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Abstract
Methods to catalog and computationally assess the mutational landscape of proteins in human cancers are desirable. One 
approach is to adapt evolutionary or data-driven methods developed for predicting whether a single-nucleotide polymorphism 
(SNP) is deleterious to protein structure and function. In cases where understanding the mechanism of protein activation and 
regulation is desired, an alternative approach is to employ structure-based computational approaches to predict the effects of 
point mutations. Through a case study of mutations in kinase domains of three proteins, namely, the anaplastic lymphoma 
kinase (ALK) in pediatric neuroblastoma patients, serine/threonine-protein kinase B-Raf (BRAF) in melanoma patients, and 
erythroblastic oncogene B 2 (ErbB2 or HER2) in breast cancer patients, we compare the two approaches above. We find that 
the structure-based method is most appropriate for developing a binary classification of several different mutations, espe-
cially infrequently occurring ones, concerning the activation status of the given target protein. This approach is especially 
useful if the effects of mutations on the interactions of inhibitors with the target proteins are being sought. However, many 
patients will present with mutations spread across different target proteins, making structure-based models computationally 
demanding to implement and execute. In this situation, data-driven methods—including those based on machine learning 
techniques and evolutionary methods—are most appropriate for recognizing and illuminate mutational patterns. We show, 
however, that, in the present status of the field, the two methods have very different accuracies and confidence values, and 
hence, the optimal choice of their deployment is context-dependent.
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Introduction

Tumorigenesis was first posited to be an evolutionary pro-
cess by Nowell in 1976 [1]. Since then, the idea that cancer 
cells undergo selection on the path from normal to the can-
cerous cell has continued to gain traction [2]. This idea is 
predicated upon the knowledge that tumors are composed of 
a heterogeneous population of cells, in terms of mutations, 
gene expression levels, somatic copy number, and epige-
netic factors [3, 4]. These factors are then selected upon for 
robustness and their ability to promote proliferation, alter 
the tumor microenvironment, and invade neighboring tis-
sues [2]. Of all the functional alterations that a cancer cell 
undergoes, among the easiest ones to understand concep-
tually, and to measure unambiguously, are mutations that 
directly alter protein function. Mutations that ablate a pro-
tein’s regular function are often observed in cancer cell lines, 
especially among tumor suppressors such as TP53 and RB1 
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[3, 4]. The transformation from normal to the cancerous 
cell is often marked by a gradual accumulation of muta-
tions over time that eventually increases the ability of the 
cancer cell to sustain itself and reproduce [2]. Cancer cells 
may acquire mutations at a faster rate than normal somatic 
cells or may acquire more mutations due to increased pro-
liferation. Not all mutations drive cancer progression. Muta-
tions that confer a selective advantage on the cancer cell 
line are known as ‘driver’ mutations, whereas ‘passenger’ 
mutations are neutral in terms of selective advantage [5]. 
All cells acquire mutations over their life cycle from dif-
ferentiation to senescence, but cancer cells do so at a faster 
rate than normal cells, and this rate increases over time [6]. 
Most mutations fall in intergenic regions or within introns of 
the coding sequences of proteins [7], and their consequences 
are unclear. Some affect protein splicing or regulation, but 
how these contribute to cancer progression is not well under-
stood. The clearest oncogenic mutations are those that cause 
changes in the amino acid sequence of a protein with direct 
effects on protein function.

One of the grand challenges in understanding cancer 
progression is to find mechanistic links between molecular 
alterations and the hallmarks of cancers such as increased 
proliferation and survival, aggressive invasion and metasta-
sis, evasion of cell death, and increased metabolism [3, 4]. 
This challenge is also of clinical importance, because the 
patient outcome of therapy (both in terms of initial response 
and subsequent development of resistance) is now known to 
depend on the genetic alterations (primary or acquired) in 
the individual patients [8–11]. Many targets for therapeu-
tic intervention/inhibition have been evaluated in the past 
few years based on strong promise suggested by preclinical 
investigations. Experience has shown, however, that clinical 
trials are often unsuccessful when the drugs are adminis-
tered to un-cohorted patient populations—accentuating the 
need to employ targeted therapies on select populations of 
patients classified based on molecular/genetic alterations 
[11]. Rapid genotyping platforms and advances in sequenc-
ing cancer genomes allow detection of genetic aberrations 
in clinical samples. These approaches allow the identifica-
tion of relevant molecular targets in each patient, and also 
the tracking of acquired molecular changes [12] (expression 
[13, 14], mutation [15–18], epigenetic changes [19], post-
translational modifications [20], etc.) during disease pro-
gression or during treatment. Relating the molecular profile 
of a given patient to disease prognosis and the efficacy of a 
particular therapy is a grand challenge in clinical oncology. 
The goal is to map high-dimensional data from an array of 
techniques to a set of viable cellular mechanisms and, thus, 
to infer treatment options. Integrating quantitative data on 
protein expression (from immunohistochemistry), gene copy 
number and mutations (from sequencing and other DNA 
analyses), and gene expression (from fluorescence in situ 

hybridization, polymerase chain reaction or microarray 
technology, single-cell imaging) is a daunting task [21]. A 
further problem is the heterogeneity of tumors [22], leading 
to differential expression patterns within a tumor, in different 
tumor areas within an individual, or in different individuals. 
The question then is: how precisely can a tumor be char-
acterized by these techniques? Tackling the heterogeneity 
represents a promising opportunity for in silico modeling 
approaches.

Mining molecular/mutation data 
from cancer atlases

Recent large-scale sequencing projects have generated exten-
sive data on somatic mutations in cancer. Tumor resequenc-
ing efforts have led to a substantial accumulation of data on 
cancer somatic mutations [23]. The ongoing decrease in the 
price of genome and exome sequencing has led to the crea-
tion of online databases for cancer genome sequence infor-
mation such as the Catalog Of Somatic Mutations In Can-
cer, COSMIC [23] and The Cancer Genome Atlas, TCGA 
(http://cance rgeno me.nih.gov/). This cataloging, in turn, has 
allowed researchers to catalog which proteins are frequently 
mutated in various cancer types, and has spurred efforts to 
determine the driver status of mutations [24].

Kinase domain mutations: Kinases are involved in cellu-
lar signaling processes that control differentiation, prolifera-
tion, and other cellular behavior [25]. Some of the first onco-
genic mutations to be discovered were those that activate 
kinases, leading to constitutive activation and upregulation 
of cell proliferation [4, 25, 26]. Gain-of-function mutations 
of this type tend to occur at ‘hotspots’ in the protein, whereas 
loss-of-function mutations (as seen in tumor suppressors 
in cancer) are more distributed throughout the molecule. 
Moreover, the fact that kinase domains experience large and 
well-characterized conformational differences between their 
active and inactive forms [27] makes experimental detec-
tion and computational prediction of activating mutations 
possible [24, 28–30]. Kinases are frequently mutated pro-
teins in cancer, accounting for 2% of all mutations in the 
COSMIC database (taking into account clinical data subject 
to whole genome sequencing only). Mutations that activate 
kinase domains and upregulate cell proliferation are well 
represented among known driver mutations. Many have 
been clinically observed [23] and experimentally verified, 
but determining a priori which mutations in a given kinase 
are activating is still quite challenging.

Although many previous studies have shown that specific 
kinase domain mutations can lead to constitutive activation, 
no systematic study of mutational clustering in the various 
structural subdomains of the canonical kinase fold has pre-
viously been undertaken. We reasoned that the subdomain 
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location of kinase domain mutations would be linked to 
their ability to promote constitutive activation, and might 
serve to help predict which novel mutations promote sign-
aling deregulation and lead to oncogenesis. The COSMIC 
database (version 68) [23] was used as the source for muta-
tional data to obtain information on subdomain clustering 
of kinase domain mutations. A multiple sequence alignment 
of kinase domains was performed using ClustalW2 [31], 
and the residues comprising functionally important structur-
ally defined subdomains (see Fig. 1) were extracted. These 
subdomains include the nucleotide-binding loop (P-loop), 
the catalytic-loop (C-loop), the αC-helix, and the activa-
tion loop (A-loop). By binning clinically observed cancer 
mutations in kinase domains in this manner, we can observe 
whether or not mutations preferentially segregate to any of 
these subdomains or whether there is a more uniform distri-
bution of mutations across the kinase domain. The number 
of observed mutations in select kinases classified according 
to cancer type and according to the subdomain of the protein 
kinase where the mutation occurs is provided in Fig. 1.

One of the most frequently observed single mutations in 
COSMIC is the BRAF V600E mutation, which is located 
in the activation loop of the BRAF kinase domain and has 
been shown to lead to its constitutive activation [32]. This 
mutation is frequently observed in several cancer types, 
including thyroid, colon, skin, leukemia, and lung cancers. 
A notable contrast to the highly predominant single mutation 
that characterizes BRAF is the case of the epidermal growth 
factor receptor (EGFR), where more than half of the residues 
in the kinase domain have been observed to be mutated in 

lung cancer samples. While exon 19 insertion–deletion class 
of mutations (e.g., Del747–753 Ins S) is the most prevalent 
EGFR mutations in human cancers [33], the most common 
EGFR single point mutation in cancer is L858R (using pro-
EGFR numbering, where the mature protein begins at resi-
due 25). L858 is in the EGFR activation loop and is known 
to cause constitutive activation of the kinase [24]. The next 
most frequently observed EGFR mutation is the so-called 
gatekeeper mutation, known as T790M, which is not located 
in any of the kinase subdomains under consideration but 
does lead to constitutive activation. This mutation is fre-
quently observed to arise after treatment with EGFR-specific 
inhibitors, as it reduces the ability of first-generation EGFR 
inhibitors to compete with ATP for the active site, leading 
to treatment resistance [24]. Much less common than either 
of these mutations, but still causing constitutive EGFR acti-
vation are the P-loop mutation G719S and the activation 
loop mutation L861Q. Curiously, although some studies 
have shown that L861Q increases kinase activity, trans-
forms cell lines, and promotes drug resistance, no research 
to date has made a direct measurement of L861Q kinase 
activity. Other such mutations in EGFR include E709G and 
S768I similarly known to be activating. The majority of the 
remaining mutations seen in the EGFR kinase domain in 
lung cancer samples are only mutated relatively infrequently. 
Many of these mutations are of unknown consequence, but 
several have been shown to lead to constitutive activation. 
The ErbB family member ErbB2, also known as HER2, is 
frequently mutated in breast cancer and also often mutated 
in colorectal cancer as well. The most frequent mutations 

N-lobe

C-lobe

Fig. 1  (Left) structure of a tyrosine kinase domain with different 
subdomains colored; see labels on legends in middle and right pan-
els. The structure derived from the epidermal growth factor recep-
tor tyrosine kinase (PDB ID: 2GS2). The nucleotide binding loop 
(p-loop), αC helix, activation loop (A loop), and the catalytic loop 
(C loop) are highlighted. (Middle) histograms of number of clini-
cally observed cancer mutations in kinase domains constructed from 
COSMIC (version v87, 2018); here each count is an observation in 
one patient. (Right) histograms of number of amino acids mutated in 

the kinase domain pooled from clinically observed cancer mutations 
in kinase domains constructed from COSMIC (year 2018); here each 
count is a mutation at an amino acid location. We note that the middle 
panel include patient data from targeted sequencing as well as whole 
genome sequencing while the right panel includes data from whole 
genome sequencing only. These figures are provided to motivate the 
prevalence of mutations in cancer patients only. As a cautionary note, 
any statistical analysis on such data should consider the bias factors 
involved in targeted sequencing
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are in the catalytic loop (V842I) and the αC-helix (I767M, 
D769Y, and V777L). All of these mutations have been stud-
ied in vitro and in vivo, and appear to be activating [34, 
35]. The L755S mutation, which is not with any of the 
listed subdomains, but lies N-terminal to the αC-helix, has 
been shown to have minimal cell transforming abilities but 
to confer drug resistance, and has yet resisted attempts to 
characterize its catalytic activity [34–36]. Another kinase 
that is frequently mutated in cancers, especially leukemia, 
skin cancer, and gastrointestinal stromal tumors (GIST), is 
the stem cell growth factor receptor known as c-kit. Again, 
the majority of the mutations in this protein are observed in 
the activation loop, with the most frequent being the D816V 
mutation observed in leukemia [37]—known to lead to con-
stitutive activation. Much less frequently, mutations are also 
observed in the αC-helix of c-kit, with K642E being the 
most common. This mutation has also been shown to lead 
to constitutive activation [38]. There is also one relatively 
frequent mutation in kit that is not in a subdomain, namely 
the V654A mutation that falls between the αC-helix and the 
catalytic loop and leads to increased kinase activity [39]. 
FLT3, PDGFRα, and FGFR3 all have been observed to have 
activation loop mutations in cancer samples. In FLT3, the 
D835Y/V/E/H/N activation loop mutations have all been 
shown to lead to constitutive activation [40]. Likewise, the 
PDGFRα D842V activation loop mutation is constitutively 
activating [41], as are the FGFR3 activation loop mutations 
K650M/E in skin cancers [42].

There are a few interesting cases of kinase domains that 
are frequently mutated in COSMIC for which the most 
recurrent mutations are not in the activation loop—per-
haps indicating a different mechanism of activation of these 
kinases. The RET M918T mutation, located a few residues 
N-terminal to the activation loop, is frequently observed 
in thyroid cancer [43]. Another interesting case is that of 
ABL, which was the first tyrosine kinase to have a clini-
cally approved inhibitor [44]. After treatment with inhibitors 
such as imatinib, the oncogenic BCR-ABL fusion protein 
acquires the so-called gatekeeper mutation T315I, between 
the αC-helix and the activation loop, which confers resist-
ance to many BCR-ABL specific inhibitors by sterically hin-
dering their binding [45]. Several other mutations that pre-
vent inhibitor binding via steric hindrance are also observed 
in the P-loop of BCR-ABL [45].

Perhaps, the most remarkable case of constitutive acti-
vation of a kinase by a mutation is that of JAK2. JAK2 
has two kinase domains called JH1 and JH2. The second 
kinase domain, JH2, has only weak (if any) kinase activ-
ity and is thought to function to regulate the JH1 kinase 
domain [46]. A V617F mutation—in the N-lobe of the JH2 
pseudokinase domain—is the most frequently observed 
single mutation in COSMIC at this time and is known to 
lead to constitutive JAK2 activation [47]. The mechanism 

that causes this activation is still a subject of debate. We 
also investigated the juxtamembrane region (JMR) of 
receptor kinases for mutational clustering. By far, the most 
frequently mutated JMR was that of c-kit, which is fre-
quently mutated at residues V559 and V560—typically to 
Asp (less frequently to Gly or Ala). Kit L576P and W557R 
mutations are also sometimes observed. The V560G muta-
tion has also been shown to lead to constitutive kit dimer-
ization [48], as well as activation and is susceptible to 
inhibition by imatinib [49]. The V559D mutation has also 
been shown to cause constitutive activation [50]. Other 
receptors appear to be much less prone to activation by 
JMR mutations (data not shown).

Interesting phenomena emerge when we analyze the 
most prevalent mutations as a group rather than individu-
ally on a per kinase basis. One interesting observation is 
that several prevalent mutations occur at the same residue 
in different proteins, as determined by sequence align-
ment. In receptor tyrosine kinases, the D835Y/V/E/H/N 
in FLT3, D816V/H/Y/F mutations in KIT, D842V muta-
tion in PDGFRα, and L861Q mutation in EGFR all occur 
in the same place in the kinase domain. Most of these 
have been shown to lead to ligand-independent constitu-
tive activation. Another general feature of activation loop 
mutations shows up when we examine this list. Many fre-
quently observed oncogenic mutations involve substituting 
a charged amino acid to a non-charged amino acid, or vice 
versa. The residues at which such mutations occur are all 
involved in or close to a salt bridge predicted to stabilize 
the inactive state of the kinase.

In effect, many of these mutations are changing the elec-
trostatic environment of a wild-type stabilizing interaction, 
or creating a new stabilizing interaction for the active state. 
Several activation loop mutations also result in the loss or 
formation of a salt bridge, which biases the system towards 
the active state. The EGFR L858R mutation results in a 
new salt bridge that favors the active state [51]. The BRAF 
V600E mutation does not result in the formation of a new 
salt bridge, but, instead, destabilizes an existing salt bridge 
by changing the electrostatic environment of the neighboring 
residue K601, which normally is involved in a salt bridge 
with the αC-helix in the inactive conformation [52]. How-
ever, it is important to emphasize that the mechanistic basis 
for how mutations impact protein function is not understood 
in most cases.

Given that there is mutational clustering in kinase pro-
teins, it is natural to ask whether there might be similar 
trends in other protein classes. A summary is provided in 
Supplementary Information (SI) section S1 where we dis-
cuss mutation statistics for GTPase/G-proteins and other 
proteins. For the remainder of the review, we, however, focus 
our discussions on evaluating the functional effects of kinase 
mutations using computational methods.
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In silico methods for structure–function 
mapping

Although the frequently observed mutations (hotspot 
mutations) are studied in detail to determine their effects 
on protein function, cell line proliferation, or both, many 
more mutations remain unstudied. It may not be practical 
to carry out detailed mechanistic or transformation assays 
for every mutation that is observed—making predictive 
approaches desirable. To treat patients effectively, or even 
classify patients into different cohorts for treatment, it would 
be of great value to have a general description of how the 
mutational landscape of a particular patient will alter best 
treatment practices. The issue is particularly significant in 
molecularly targeted therapies, where drugs target specific 
proteins, and, perhaps, even specifically mutated proteins. 
Here, we discuss several computational approaches that can 
help bridge the gap that exists between assessing mutational 
landscapes in individual proteins, their effect on signaling 
pathways, cellular response, and the implications on cancer 
hallmarks and ultimately the clinical outcome.

Extensive cataloging of mutational data such as those 
summarized in “Mining molecular/mutation data from 
cancer atlases” has led to efforts to computationally assess/
classify which of these mutations are drivers and which are 
passengers—using the definitions outlined earlier. Most of 
these efforts have been adaptations of methods developed 
for predicting whether a single-nucleotide polymorphism 
(SNP), not necessarily cancer-related, is deleterious to pro-
tein structure and function. Among these methods, the most 
popular are sequence alignment or structure-based [53–59], 
machine learning [60–63], and statistical [7, 64] approaches. 
The sequence-/structure-based methods are accurate and 
sensitive over the whole genome, but are less accurate than 
protein family-specific methods [61]. The statistical meth-
ods generally try to assess deleteriousness by calculating the 
difference between expected and observed mutation rates 
and locations [7], but give no mechanistic insight into why 
a specific mutation is (or is not) deleterious. Of the protein 
family-specific methods, the machine learning-based support 
vector machines (SVM) is the most widely used. Alterna-
tively, ab initio (physics-based) methods such as molecular 
dynamics (MD) simulations have been employed to inter-
rogate the effects of mutations on structure, dynamics, and 
drug interactions at the molecular level—addressing mecha-
nism directly.

Molecular dynamics simulations

Simulations and analysis reported here were carried out 
using the BioPhysCode software suite: (https ://bioph yscod 

e.githu b.io/) developed in the Radhakrishnan laboratory. 
BRAF (active conformation) was modeled off PDB 4MNE, 
while BRAF (inactive conformation) was based on 3TV4. 
HER2 (active conformation) was modeled after 3PPO 
chain B, while HER2 (inactive conformation) was con-
structed from a homology model based on EGFR inac-
tive structures 2GS7 chain A, and 4HJO chain A, 3W32 
chain A and ErbB4 inactive structures 3BBW chain A, and 
2R4B chain A. All homology models were constructed 
using MODELLER [65] and all mutations were intro-
duced using the BioPhysCode Automacs routine based 
on MODELLER. Simulations were run with Automacs 
using GROMACS 4.6 [66] with the CHARMM27 force-
field [67] with TIP3P explicit solvent in a periodic water 
box with at least 12 Å between the protein and box edge. A 
salt concentration of 0.15 M NaCl was used, and the final 
charge of the full system was zero. Minimization was car-
ried out using steepest descent, and the system was equili-
brated first at constant volume and then at constant pres-
sure simulations. The simulations included particle-mesh 
Ewald methods for long-range electrostatics, the center of 
mass translational motion removal during dynamics, and 
the LINCS method to constrain all hydrogens. Simula-
tions were run for a total of 101 ns per replicate for each 
system, and two replicates were obtained for each system. 
Trajectories were analyzed over 100 ns, and the two rep-
licates were averaged together. Structures were sampled 
from each trajectory at 20 ps intervals resulting in a total 
of 5001 structures for analysis. Plots were created with 
Omnicalc using matplotlib.

Hydrogen-bonding analysis: For each structure in a tra-
jectory, the hydrogen-bond (H-bond) occupancy (O) was 
calculated by dividing the number of frames in which an 
H-bond is observed by the total number of frames. After 
computing the H-bond occupancy for each residue i in the 
inactive WT (OWT,i) and in the inactive mutant (OMUT,i), 
the occupancy difference in mutation MUT for residue i 
was calculated as ΔMUT,i= OMUT,i − OWT,i. The occupancy 
difference is plotted in Fig. 2. For each residue i occupancy 
difference, if |ΔMUT,i| > threshold, then ΔMUT,i is added to 
an accumulator ΔMUT,Total.The absolute value is checked 
against the threshold to allow for loss and gain of hydrogen 
bonds, but the signed values are added to the accumulator 
to see whether an individual system is gaining and/or los-
ing H-bonds. Here, threshold is set to 0.75 and a mutation 
is considered to have a different occupancy than WT if 
ΔMUT,Total is non-zero. The threshold value of 0.75 was 
chosen by varying the threshold from 0 to 2 and plotting 
either the receiver-operating characteristic area under the 
curve, a measure of how well a classifier can distinguish 
between positive and negative examples, or true positives 
minus false positives. In both cases, each system had a 

https://biophyscode.github.io/
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peak value between 0.7 and 0.8, though, in some cases, 
this peak spanned a larger region.

Structure‑based computational methods 
for profiling mutations

Statistically, the majority of patients will harbor the most 
frequently observed mutations. That is not to say that there 
is no need to determine treatments for patients with less 
frequently observed and\or less well-understood mutations, 
however, who represent large numbers across the popula-
tion. In the case of kinases, for which many drugs have been 
developed, structure-based methods have been used to try 
to determine the effects of specific mutants and how dif-
ferent drugs might work on these mutants. These methods 
include the use of molecular dynamics (MD) simulations, 
drug docking, and various statistical methods.

Numerous groups have used MD simulations to assess 
the effects of mutations [24]. One method to determine the 
effect of a mutation is to simply run an MD simulation and 
see if there is evidence for a transition (or the beginning of a 
transition) from the inactive to the active conformation. The 
principal limitation of this method is that it is computation-
ally expensive and requires a long simulation time for the 
results to be useful. Even the use of a custom-built super-
computer was not able to observe a transition from inactive 
to active in the EGFR L858R mutation [68]. To overcome 
this limitation, enhanced sampling methods that allow for 
more rapid exploration of conformational space and deter-
mination of energy landscapes can be used. A recent report 

exploring EGFR mutants [69] used a method called meta-
dynamics to determine the difference in activation barrier 
between wild-type and the most frequent mutants. This study 
showed that whereas wild-type EGFR has lower free energy 
in the inactive state, the L858R mutant has its lowest free-
energy state in a conformation in between active and inac-
tive. This study also showed that both the T790M mutant 
and the L858R–T790M double mutant have their respective 
lowest free-energy states in the active conformation [69], 
showing why these mutants lead to constitutive activation 
and oncogenesis. EGFR is not the only kinase studied by 
such methods. Simulations of ABL [70], ALK [71], B-RAF 
[52], CDK5 [72], c-KIT [37], HCK [73], RET and MET 
[70], and SRC [74] have all been carried out to investigate 
the effects of mutations on protein structure and function, 
and/or the impact of allostery on conformational changes. 
The limitation of these studies is that they have either only 
looked at conformational changes in the wild-type protein 
or in a few mutating proteins, generally, the most frequently 
observed in a particular protein. While detailed insight into 
allosteric mechanisms of regulation as provided by such 
studies can be insightful, in the case of the mechanism of 
imatinib binding Abl [75], these studies have often shown 
that individual mutations can have specific and even unique 
mechanisms of allosteric regulation. The subtleties of the 
molecular context of each individual mutation make it dif-
ficult to generalize mechanistic insights across mutations 
in a single protein, let alone classes of structurally related 
proteins. To overcome the limitations imposed by perform-
ing such detailed mechanistic studies of normal activation 

Fig. 2  Scoring functions computed from MD trajectories for mutants of BRAF and ErbB2. A mutation with a scoring function value different 
from zero by a threshold is predicted as activating. The colors of the histogram represent the activation status from experiments (see SI Table S1)
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mechanisms in kinases, a recent study of several mutants 
of ALK used scoring functions calculated from short MD 
trajectories to systematically investigate a series of clinically 
observed mutations and determine what their likely activa-
tion status would be [30]. When compared to experimental 
kinase activity assays, the MD method proved quite accu-
rate [30]. As extensions of these ALK studies, we report in 
Fig. 2, the scoring functions computed based on MD simu-
lations for different mutants of BRAF and ErbB2 found in 
cancer patients. In these figures, the scoring function records 
the net difference in hydrogen bonds in the mutant kinase 
involving the A-loop and αC-helix regions between the inac-
tive mutant and inactive wild-type conformations. A scoring 
function of > 0.75 or < − 0.75 is predicted to be activat-
ing. The experimental status of activation is color-coded 
(green = not activating, red = activating, and purple = mildly 
activating). The performance of the MD on the BRAF and 
HER2 systems is further discussed in “Machine learning—
support vector machine (SVM)” when MD is compared to 
other data-driven methods and with experiments. Given the 
evidence that even single mutations can lead to tumor colony 
growth, at least in vitro [76, 77], studies such as these are 
likely to be increasingly relevant going forward.

Machine learning—support vector machine (SVM)

Construction of data set: The kinase mutation data set was 
constructed via text mining of the UniProt database using 
a Perl script. Regular expressions were used to parse the 
MUTAGEN and VARIANT fields in Uniprot. Mutated 
residue entries in UniProt were classified as non-activating 
if they contained any of the following strings: ‘impairs’, 
‘strongly impairs’, ‘reduce’, ‘strongly reduce’, ‘abolishes’, 
‘diminished’, ‘loss .+ normal .+ order’ (where .+ denotes at 
least one other character of any type), and ‘abolishes down-
regulation’. Mutated residue entries in UniProt were classi-
fied as activating: ‘increase’, ‘strongly increase’, ‘constitu-
tive’, and ‘does not + constitutive’. The resulting training set 
was validated by searching the literature for a subset of the 
entire data set to ensure that class assignments were correct. 
This procedure not only showed the utility of the underlying 
method, but led to many papers that had mutations not in the 
original set in addition to those in the original set. Final set 
contained 784 total point mutations, with 204 activating, and 
580 non-activating mutations.

Construction of feature vectors: For each mutation, a fea-
ture vector with a set of values for the descriptors in Table 1 
was constructed, leading to a feature vector with 59 elements 
for each mutation. Each element of the resulting vectors is 
normalized, so that all values are in [− 1, 1]. A large number 
of the elements will be zero for each mutation.

Construction of data matrix: Feature vectors were gener-
ated for each of the 784 mutations via a python script that 

extracted features from the data. The data file has the follow-
ing information for each kinase: (1) the name of the kinase 
(BRAF, ALK, etc.); (2) the wild-type residue; (3) the mutant 
residue; (4) the location of the point mutation; (5) label (+ 1: 
activating; − 1: non-activating). The data matrix was gener-
ated with the features (normalized numerical values) and 
labels for each mutation.

Construction of training and test set: Data set was divided 
into a training set and a test set. The training set consists of 
all 784 mutations (including the ALK, BRAF, HER2, and 
ERBB2 mutations). The test set consists of all of the ALK, 
BRAF, HER2, and ERBB2 mutations (114 mutations). Since 
the data were imbalanced, the SMOTE algorithm [78, 79], 
for upsampling of the minority class, was performed on 
the training set, so that it consisted of an equal number of 
activating and non-activating mutations. SMOTE was only 
applied on the training set to prevent overfitting.

Model parameters, training, and hyperparameter search: 
The support vector machine (SVM), with the radial basis 
function (RBF) kernel, was chosen, since the data were 
numerical and the number of samples was much larger than 
the dimensions of the feature space. The training data were 
utilized to determine optimal hyperparameters. SVM, like 
any ML algorithm, has a number of parameters which can be 
optimized. For the SVM, the error penalty, C, and the Gauss-
ian width γ can be optimized. The error penalty C controls 
how smooth the decision surface is, with larger values of C 
leading to an increasingly jagged boundary that attempts to 
classify every example correctly. The Gaussian width γ con-
trols how large of a region in feature space (or any mapping 
of feature space) that the training examples take up, with 
larger values, meaning that training examples are ‘felt’ in a 
smaller region. Both C and γ are tuned in cross-validation 
(Fig. 3). To this end, a grid search was implemented over all 
combinations of values of γ ∈ [1 × 10 − 5, 1 × 104] increasing 
by a factor of 10 in each iteration, C ∈ [0.01, 0.1, 1, 2, 3, 4, 5] 
for loss functions which maximize one of [F1, ROC–AUC]. 

Table 1  List of features included in the SVM

Wild-type residue (one feature element for each of the 20 amino 
acids)

Mutant residue (one feature element for each of the 20 amino acids)
Wild-type residue type (from aliphatic, acidic, basic, aromatic, and 

polar)
Mutant residue type (from aliphatic, acidic, basic, aromatic, and 

polar)
Difference between wild-type and mutant residues for following: 

(1) Kyte–Doolittle hydropathy; (2) free energy of solvation; (3) 
normalized van der Waals radius; (4) polarity difference; (5) charge 
difference

Whether the mutation falls in one of the following kinase subdo-
mains: (1) nucleotide-binding loop; (2) αC-helix; (3) catalytic loop; 
(4) activation loop
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The F1 score is a weighted average of the precision and 
recall, both of which are defined later when discussing the 
measures used in evaluating the performance of the model. 
The F1 score reaches its best value at 1 and the worst score 
at 0. The receiver-operator characteristic (ROC) is a plot 
of the false-positive rate (x-axis) versus the true-positive 
rate (y-axis) for a number of different candidate threshold 
values between 0.0 and 1.0. ROC-AUC calculates the area 
under the curve (AUC); the best possible AUC is 1, while 
the worst is 0.5 (the 45° line). F1 and ROC–AUC are more 
representative loss functions than accuracy, since the data 
are imbalanced. The grid search was conducted by per-
forming fivefold cross-validation. The training data set was 
shuffled randomly and then split into five groups. For each 
unique group, that group is taken as the test data set and the 
remaining groups as a training data set. A model is fit on the 
training set and evaluated on the test set. The model is dis-
carded after retaining the F1 and ROC–AUC scores, and the 
process is repeated for each unique group. The skill of the 
model with that particular combination of hyperparameter 
values is then summarized using the sample of model evalu-
ation scores. For the training set used here, the F1 value was 
maximized for the parameters [‘C’: 1, ‘gamma’: 1, ‘kernel’: 
‘RBF’], and ROC–AUC was maximized for the parameters 
[‘C’: 5, ‘gamma’: 0.1, ‘kernel’: ‘RBF’]. Further attempts 
at refining these parameters yielded only small increases 
in either AUC or F1, but allowed the selection of [‘C’: 5, 
‘gamma’: 0.1, ‘kernel’: ‘RBF’] as the hyperparameters that 
were utilized for the evaluation of our data.

Using the trained model, we made predictions on the 
labels (1: activating; 0: non-activating) of the test set. The 
results are summarized in Tables 3, 4, 5 and 6. The following 

measures were used in evaluating the performance of the 
model: BACC = (TPR + TNR)/2, where, BACC = balanced 
accuracy, TPR = true-positive rate, TNR = true-negative 
rate. TPR = TP/(TP + FN), where TP = # of true positives, 
FN = # of false negatives; FPR = FP/(FP + TN), where FP = # 
of false positives, TN = # of true negatives. Other defini-
tions include: Accuracy = (TP + TN)/(TP + FP + TN + FN), 
Precision = TP/(TP + FP), and Recall = TP/(TP + FN). The 
performance of the test set is summarized in Table 2, and 
the metrics are further summarized in Fig. 3.

Data‑driven computational profiling methods 
for profiling mutations

Although MD simulations are useful for understanding, and 
even possibly predicting, the effects of a few mutations, they 
are generally too computationally intensive to be used on 
every observed mutation when real-time predictions (within 
minutes of wall clock time) are desirable. Therefore, several 
groups have investigated statistical and machine learning 
methods to understand the oncogenic potential of large num-
bers of mutations. The earliest attempts to understand how 
well sequence changes would be tolerated were not in the 

Fig. 3  Optimal parameters for SVM from the hyperparameter search: 
(left) plot of ROC–AUC scores for combinations of γ and C values 
tested during cross-validation. Optimal combination of parameters 
found to be: [‘C’: 5, ‘γ‘: 0.1, ‘kernel’: ‘RBF’]. (right) ROC curve 

for the trained model on the test data in blue. Red; the dotted line is 
the 45-degree line. AUC = 0.89 found by calculating area under blue 
ROC curve

Table 2  Performance metrics of 
the test set

Measure Value (%)

Accuracy 82.46
Balanced accuracy 81.50
Precision 77.33
Recall 95.08
ROC–AUC 88.74
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context of cancer, but, instead, were used for understanding 
evolutionary distances between sequences. These methods 
give probabilities of mutation frequencies based on phylo-
genetic trees [80] or sequence alignments [81]. These meth-
ods, while innovative when developed, were not designed 
to predict the effect of mutations on protein function. One 
of the first methods to predict whether a mutation would 
be deleterious, and still a benchmark in the field of muta-
tion classification, is called Sorts Intolerant From Tolerant 
(SIFT) and uses sequence conservation to determine ‘del-
eteriousness’ [57, 82]. Since this pioneering method, sev-
eral other algorithms have been developed that use sequence 
conservation or homology to predict the effects of SNPs 
[54, 58–60, 83]. In particular, PolyPhen-2 is a method that 
utilizes several sequence-based and structure-based features 
for classification of driver versus passenger mutations result-
ing from SNPs.

Although these methods should in principle work on any 
observed mutations, they have largely been developed and 
validated for use on SNP data and not on cancer mutations 
specifically. As cancer genome sequences have become 
more available, the desire to separate driver from passenger 
mutations has only increased. An early attempt to solve this 
problem was that of [7], which used the mutation rate of 
noncoding genomic regions as a baseline and then tried to 

determine genes in which there was a statistically significant 
deviation from this baseline. More recently, several groups 
have developed machine learning techniques to separate 
driver from passenger mutations. Methods used include ran-
dom forest [62], entropic methods [84], and support vector 
machines (SVM) [61, 63].

Support vector is a machine learning technique that falls 
under the broad category of supervised machine learning, 
wherein the SVM classifier optimizes a loss function to find 
the maximum margin hyperplane to linearly segregate dif-
ferent classes (say activating mutations and non-activating 
mutations). Extensions of SVM that utilize a nonlinear ker-
nel for segregation of data that cannot be classified using 
linear classification are also commonly employed. Once the 
SVM classifier has been built on the labeled training data 
(the fact that the data are labeled is why this is a supervised 
method), it can then be used to determine class membership 
of new cases. The accuracy and sensitivity of the classifier 
can be assessed via cross-validation, which consists of leav-
ing some of the data used to build the classifier out of the 
training phase and then using the resulting classifier on the 
part of the data set that was left out [85, 86]. SVM classi-
fiers are relatively easy to interpret when compared to other 
methods such as artificial neural networks, with excellent 
qualities including that the solution of an SVM problem is 

Table 3  BRAF mutations: 
comparison of MD, SVM, 
SIFT, and PolyPhen2, against 
experiments

Mutation, BRAF MD prediction SVM predic-
tion

SIFT PolyPhen2 Experimental

G596R 1 0 1 1 0
V600R 1 1 1 1 1
V600E 1 1 1 1 1
L597V 1 1 1 1 1
D594V 0 0 1 1 0
F595L 1 0 1 1 1
I463S 1 1 1 1 1
K601E 1 1 0 1 1
G464E 0 0 1 1 1
R462I 0 1 0 0 1
G466V 0 1 1 1 0
N581S 0 1 1 1 1
V600K 0 1 1 1 1
G466A 0 1 1 1 1
G464V 0 1 1 1 1
T599I 0 0 1 1 1
G469E 0 0 1 1 0
G466E 0 0 1 1 0
V600D 0 1 1 1 1
G469V 1 1 1 1 1
TPR 0.4666 0.8 0.8666 0.9333
FPR 0.2 0.2 1 1
BACC 0.6333 0.8 0.4333 0.4666
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invariant to translation and rotation, and is only depend-
ent on the distance between training examples—allowing 
preprocessing of the data without affecting the final result. 
An SVM can, in principle, correctly classify an arbitrary 

number of points based on a limited number of features, 
which could be biochemical factors. The SVM method 
has enjoyed some success in attempting to classify kinase 
somatic cancer mutations, but, generally, uses the whole 

Table 4  ALK mutations: 
comparison of MD, SVM, 
SIFT, and PolyPhen2, against 
experiments

Mutation, ALK MD prediction SVM prediction SIFT PolyPhen2 Experimental

F1174L 1 1 1 1 1
F1245V 1 1 1 1 1
F1245C 1 1 0 1 1
I1170N 0 1 1 1 1
I1170S 1 1 1 1 1
I1171N 1 1 1 1 1
Y1278S 0 1 1 1 1
R1192P 0 1 1 1 1
M1166R 1 1 0 1 1
R1275Q 0 1 1 1 1
T1151M 1 1 0 1 1
L1196M 1 1 0 1 1
G1128A 1 1 1 1 1
I1183T 0 1 1 1 0
L1204F 1 0 1 1 1
G1286R 0 0 0 1 0
A1200V 0 0 1 1 0
D1349H 0 1 1 1 0
T1343I 0 0 1 1 0
R1231Q 0 1 0 0 0
I1250T 0 0 1 1 0
G1286A 0 0 1 1 0
L1204F 1 0 1 1 0
D1270G 0 0 1 1 0
TPR 0.7143 0.9286 0.7143 1
FPR 0.1 0.3 0.8 0.9
BACC 0.8071 0.8143 0.4571 0.55

Table 5  ErbB2 mutations: 
comparison of MD, SVM, 
SIFT, and PolyPhen2, against 
experiments

Mutation, ErbB2 MD prediction SVM prediction SIFT PolyPhen2 Experimental

L755S 1 1 1 1 1
D769H 1 1 1 1 1
L768S 1 1 1 1 1
V777L 1 1 0 0 1
D769Y 1 0 1 1 1
Y835F 0 0 1 1 0
R896C 0 0 0 0 1
S760A 0 0 0 1 0
I767M 0 0 1 1 0
V773L 0 1 0 1 1
V842I 0 1 1 1 1
TPR 0.625 0.75 0.625 0.75
FPR 0 0 0.6666 1
BACC 0.8125 0.875 0.4792 0.375
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protein as opposed to only the kinase domain, causing one 
of the leading predictors of driver status to be the location 
within the kinase domain [61–63]. Although this is useful 
for determining which proteins are likely to be involved in 
cancer, it is not necessarily accurate at the residue level, for 
example, to accurately predict the effects of different muta-
tions in the same domain of the protein.

The SVM methods listed here (“Machine learning—
support vector machine (SVM)”) have focused on kinase 
proteins, since they play such an outsized role in cancer 
progression. Machine learning methods can be quite pow-
erful and have been somewhat successful when applied to 
cancer mutations. These methods are generally only as good 
as their training sets; however, with a balanced training set 
giving better results [87]. Furthermore, the procedure used 
to construct training sets can bias the results. For instance, 
one study [61] took all mutations that were found in a can-
cer sample to be driver mutations—which we know not to 
be the case. In a recent comparison of various methods for 
cancer mutant classification, another study [88] took every 
mutation observed to be mutated at least twice in COSMIC 
to be a driver mutation, which again is a demonstrably false 
assumption. Another method [53] reported the ability to dif-
ferentiate driver mutations from passengers 98% of the time, 
but uses a data set where driver mutations are taken to be 
any mutations that are observed in COSMIC and passenger 
mutations are taken from a synthetic data set of computa-
tionally generated mutations of unknown function. The relia-
bility of a method should be called into question if it makes a 
priori decisions about what is a driver or passenger mutation 
in a bid (in turn) to predict driver or passenger mutations.

To address the bias factor, we implemented a SVM clas-
sifier on a kinase mutation data set which consisted of con-
struction of a training set from the UniProt database (http://
www.unipr ot.org), creation of feature vectors based on 
chemical identity and properties of the original and mutated 
amino acids, and structural features such as location of the 
mutation in the kinase. Using a training set consisting of 
763 kinase domain mutations (see SI Table S1 for a partial 
list) and by employing 59 features, the trained and cross-
validated SVM algorithm was shown to have a balanced 
accuracy (mean of the true-positive and true-negative rates) 
of 77%, with a receiver-operating characteristic area under 
the curve (ROC–AUC) of 82% [89]. The SVM method was 

implemented here on a data set consisting of 763 muta-
tions. We then generated 59 feature vectors for each sam-
ple, focused heavily on the biochemistry of the mutations. 
We divided the data into test and training sets. In our SVM 
implementation, the test set consisted of all ALK, ErbB2, 
and BRAF mutations, and the training set consisted of all 
the other mutations. In our SVM implementation, the test 
set consisted of all ALK, ErbB2, and BRAF mutations, 
and the training set consisted of all the mutations (includ-
ing the ALK, ErbB2, and BRAF mutations). Since our 
data are imbalanced (there being 190 activating mutations 
and 573 non-activating mutations in our overall data), the 
SMOTE algorithm (for upsampling of the minority class) 
was performed on the training set, such that the training set 
now consisted of an equal number of activating and non-
activating mutations [78]. Fivefold cross-validation was 
then performed on the training set to determine the optimal 
hyperparameters that maximized both the F1 score and the 
ROC–AUC score. The SVM implementations were executed 
in Python. The SVM classifier was then generated using the 
optimal hyperparameters for each implementation and the 
model was then trained on the training set. The SVM Clas-
sifier was then used to make predictions on the test set (see 
Tables 3, 4, 5, 6).

Comparison of MD, SVM, and other data‑driven 
methods for BRAF, HER2, and ALK mutations

To demonstrate the utility and performance of the various 
methods discussed in “Molecular dynamics simulations” and 
“Structure-based computational methods for profiling muta-
tions”, we applied these methods to three clinical data sets 
consisting of BRAF (Table 3), ALK (Table 4), and ErbB2 
(Table 5) mutations, and compared them against experimen-
tal results (Tables 3, 4, 5, 6; also see SI, Table S1). We com-
pare the predictions of MD, SVM, SIFT, and PolyPhen-2 for 
the kinase mutation data sets, and report the performance 
(balanced accuracy) at the end of each table. In these tables, 
‘0’ represents not activating and ‘1’ represents activating. 
The overall accuracy and precision of the algorithms across 
all the data sets presented in Tables 3, 4 and 5 are reported 
in Table 6.

We can discuss several trends from the predictions and 
comparisons with experiments. First, the predictions from 
SIFT and PolyPhen2 have a poor balanced accuracy, because 
they have an FPR of close to 1. The predictions of MD, in 
contrast, have the lowest FPR making it a conservative pre-
diction algorithm. The performance of machine learning is 
slightly better than that of the MD when BACC is consid-
ered, but slightly worse on the basis of just FPR. However, 
we need to stress that the version of ML, we have imple-
mented is a supervised learning method, and hence, some of 
the predictions in Tables 3, 4, 5 and 6 are part of the training 

Table 6  BRAF, ALK ErbB2 mutations combined: comparison of 
MD, SVM, SIFT, and PolyPhen2, against experiments

Mutation (all) MD prediction SVM prediction SIFT PolyPhen2

TPR 0.5946 0.8378 0.7568 0.9189
FPR 0.1111 0.2222 0.8333 0.9444
BACC 0.7417 0.8078 0.4617 0.4872

http://www.uniprot.org
http://www.uniprot.org
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set, which gives the ML an unfair advantage over MD. The 
predictions of MD are blind to the experimental data.

Another point that is worthy of note is that the MD scor-
ing is purely based on hydrogen bonds perturbed in the 
αC-helix and A-loop regions during the simulations which, 
by itself, leads to an impressively high BACC. This suggests 
that several of the activating mutations perturb the hydro-
gen-bond network in the αC-helix and A-loop regions to 
differentially stabilize the active conformation establishing 
a universal mechanism for activating mutations. While the 
BACC of the ML methods is higher than that of the MD, a 
similar insight into the mechanism of activation is unavail-
able from the ML predictions.

We note that machine learning techniques have a pow-
erful ability to recognize and illuminate patterns in a data 
set. Using machine learning to classify cancer mutations 
as drivers, we can arrive not only at a map of where in the 
kinase domain mutations segregate but also at the factors 
that drive these mutations to cause constitutive activa-
tion. Alternatively, molecular dynamics simulations and 
free-energy calculations can give us a mechanistic picture 
of how changes in the kinase structure (or at least its free-
energy landscape, lead to activation. Although both methods 
have enjoyed success on their own, as noted above, they 
have never been combined into a coherent framework, for 
example in constructing balanced and effective classifiers. 
According to our results in Tables 3, 4, 5 and 6, since both 
these methods converge on similar accuracy, but employ 
very different ingredients to make predictions, we conclude 
that there lies a compelling opportunity to gainfully combine 
them to construct more accurate models and to shed insight 
on what mutations lead to constitutive kinase activation and 
why.

In closing, we would like to note that the accuracy of the 
methods was assessed based on comparison with experimen-
tal results of kinase activation based on the definition that an 
activating mutation is one which increases the catalytic rate 
(kcat) by a factor of 4 over that of the wild type. What signifi-
cance does this have to cancer? While one cannot generalize 
the effect of increase in kcat of a single activator of a signal-
ing to cancer initiation, for some receptor tyrosine kinase-
driven tumors, a linear correlation between an increase in 
kcat and colony transformation has been established [77], 
which makes our prediction algorithms valuable tools in 
oncology and personalized medicine.

Future of in silico methods and clinical 
implications

As reviewed by Valencia and Hidalgo [90], progress in 
sequencing and genomics has promised to deliver person-
alized cancer care and treatment. New technologies are 

available for identifying potential disease markers and acces-
sible drug targets [91–93] that, coupled with medical data, 
will impact clinical decisions. Quoting the authors “The 
accessibility of new experimental techniques makes it all the 
more necessary to improve and adapt computational strate-
gies to the new challenges. We emphasize the need for the 
collaboration between the bioinformaticians who implement 
the software and use the data resources, the computational 
biologists who develop the analytical methods, and the clini-
cians, the systems’ end users and those ultimately respon-
sible for taking medical decisions.” While “Introduction”, 
“Mining molecular/mutation data from cancer atlases” and 
“In silico methods for structure–function mapping” focused 
on computational technologies for one aspect of this grand 
challenge, namely correctly classifying driver versus pas-
senger mutations, in silico methods can be more broadly 
applied with far-reaching contributions to personalized can-
cer therapy, as discussed below.

Computational methods for inhibitor/drug 
interactions

Much effort has been put into the development of drugs that 
target proteins that are mutated in cancer cells. As men-
tioned previously, imatinib was the first of these drugs and 
was developed via screening, followed by lead optimization 
[44]. In this case, in invitro screens against a panel of protein 
kinases, imatinib was found to inhibit the autophosphoryla-
tion of essentially three kinases: BCR–ABL, c-KIT, and the 
platelet-derived growth factor (PDGF) receptor. Once leads, 
or even clinically approved drugs, have been developed, it is 
quite common for computation to be used to understand the 
mode of binding. Several methods can be used to this end, 
such as molecular docking, molecular dynamics, free-energy 
perturbation, and molecular-mechanics Poisson Boltzmann 
techniques, and even network models (discussed further 
below). One study using docking, MD and X-ray crystal-
lography showed that the EGFR inhibitor erlotinib binds to 
both the active and inactive structure of the EGFR kinase 
domain, while lapatinib, another EGFR inhibitor, only binds 
the inactive conformation [94]. Another study using free-
energy perturbation and MD showed that imatinib binds to 
ABL kinase and not the closely related Src kinase because 
of inherent differences in the stabilities of the inactive states 
in these proteins [75]. These studies, and many more like 
them, help us to understand how a particular drug works. 
Going forward, they can hopefully also be used to show 
what goes wrong when new mutations confer resistance, as 
in the case of the EGFR T790M mutation which is resistant 
to inhibition due to increased ATP affinity [95]. However, 
in general, the onset of drug sensitivity and resistance occur 
via mechanisms that are complex and involve not just ‘on 
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target’ molecular alterations, but other changes in the cancer 
cell, as well [96–103].

In addition to the structural methods listed above, other 
computational methods can be used to help understand why 
current drugs are effective and how to develop new drugs. 
For instance, network pharmacology seeks to understand 
how different nodes in a protein interaction network might 
be susceptible to treatment by removing specific links (by 
inhibiting a given protein) or to take advantage of synthetic 
lethality which occurs when multiple proteins are targeted 
simultaneously [104]. This network view can also be used 
in the context of drug repositioning, which seeks find new 
uses for drugs that have been assessed at some stage of 
the development pipeline. This approach can significantly 
reduce the costs of drug development and can also utilize 
detailed knowledge of drug-binding sites in individual pro-
teins as well as knowledge of network properties [105, 106].

Network models: towards bridging molecular 
activation and cell fate

One approach that we can deploy to interrogate cancer 
cells is systems biology in the context of cell signaling net-
works [107, 108]. Instead of giving insight into the effect 
of mutations on protein structure and function, this method 
allows us to look at the overall effect that cancer has on a 
signaling network. The basic premise of this approach is 
to measure rate constants for as many reactions as possible 
in a biochemical network and put this information on top 
of existing knowledge of protein interaction networks. The 
time evolution of the system can then be found by solv-
ing a set of ordinary differential equations or—if spatial 
information is needed—a system of partial differential 
equations [109]. There will, in general, be many reactions 
for which the rates are not known, so the system is under-
determined. Genetic algorithms can be used to narrow the 
solution set, or the unknown parameters can be varied over 
several orders of magnitude [102]. If kinetic parameters 
for mutant proteins abnormally high expression levels of 
specific proteins or kinetic changes induced by inhibitors 
are known, this information can also be incorporated into 
simulations. For example, a model of the EGFR signaling 
pathway showed that the EGFR L858R mutation changes 
the relative flux through downstream pathway components, 
but that inhibition by the EGFR inhibitor erlotinib restores 
the flux to its normal behavior [102]. While not specifically 
structure-based, this type of methodology can also be useful 
for understanding which members in a signaling pathway 
could be susceptible to inhibition, leading to an interface 
with the methods described in “Machine learning—support 
vector machine (SVM)”. Computational models validated by 
experiments have also shown that the sensitivity of tumor 
cell lines to the EGFR inhibitor gefitinib is determined by 

EGFR internalization efficiency [110], showing that sim-
ple models neglecting cellular trafficking are likely to miss 
important insights.

Multiscale modeling of intra- and inter-cellular networks 
can be used to factor in the effect of tumor microenviron-
ment [111]. Network analyses can help to postulate func-
tional relationships such as between gene expression, tran-
scription factor activation, and signaling pathways [112]. 
A suite of network analysis and inference tools exists for 
the construction of network topologies (or interaction 
maps) surrounding transcriptional and proteomic measure-
ments [112–115]. Implementation of efficient approaches 
for parameter optimization and network sensitivity analysis 
is then utilized to analyze and contrast the transcriptional, 
proteomic, and metabolic portraits of various cellular 
alterations/perturbations [101, 116]. Clinical implications 
of oncogenic mutations in the ErbB family kinases in the 
context of drug sensitivity as well as drug resistance have 
been explored through multiscale models [24, 102, 103, 117, 
118]. Recently, cell intrinsic and extrinsic factors mediating 
drug resistance have been investigated through the use of 
network models [119]. Beyond intracellular signaling path-
ways, spatially regulated membrane-mediated phenomena 
such as cell adhesion and motility and intracellular traffick-
ing are implicated in cancer progression [120]. Multiscale 
models based on physical systems biology [116, 121] offer 
a viable avenue to integrate such models within the systems 
biology framework, although they have not been pursued as 
yet in the context of cancer signaling pathways.

Multiscale modeling

One ongoing challenge to understand the effects of muta-
tions is the problem of how to develop and study models 
that integrate multiple time and length scales, known as 
multiscale modeling. To illustrate the scope of the chal-
lenge, consider the different time scales involved in a sign-
aling pathway such as that mediated by EGFR. Endocytic 
recycling of EGFR may take on the order of minutes, while 
phosphorylation reactions can take place on the order of 
seconds and molecular vibrations can take place on the order 
of femtoseconds [122]. This system has timescales that vary 
over more than 15 orders magnitude, yet is still only consid-
ering processes below the subcellular level! Many groups 
have made efforts to try to bridge the time and length scales 
encountered in modeling biological processes. There are two 
ways to model phenomena occurring at different scales that 
are prominent in the literature. The first is to use information 
gained from a simulation at one scale as an input to or for 
parameterization of a model at a different length scale. The 
other method, less common and more challenging, is to have 
iterative feedback between models of different scales [123].
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Much effort has gone into translating the parts lists that 
result from genome sequencing projects into models of 
how cells function. There is rapid progress in determining 
crystal structures of many single proteins and some pro-
tein complexes, as well as rapid advances in understanding 
which proteins interact via methods such as yeast two-hybrid 
assays, affinity purification techniques, and mass spectrom-
etry. In addition, many computational methods to predict 
the structures of proteins and protein complexes—as well 
as which proteins will interact—have been developed [124]. 
This information can be combined with experimentally 
determined rate constants for protein-mediated reactions to 
develop detailed multiscale models of cell signaling [115]. 
Zooming out to length scales beyond the individual cell can 
be productive in trying to understand the phenomena of can-
cer growth. Here again, multiscale modeling is a valuable 
tool. The main approaches here can be divided into three 
basic classes. In discrete models, individual cells or groups 
of cells are represented individually, and rules governing the 
growth, quiescence, or death of these cells are used to evolve 
the system. The advantage of such discrete models is that the 
internal processes of cells can be simulated to incorporate 
effects of mutations and tumor microenvironment, while 
the downside is that these systems rapidly increase in com-
putational cost with increasing cell numbers. In continuum 
models, individual cells are neglected, and variables such as 
the distribution of nutrients or cell density are modeled as 
a continuous field. These models are more computationally 
tractable than in the discrete case but suffer from the lack 
of insight into the effects of small (molecular) perturbations 
to cellular context. Hybrid models seek to combine aspects 
of discrete and continuous models, and can bridge many 
orders of magnitude in scale at a moderate computational 
cost [114].

Clinical implications

The ability to predict how small perturbations in molecular 
structure can lead to profoundly altered intracellular sign-
aling pathways and subsequent cell-fate decisions is also 
crucial for predicting the clinical outcome of cancer progres-
sion or efficacy of inhibition. In particular, the approaches 
summarized above permit the rationalization and prediction 
of the role and nature of molecular variability in networks 
by bridging the gap between the scales, as well as treatment 
and diagnosis modalities in the individual patient [8–11]. 
One viable mechanism for implementing these multiscale 
techniques to relate to the clinical setting directly is to create 
hyper-models, which are optimal and robust and can be used 
for predicting a physiological or a pathological function. 
Such a hyper-model-based decision support and treatment-
planning system has been proposed within a framework 
called the “oncosimulator” [125, 126], which is a platform 

for simulating (using ab initio or physics-based methods), 
investigating, better understanding, and exploring (e.g., opti-
mizing using control theory framework) the spatiotemporal 
phenomenon of cancer. Imaging, histological, molecular, 
pharmacogenomic, and clinical and treatment data at vari-
ous time points constitute the main input of the oncosimu-
lator. This integrative approach can facilitate the optimal 
development of new treatment strategies, support the design 
and interpretation of clinico-genomic trials, and finally 
inform doctors, researchers, and interested patients alike. 
The model predictions can be validated against multiscale 
clinical data in different cancer types. This vision brings 
to bear an in silico platform, one that will allow clinicians 
and researchers alike to readily navigate within the heavily 
multidimensional space of multiscale data of each patient, 
to easily comprehend it, to run model simulations in silico, 
and, finally, to design treatment in the most scientifically 
grounded, quantitative and patient individualized fashion. 
This vision for multidisciplinary and integrated research is 
being fostered by several large-scale program projects such 
as the United States National Institutes of Health-funded 
Physical Sciences in Oncology Centers (PSOC, http://
physi cs.cance r.gov), Cancer Systems Biology Consortium 
(CSBC, https ://csbco nsort ium.org/), and previously the Inte-
grative Cancer Biology Program, (ICBP, http://icbp.nci.nih.
gov), and the Tumor Microenvironment Network (TMEN, 
http://tmen.nci.nih.gov) Multidisciplinary Project Awards, 
the Cancer Research UK (CRUK, http://www.cance rrese 
archu k.org/), and the European Commission Funded Pro-
jects such as ContraCancrum (http://www.contr acanc rum.
eu), TUMOR (http://www.tumor -proje ct.eu), p-medicine 
(http://www.p-medic ine.eu), and Computational Horizons 
in Cancer (CHIC, http://www.chic-vph.eu).
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