Skip to main content
. 2019 Jun 2;2019:2981282. doi: 10.1155/2019/2981282

Table 1.

Pseudocode of the GWO algorithm.

Description Pseudocode
Set up optimization Dimension of the given problems
Limitations of the given problems
Population size
Controlling parameter
Stop criterion (maximum iteration times or admissible errors)

Initialization Positions of all of the grey wolves including α, β, and δ wolves

Searching While not the stop criterion, calculate the new fitness function
Update the positions
Limit the scope of positions
Refresh α, β, and δ
Update the stop criterion
End