, f([m]),

and the fractional change in pyrene fluorescence upon myosin binding is

given by the following equation (4):

fð½m�Þ ¼ F0 � F

F0 � FN

¼
KW½m�PðnH�1Þ

�
KTð1þ KSÞðnHÞ þ 1

�
�
KTPðnHÞ þ QðnHÞ þ 1

KB

�
ð1þ KSÞðnH�1Þ;

(1)

where F is the measured pyrene fluorescence; F0 and FN are the pyrene

fluorescence in the absence of myosin and at saturating myosin, respec-

tively; [m] is the concentration of myosin; P ¼ 1 þ [m] � KW(1 þ KS);

and Q ¼ 1 þ [m] � KW. KB at high calcium and KS were set to 20 and

18, respectively, based on (4). nH, KW, and KTwere determined in the pres-

ence and absence of calcium by fitting each titration curve independently.
Modified fitting approach

To improve the resolution of the parameters extracted from fitting of the

data, we modified the classic McKillop and Geeves approach:

1) For the calculations of KT, KW, and nH using steady-state fluorescence

titrations, McKillop and Geeves examined two calcium concentrations

(pCa 3 and 2 mM EGTA). Here, we perform an additional steady-state

fluorescence titration at an intermediate calcium concentration (pCa

6.25; midcal) to improve our ability to resolve these parameters.

2) The data for curves collected at three different calcium concentrations

are globally fitted using least-squares optimization, and the parameters

that minimize the aggregate error in all three data sets are determined.

In global fitting, individual parameters can be shared between data

sets, reducing the number of free variables and increasing the power

to precisely measure parameter values. Here, KW and nH are shared pa-

rameters among all three curves; however, this approach does not require

sharing these parameters. KT depends on calcium, and thus three distinct

KT values (KT-nocal, KT-midcal, KT-cal) are determined using this approach,

one for each of the calcium concentrations used in the titrations (2 mM

EGTA, pCa 6.25, and pCa 3, respectively).

3) We use a simulated annealing algorithm (simulannealbnd, included in

the Global Optimization Toolbox of MATLAB (MathWorks, Natick,

MA)) in our fitting procedure to avoid biasing the fit toward the initial
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guesses used in the fitting. The annealing routine ensures that the

best-fit parameters are obtained from a global rather than local min-

imum.
Hypothesis testing and statistics

One limitation of the original formulation of the three-state model is that

it lacks procedures for calculating uncertainties and statistical hypothesis

testing. Here, we use the well-established technique of bootstrapping to

calculate 95% confidence intervals (12,13) for the parameter values

determined by fitting Eq. 1 to the fluorescence titration data (see

Fig. 4, B–D). This data set consists of the titration data collected at three

calcium concentrations: 2 mM EGTA (nocal), pCa 6.25 (midcal), and

pCa 3 (cal). In the bootstrapping method, the original data set is

randomly resampled to generate synthetic data sets, each containing

the same number of points as the original data set. Each synthetic data

set is then fit to determine the best-fit values of the parameters for that

data set. 95% confidence intervals are defined as the interval over which

95% of the simulated parameter values are found. Note that the number

of bootstrapping simulations required will depend on the noise in the

data as well as the number of sampled points. As such, one should empir-

ically determine the number of simulations required for stable conver-

gence of the confidence intervals. We find that for the experiments

described here, 1000 rounds of bootstrapping simulations are sufficient

(Fig. 2 A).
A B

DC

FIGURE 2 Hypothesis testing. (A) Values of the average (black) and up-

per and lower bounds of the 95% confidence interval (red) for KT-midcal for

WT troponin are shown as a function of the number of bootstraps per-

formed during error estimation. The yellow line marks the measured

best-fit value. (B and C) Histograms of the test statistic (i.e., the difference

in values between parameters determined for WTand DE160) for KT-midcal

(B) and KT-cal (C) are given. Vertical lines represent the measured differ-

ence in values (yellow), the bounds of the 95% confidence interval (red),

and the null hypothesis (blue dashed). The difference in parameter values

is statistically significant at the 95% confidence level if the null hypothesis

falls outside the 95% confidence interval, as in (C). (D) Cumulative distri-

bution of the difference in values between WTand DE160 calculated from

the bootstrapping simulations for KT-cal is shown. Vertical lines are the

same as in (C). Inset highlights the determination of the p-value from

the value of the cumulative distribution at x ¼ 0. This value is multiplied

by two to make the test equivalent to a two-tailed test. To see this figure in

color, go online.

2248 Biophysical Journal 116, 2246–2252, June 18, 2019
For statistical hypothesis testing, we define a test statistic as the differ-

ence between parameter values in the perturbed and unperturbed systems

(14). For example, to determine whether there is a statistically significant

difference in the value of KW for a mutant protein relative to the wild

type (WT), the test statistic is H ¼ KW(WT) � KW(mutant). The value of

the test statistic is calculated for the real data and for pairs of KW values

drawn from the bootstrapping simulations of the data. The interval within

which 95% of the test statistic values from the bootstrapped simulations

fall is defined as the 95% confidence interval. If the null hypothesis

(i.e., H0 ¼ 0) is not contained within the 95% confidence interval,

then the null hypothesis is rejected, and KW(WT) s KW(mutant) with a

p-value < 0.05 (Fig. 2, B and C). The p-value can be calculated from a

cumulative distribution of the test statistic by finding the largest interval

that does not contain the null hypothesis (Fig. 2 D). This value is multiplied

by two to make the test equivalent to a two-tailed test.
RESULTS AND DISCUSSION

Here, we present a methodology and MATLAB-based
computational tool for analyzing biochemical measure-
ments of thin-filament positioning. This procedure builds
on the formalism developed by McKillop and Geeves
(4), extending it to allow for improved precision of param-
eter values, estimations of uncertainties, and statistical hy-
pothesis testing. The basic workflow for the analysis
follows:

1) Measure the value of the equilibrium constant between
the blocked and closed states of the thin filament, KB, us-
ing a stopped-flow kinetic technique (see Supporting
Materials and Methods).

2) Perform steady-state fluorescence titrations measuring
myosin binding to RTFs (see Supporting Materials and
Methods). The titrations should be carried out at three
separate calcium concentrations (i.e., low (nocal), high
(cal), and intermediate (midcal) calcium concentrations).
These data will be used in step 4 to determine the
following parameters: KT (the equilibrium constant be-
tween the closed and open states of the thin filament)
at each calcium concentration, KW (the equilibrium con-
stant describing weak myosin binding), and nH (the size
of the cooperative unit).

3) Use the provided script (Script_normalization_replica-
te.m) to normalize the data from each technical replicate
(typically three curves: nocal, midcal, cal) before pool-
ing the data.

4) Use the provided script (Script_global_fitting.m) to
globally fit the pooled titration data set to determine
the best-fit values and calculate confidence intervals
from bootstrapping simulations for each parameter
(KT-nocal, KT-midcal, KT-cal, KW, nH).

5) For a given perturbation, statistically test for differences
between individual parameters obtained from the fitting
using the provided script (Script_hypothesis_testing.m).

A detailed user guide describing how to perform each of
these steps, along with the data used to generate the figures
in this manuscript, is provided with the computational tool.
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Results obtained using the traditional fitting
procedure and the estimation of uncertainties

The individual equilibrium constants that define the
positioning of cardiac tropomyosin along the thin filament
were determined using tissue-purified porcine cardiacmyosin
and actin and recombinant human troponin and tropomyosin
(see Supporting Materials and Methods). The equilibrium
constant for the transition between the blocked and closed
states, KB, was determined by performing stopped-flow ki-
netic measurements. We measured KB¼ 0.35 0.2, in agree-
ment with the previously determined value (4,15). Although
there is some variance between technical replicates for KB,
the values of parameters obtained from fitting of the titration
data are relatively insensitive to small changes in the value
of KB.

The equilibrium constants for the transition between the
closed and open states, KT, and for myosin weak binding,
KW, were determined by performing titrations of RTFs
with myosin at high (pCa 3) and low (2 mM EGTA) cal-
cium. The titration curves were fit independently by Eq. 1
(4). To ensure that the fitting was not biased by the initial
guesses of parameter values, we modified the fitting proced-
ure described in (4) to incorporate an annealing routine that
iteratively fits the data with altered initial guesses. The
values obtained from these fits are shown in Fig. 3 A, and
they are consistent with values obtained previously with
skeletal and cardiac muscle proteins (15–17). The original
formulation of the McKillop and Geeves model did not
include a methodology for determining uncertainty in fitted
parameters. We developed a procedure to calculate 95%
confidence intervals via bootstrapping of the original data
set (12,13), and we applied this procedure to calculate the
A

B

confidence intervals of the parameters calculated using the
classic approach. With this procedure, we saw that the
classic approach gave considerable uncertainty in the values
of the fitted parameters. For example, for the data collected
at low calcium, we obtained uncertainties much larger than
the measured parameters for both KW (0.13 (�0.03/þ1.26))
and nH (6 (�2/þ6)).
Global fitting improves the resolution of fitted
parameters

To improve the resolution of parameters derived from the
fitting of the data, we adopted two modifications from the
traditional approach. First, we performed an additional
titration at pCa 6.25 (midcal). The inclusion of an addi-
tional titration curve at an intermediate calcium concentra-
tion is advantageous because some perturbations shift the
calcium sensitivity at intermediate concentrations but not
under fully activating or deactivating conditions (18). Sec-
ond, titration curves collected at the three different cal-
cium concentrations were fitted globally rather than
individually. In the global fitting, the values of KW, KS,
and nH were shared between the fits of all curves. Global
fitting of the three curves (Fig. 3 A) yielded tighter 95%
confidence intervals for both KW and nH (Fig. 3). The con-
fidence interval for KW was 0.13 (�0.02/þ0.03),
compared to 0.13 (�0.03/þ1.26) for the individually fitted
curve at low calcium. Similarly, the confidence interval for
nH for the individually fitted data was 6 (�2/þ6), whereas
the confidence interval for the globally fitted data was 6
(�2/þ4). These data demonstrate the improved resolution
of this approach.
FIGURE 3 Traditional versus global fitting of

the three-state model to fluorescence titration

data. (A) Histograms showing the frequency of

KW values determined from 1000 bootstrapping

simulations are given. Points are the values from

the global fitting (black) and from the individual

fits of data collected at 2 mM EGTA (magenta)

and pCa 3 (green). Lines are inserted to guide the

eye. The inset shows the distributions near the

mean values of KW. These data demonstrate that

global fitting reduces the uncertainty in the mea-

surement. (B) A table of parameter values obtained

from individual fits of data collected at 2 mM

EGTA (nocal) or pCa 3 (cal) compared to those ob-

tained from our global fitting method, which in-

cludes pCa 6.25 (midcal), is given. Values in

parentheses indicate the 95% confidence intervals.

To see this figure in color, go online.
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Hypothesis testing and its application to
determining the biochemical mechanism of a
mutation that causes HCM

To demonstrate the utility of our approach for resolving the
effects of molecular-based changes in cardiac thin-filament
regulation, we examined a point mutation that causes famil-
ial HCM, DE160 in troponin T (11). Clinical studies have
shown that this mutation causes pronounced ventricular hy-
pertrophy and sudden cardiac death, with half of the patients
not surviving past age 40 (11). Previous studies of the
DE160 mutation in muscle fibers (19,20), transfected myo-
tubes (21), and purified proteins (22) have shown that the
DE160 mutation causes increased activation of contractility.
However, the biochemical mechanism of this activation is
not well understood.

We applied our methodology to determine which transi-
tions involved in thin-filament regulation (Fig. 1) are
affected by the DE160 mutation. The goal of this analysis
is not an exhaustive characterization of the mutant; rather,
it is to demonstrate the utility of this approach for statisti-
cally assessing the effects of perturbations on thin-filament
regulation. From stopped-flow kinetic measurements
(Fig. 4 A), we obtained a KB of 0.25 0.1 for DE160, which
is indistinguishable from the value obtained for WT
A B

D

FIGURE 4 Effects of the DE160 mutation in troponin T on thin-filament regul

RTFs. The pyrene fluorescence is quenched at a higher rate at high calcium (pCa 4

(black/gray; average of n ¼ 6 curves each) and the DE160 mutant (magenta/gree

(B andC) Steady-state titrations of RTFs with myosin for theWT (B) or mutant (C)

pCa 6.25 (midcal, orange), and 2 mM EGTA (nocal, magenta). Curves are fits to

parameter values obtained for WTand DE160 troponin complexes from stopped-fl

given. Values in parentheses indicate the SD of six (WT) or four (DE160) replicates

for all other parameters. Asterisks indicate statistical significance at the 95% con
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troponin (0.3 5 0.2; p ¼ 0.41). We also performed fluores-
cence titrations (Fig. 4, B and C) to measure steady-state
actomyosin binding and determine KW, KT, and nH. We
used the computational tool to calculate parameter values
and their corresponding uncertainties from global fitting of
the titration curves (Fig. 4 D).

To determine whether there are statistically significant
differences between the parameters for WT troponin and
the DE160 mutant, we applied the hypothesis testing meth-
odology described in the Materials and Methods. We found
that the mutant showed a threefold increase in KT at high
calcium (0.17 (�0.12/þ0.18) for WT vs. 0.52 (�0.16/
þ0.28) for DE160; p ¼ 0.014). This threefold increase in
KT would result in an increased population of force-gener-
ating cross bridges at high calcium. We also found a
slight but statistically significant decrease in KW (0.13
(�0.02/þ0.03) for WT vs. 0.08 (�0.01/þ0.01) for
DE160; p ¼ 0.002). We saw that at low calcium, KT was
threefold larger for the mutant (p ¼ 0.076); however, this
difference was not significant at the 95% confidence level.
We did not detect statistically significant differences in
the values of nH (p ¼ 0.89), KB (p ¼ 0.41), or KT-midcal

(p ¼ 0.95). The net effect of these changes would be to in-
crease activation, which is consistent with the hypercontrac-
tility associated with HCM. Taken together, these data
C

ation. (A) Normalized stopped-flow fluorescence traces of myosin binding to

, green/black) than at low calcium (pCa 9, magenta/gray). The traces for WT

n; average of n ¼ 4 curves each) are similar at each calcium concentration.

protein conducted at three distinct calcium concentrations: pCa 3 (cal, green),

the data. Error bars show the SD of five technical replicates. (D) A table of

ow measurements (for KB) and using the computational tool (for all others) is

forKB and 95% confidence intervals determined using the computational tool

fidence level. To see this figure in color, go online.
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demonstrate the power of this approach for hypothesis
testing and for determining the biochemical mechanism of
perturbations of thin-filament regulation. Moreover, deter-
mination of the specific steps of thin-filament activation
affected by a perturbation provides a useful framework for
interpreting results obtained from complementary methods
(e.g., structural biology, muscle fiber mechanics), enhancing
our understanding of muscle physiology and disease.
Relationship to other models of thin-filament
regulation

Our method is based on the McKillop and Geeves approach,
which significantly advanced our understanding of thin-fila-
ment regulation. The goal of this work is not to distinguish
between this and other proposed models (23,24); rather, it is
to provide an improved framework for interpreting results
obtained using the McKillop and Geeves formalism. In
recent years, there have been additional modeling efforts
to better refine the McKillop and Geeves model (25–29)
and to extend its applicability to larger systems with more
states. These efforts have enhanced our understanding of
muscle contraction and have led to the development of sys-
tems that can recapitulate many of the salient features of
muscle contraction in silico (28). However, these models
are also significantly more complicated than the McKillop
and Geeves model. The ability to assess the effect of pertur-
bations on thin-filament regulation using the relatively sim-
ple three-state model is a major advantage of the approach
and computational tool presented here.
Application of the hypothesis testing and
uncertainty estimation to other systems

The computational tool for hypothesis testing and confi-
dence interval estimation from bootstrapping simulations
is not limited to analysis of fluorescence titrations but can
be broadly applied to other data sets as well. We have sup-
plied a standalone version of this section of the code for
examining the mean and median values (i.e., data frequently
used for single-cell measurements) so that others can apply
it to their experimental system. This methodology is useful
for data sets for which the form of the underlying distribu-
tion is either unknown or not normal, such as single-mole-
cule data (30) and single-cell studies, as demonstrated in
(18).
CONCLUSION

Here, we have demonstrated a method for extending the
utility of the McKillop and Geeves (4) approach to under-
standing thin-filament regulation, and we have provided a
well-documented, accessible computational tool to imple-
ment this methodology. Our approach extends the McKillop
and Geeves approach to include a method for calculating
confidence intervals and performing statistical tests. This
methodology allowed us to resolve the molecular effects
of a mutation that causes hypertrophic cardiomyopathy.
This tool should be useful for studying physiological and
pathological changes in muscle, as well as for testing new
therapies that target muscle regulation.

The computational tool can be downloaded from GitHub
at https://github.com/GreenbergLab/Thin_Filament_Fitting.
The computational tool consists of a series of scripts that are
executable in MATLAB. The software is compatible with at
least versions of MATLAB 2017b to 2019a. Where we are
aware of potential compatibility issues with previous versions
of MATLAB, we provide suggestions for resolving these is-
sues in the scripts. The scripts require the followingMATLAB
toolboxes: Optimization, Global Optimization, Statistics and
Machine Learning. The Parallel Computing toolbox is recom-
mended for the purposes of decreasing the time required to
perform the fitting, but it is not strictly required to run the
scripts. We also provide an in-depth user guide, along with
the raw data used in the examples presented here. The MAT-
LAB code is provided as an appendix to the user guide for
users wanting to adapt the code to a different language.
SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.

2019.05.002.
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