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Deep catalogs of genetic variation from thousands of humans enable the detection of intraspecies 

constraint by identifying coding regions with a scarcity of variation. While existing techniques 

summarize constraint for entire genes, single gene-wide metrics conceal regional constraint 

variability within each gene. Therefore, we have created a detailed map of constrained coding 

regions (CCRs) by leveraging variation observed among 123,136 humans from the Genome 

Aggregation Database. The most constrained CCRs are enriched for pathogenic variants in 

ClinVar and mutations underlying developmental disorders. CCRs highlight protein domain 

families under high constraint and suggest unannotated or incomplete protein domains. The 

highest-percentile CCRs complement existing variant prioritization methods when evaluating de 

novo mutations in studies of autosomal dominant disease. Finally, we identify highly constrained 

CCRs within genes lacking known disease associations. This observation suggests that CCRs may 

identify regions under strong purifying selection that, when mutated, cause severe developmental 

phenotypes or embryonic lethality.

During World War II, Abraham Wald and the Statistical Research Group optimized the 

placement of scarce metal reinforcements on Allied planes based on the patterns of bullet 

holes observed over many sorties. Wald famously invoked the principles of survival bias to 

infer that armor should be placed where bullet damage was unobserved, since the observed 

damage came solely from planes that returned from their missions. Wald reasoned that 

planes that had been shot down likely took on critical damage in such locations1.

Employing similar logic, we sought to identify localized, highly constrained coding regions 

(CCRs) in the human genome. We were motivated by the idea that the absence of genetic 

variation in coding regions (for example, one or more exons or portions thereof) ascertained 

from large human cohorts implies strong purifying selection owing to essential function or 

disease pathology. An intuitive approach to identifying intraspecies genetic constraint in 

human coding genes is to identify gene sequences that harbor no genetic variation or 

significantly less variation than expected. For example, Petrovski et al.2 used genetic 

variation observed among 6,515 exomes in the National Heart, Lung, and Blood Institute 

Exome Sequencing Project dataset3 to develop the Residual Variation Intolerance Score 

(RVIS), which ranks genes by their intolerance to ‘protein-changing’ (that is, missense or 

loss-of-function and coding) variation. Similarly, Lek et al.4 integrated variation observed 

among 60,706 exomes in the Exome Aggregation Consortium (ExAC) to estimate each 

gene’s probability of loss-of-function intolerance (pLI), with genes having the highest pLI 

harboring significantly less loss-of-function variation than predicted5.

While existing gene-wide measures of constraint are effective for disease variant 

interpretation, metrics that yield a single score for an entire gene inherently cannot capture 

the variability in regional constraint that exists within protein-coding genes. Constraint 

variability is expected given that some regions encode conserved domains6–10 critical to 

protein structure or function, while others encode polypeptides that are more tolerant to 

perturbation. Therefore, while useful, single gene-wide metrics such as pLI are susceptible 

to both overestimating (Fig. 1a) and underestimating (Fig. 1b) local constraint within genes 

exhibiting finer-scale variation in constraint. Consequently, they are incapable of 

highlighting the subset of critical regions within each gene that are under the greatest 
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selective pressure (Fig. 1, regions highlighted in red). This manuscript presents a detailed 

map of CCRs in human genes, with a focus on identifying coding regions predicted to be 

under the highest constraint. We demonstrate that the most constrained regions recover 

known disease loci, assist in the prioritization of de novo mutation, and illuminate new genes 

that may underlie previously unknown disease phenotypes.

Results

Constructing a map of CCRs.

Hypothesizing that coding regions under extreme purifying selection should be devoid of 

protein-changing variation in healthy individuals, we have created a high-resolution map of 

CCRs in the human genome. The Genome Aggregation Database (gnomAD) v.2.0.1 reports 

4,798,242 protein-changing (that is, missense or loss-of-function) variants among 123,136 

human exomes, yielding an average of 1 variant every ~7 coding base pairs (bp). Given this 

null expectation of high protein-changing variant density, we searched for exceptions to the 

rule: that is, coding regions having a much greater than expected distance between protein-

changing variants owing to constraint on the interstitial coding region (Fig. 1, regions 

highlighted in red). Simply stated, CCRs having no protein-changing variation over the 

largest stretch of coding sequence (weighted by sequencing depth and stratified by CpG 

content) are assigned the highest percentiles and are inferred to be under the highest 

constraint in the human genome.

Our CCR map was charted by first measuring the exonic (that is, ignoring introns) distance 

between each consecutive pair of protein-changing gnomAD variants. The coding distance 

between each variant pair, excluding the variants themselves, defines a ‘region’. Each 

region’s ‘length’ is weighted by the fraction of gnomAD samples having at least 10× 

sequence coverage (Supplementary Fig. 1) for each bp in the region (Online Methods). This 

correction seeks to minimize the false identification of constraint arising simply because 

lower sequencing coverage reduced the power to detect variation. Similarly, we excluded 

coding regions that lie in segmental duplications or high-identity (≥90%) self-chain 

repeats11 to avoid the confounding effects of mismapping short DNA sequencing reads in 

paralogous coding regions12. After these exclusions, we were able to measure localized 

constraint for 88% of the autosomal exome and 82% of the exome on the X chromosome. 

For each region, we adjusted for the CpG dinucleotide density as an independent measure of 

the potential mutability of the coding region13. While other models5,14 of local mutability 

have been developed, the primary predictor of these studies and others14–16 is the presence 

of CpG dinucleotides. We observed a correlation between an exon’s CpG content and the 

density of both gnomAD C-to-T transitions (Pearson r = 0.79) and overall variant density 

(Pearson r = 0.33) observed within the exon (Supplementary Fig. 2). We therefore fit a linear 

model of each region’s weighted length versus its CpG density. Regions with the highest 

predicted constraint are those with the greatest positive difference between the observed and 

expected weighted length, given the region’s CpG density. Finally, each coding region was 

assigned a residual percentile that reflects the degree of constraint, where higher percentiles 

indicate greater predicted constraint (Online Methods). The median coding lengths of CCRs 

in the 95th (52 bp) and 99th (94 bp) percentiles, respectively, are far greater than the 7 bp 
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average distance between protein-changing variants (Supplementary Fig. 3). Finally, since 

we expect 25% fewer X chromosomes in the gnomAD dataset assuming a roughly 1:1 ratio 

of males to females, we have created a separate model constructed solely from gnomAD 

variation observed on the X chromo-some (Online Methods).

CCRs are enriched in disease-causing loci.

To evaluate the relationship between CCRs and loci known to be under genetic constraint, 

we measured the enrichment of pathogenic ClinVar variants (Online Methods) versus benign 

ClinVar variants across CCR percentiles. As expected, pathogenic variants from all disease 

types are significantly enriched in the 95th CCR percentile and above (odds ratio (OR) = 

161.8, 95% confidence interval (CI) = 40.4–647.5) and depleted in the least constrained 

CCRs (OR = 0.019, 95% CI = 0.015– 0.023; Fig. 2a, light cyan bars). As expected, given 

that CCRs identify coding regions that lack any protein-changing variation in the gnomAD 

database, pathogenic variants for autosomal dominant disorders are similarly enriched in the 

95th CCR percentile or higher (OR = 86.3, 95% CI = 12.1–613.9; Fig. 2a, dark cyan bars). 

While 910 unique CCRs at the 95th percentile harbor at least one pathogenic autosomal 

dominant variant, only 1 out of 21,566 contains a benign variant. No CCRs at or above the 

99th percentile coincide with a benign variant.

The most constrained CCRs are restricted to a small fraction of genes. Of the 17,693 

Ensembl17 genes in the CCR model, only 39.0% and 8.0% of genes have at least one CCR 

in the 95th and 99th percentile or higher, respectively (Fig. 2b). Genes exhibiting multiple 

highly constrained regions (that is, ≥99th percentile) include many known to be involved in 

developmental delay, seizure disorders, and congenital heart defects, including KCNQ2, 

KCNQ5, SCN1A, SCN5A, multiple calcium voltage-gated channel subunits (for example, 

CACNA1A, CACNA1B, and CACNA1C), and GRIN2A (Supplementary Table 1). In 

addition, nine chromodomain helicase DNA-binding genes and the actin-dependent 

chromatin regulator subunits SMARCA2, SMARCA4, and SMARCA5 contain multiple 

99th percentile CCRs. Such constraint likely reflects their role in chromatin remodeling, 

development, and severe disorders18,19.

Finally, while highly constrained regions often contain one or more known pathogenic 

variants, 20,656 CCRs in the 95th percentile and 2,226 CCRs in the 99th percentile do not 

overlap a known pathogenic variant in ClinVar (Fig. 2c). We hypothesize that many of these 

regions are under extreme purifying selection, thus preventing the observation of a 

pathogenic variant among individuals studied to date. There is support for this hypothesis. 

Genes predicted to be essential, despite not having a known disease association20, are 

significantly enriched relative to non-essential genes in the set of genes with at least one 

95th percentile CCR (6,909 genes; one-tailed Fisher’s exact test, P = 2.8 × 10−101, OR = 

3.24) or at least one 99th percentile CCR (1,415 genes; one-tailed Fisher’s exact test, P = 8.6 

× 10−67, OR = 3.73). Furthermore, genes in loci exhibiting low haplotype diversity are 

enriched for essential function21,22 and are similarly prevalent among genes that have a 95th 

or 99th percentile CCR. This enrichment is significant (one-tailed Fisher’s exact test, P = 1.2 

× 10−10 and OR = 4.0 for genes with 95th percentile CCR, P = 5.6 × 10−5 and OR = 4.4 for 

genes with 99th percentile CCR) compared with genes with higher haplotype diversity. 
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Finally, Lelieveld et al.23 recently reported 14 autosomal genes with focused clusters of de 

novo mutations from patients with intellectual disability and developmental disorders. The 

mutation clusters in 13 out of 14 of these genes coincide with a 95th percentile or higher 

CCR. The fact that these mutation clusters are typically no larger than 10 bp demonstrates 

that the most highly constrained CCRs reveal focal constraint. Taken together, these findings 

suggest that genes lacking a disease association, yet harboring one or more highly 

constrained CCRs, are under strong purifying selection owing to extreme fitness 

consequences when mutated.

Comparing intraspecies and interspecies constraint.

Given that most human genes are conserved among vertebrates, it is logical to expect that 

intraspecies constraint would be correlated with interspecies conservation, and that the most 

constrained CCRs would lie within conserved protein domains. To explore the relationship 

between intraspecies constraint and interspecies conservation, we compared CCRs to 

mammalian conservation measured by GERP++ (ref. 24; Fig. 3a). As has been previously 

demonstrated5,25, coding constraint is weakly correlated (Pearson r = 0.002 overall, r = 0.22 

for CCRs above the 0th percentile) with conservation, illustrating that intraspecies constraint 

complements, and is not merely a subset of, interspecies conservation. As expected, 98.2% 

of the CCRs at the 95th percentile and above have mean GERP++ scores that suggest 

potential conservation in vertebrates (that is, >0.7 mean GERP++ score). However, 399 

CCRs in 360 distinct genes are weakly conserved and suggest that some of these regions 

may represent recent constraint within the primate or human lineage (Fig. 3a, dotted box). 

For example, CDKN1C contains a 98.3 percentile CCR that coincides with a ClinVar variant 

known to be pathogenic for Beckwith–Wiedemann syndrome26,27. CDKN1C is imprinted 

with preferential expression of the maternal allele28, suggesting that monoallelic expression 

may, in part, underlie the degree of observed constraint as the expression of only one allele 

opens greater risk for a dominant phenotype. Furthermore, our model includes 30 of the 42 

imprinted genes reported by Baran et al.29 using data from the Genotype-Tissue Expression 

(GTEx) project. Of 30 imprinted genes, 16 (53%) harbor at least one CCR in the 95th 

percentile or higher: GRB10, IGF2, KCNQ1, KIF25, MAGEL2, MAGI2, MEST, NAP1L5, 

NTM, PEG10, PEG3, PLAGL1, SNRPN, SYCE1, UBE3A, and ZDBF2. This reflects a 

1.35-fold enrichment over the 39% (6,909 of 17,693) of all genes in the CCR model having 

a CCR in at least the 95th percentile. Other genes harboring similarly dichotomous 

constraint and conservation measures include four members of the Fanconi anemia pathway 

(FAN1, SLX4, BOD1L1, and ERCC5), as well as an overrepresentation (P = 7.9 × 10−6; see 

Online Methods) of genes involved in the complement cascade of the innate immune system 

(Supplementary Table 2).

Motivated by prior analyses25, we then explored the landscape of constraint in Pfam30 

domains, given that protein domains are conserved owing to their structural or functional 

role in proteins (Supplementary Dataset 1 and Supplementary Table 3). While we find 

constraint to typically be uniformly distributed over many protein domains (Fig. 3b), several 

families are enriched for high constraint, likely owing to their critical function in proteins 

that contain them (Fig. 3c). Constraint within ion transport domains is expected given their 

role in regulating the critical specificity of ion transport and the fact that mutations in these 
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domains cause autosomal dominant encephalopathies31, neuropathies32, and 

cardiomyopathies33. Furthermore, homeobox domains bind DNA and are involved in 

cellular differentiation and maintaining pluripotency34. Helicase superfamily C-terminal 

domains catalyze DNA unwinding and are implicated in α-thalassemia35 and intellectual 

disability36. Moreover, PHD finger domains are found in many chromatin remodeling 

proteins, which, when perturbed, lead to various disorders37–39. Finally, the eIF-5a domain 

is solely found in the two EIF5A translation initiation factors. These are the only human 

proteins that utilize the rare amino acid hypusine. Strikingly, a 99.47 percentile CCR 

coincides with the hypusine residue in the primary isoform of EIF5A. Knockout of either the 

EIF5A gene or the deoxyhypusine synthase gene, whose product is necessary to create the 

hypusine amino acid for EIF5A, causes embryonic lethality in mice40.

It is notable that 34.2% (7,397 of 21,650) and 22.5% (554 of 2,465) of 95th and 99th 

percentile CCRs, respectively, do not coincide with an annotated Pfam domain. While CCRs 

that are proximal to annotated Pfam domains likely reflect truncated annotations caused by 

reduced homology or the consequence of homology searches driven by local alignment, 

distal CCRs may represent coding regions of previously uncharacterized functional or 

structural properties of the messenger RNA or protein.

Comparing CCRs to other models of constraint.

Although gene-wide metrics such as pLI cannot capture regional variability in constraint, 

genic intolerance to loss-of-function variation is often driven by focal constraint within 

critical regions of the gene. Therefore, as expected, autosomal genes with multiple CCRs 

above the 95th percentile are moderately correlated (Pearson r = 0.47) with high pLI values 

(Fig. 4a), as well as with gene-wide constraint measured by the missense Z5 and RVIS2 

statistics (Supplementary Fig. 4). Nonetheless, the CCR model reveals focal constraint 

missed by gene-wide measures (for example, Fig. 1b), as many genes with pLI probabilities 

close to 0 contain CCRs above the 95th percentile, illustrating the increased resolution of a 

regional constraint model.

In an effort to move beyond gene-wide constraint models, Samocha et al.41 recently 

described an approach to identify regions of protein-coding genes that exhibit ‘missense 

depletion’: that is, regions where far less than expected missense variation is observed in the 

Exome Aggregation Consortium (ExAC) v.1 catalog of 60,706 exomes. While the 

motivation is similar to our model of regional constraint, the missense depletion approach 

partitions solely 15.1% of transcripts into distinct missense depletion regions. That is, for 

85% of transcripts, the entire transcript is assigned a single, summary constraint measure, 

and only 5.1% of transcripts are partitioned into three or more distinct regions of missense 

depletion. The missense depletion approach also chooses a single representative transcript 

for each gene; thus, coding exons exclusive to other isoforms are not modeled. Since CCRs 

measure constraint variability along the entire gene, they provide a more detailed map of the 

spectrum of constraint and identify areas of high constraint that would otherwise be missed. 

As a result, of the top 5% most constrained CCRs, 15,874 would be classified as either 

‘unconstrained’ or ‘moderately constrained’ by the missense depletion threshold (ɣ > 0.4) 

(Fig. 4b), and 1,091 of the top 1% CCRs would be similarly missed. These CCRs lie within 
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5,981 and 802 distinct genes, respectively, and many have known associations with 

autosomal dominant disease (Supplementary Table 4). Furthermore, 3,707 unique genes 

containing a 95th percentile CCR are not predicted to be constrained by either pLI or the 

missense depletion statistic (Supplementary Fig. 5). Therefore, the CCR model complements 

the constraint predictions made by both gene-wide and regional constraint metrics, 

especially since CCRs specify a detailed constraint architecture for 88% of the autosomal 

exome, whereas the missense depletion metric coarsely delineates regional constraint for 

15% of the protein coding transcripts.

Using CCRs to assist in the interpretation of de novo mutations in disease studies.

Since the most highly constrained CCRs are, by definition, devoid of protein-changing 

variants observed even as a heterozygote in a single individual from gnomAD, we should 

expect true regions of high constraint to often coincide with pathogenic mutations observed 

in patients with de novo dominant disorders. We tested this hypothesis by comparing the 

enrichment of 5,113 de novo missense mutations (DNMs) in 5,620 neurodevelopmental 

disorder probands42–47 (‘pathogenic’ mutations) versus 1,269 DNMs from 2,078 unaffected 

siblings of autism spectrum disorder probands (‘benign’ mutations)48,49 (see Supplementary 

Table 8 from ref. 41). This analysis results in a 7.1-fold enrichment of pathogenic DNMs 

from neurodevelopmental disorder cases in the most constrained (that is, at or above the 95th 

percentile) CCRs, and a 4.0-fold depletion of pathogenic DNMs in the least constrained 

CCRs (Fig. 5a). We then compared the ability of CCRs to evaluate these sets of pathogenic 

and benign mutations with that of GERP++, CADD50, REVEL51, pLI4, MPC41, and 

MTR52. Although the performance of all methods is modest, CCRs yield the highest 

receiver operating characteristic (ROC) area under the curve (AUC) among tested methods 

(0.73; Fig. 5b and precision-recall analysis in Supplementary Fig. 6)53. A complementary 

analysis of the X chromosome CCR model demonstrates similar performance 

(Supplementary Fig. 7).

Since the boundaries of constrained regions are defined by gnomAD variants, and more than 

one-third of de novo mutations have been observed as standing variation54, we repeated 

these analyses while excluding any benign or pathogenic mutation present in gnomAD. 

While reduced, the enrichment (OR = 4.61) of pathogenic DNMs remains statistically 

significant at the 95th percentile (Fig. 5c). Furthermore, given the prevalence of recurrently 

mutating loci4 in the human genome, it is commonplace46,55–57 to not exclude de novo 

mutations based upon their presence in reference databases. We therefore anticipate that the 

enrichment observed at the 95th percentile in Fig. 5a is indicative of future analyses. 

However, given the comparable performance of CCRs to other metrics (Fig. 5b,d), we 

emphasize that CCRs are insufficient as a standalone metric for prioritizing de novo 

mutations. For example, while a mutation coinciding with a high-percentile CCR is 

compelling support for its pathogenicity, the inverse is not necessarily true. Lying within a 

low-percentile CCR does not strictly imply that the mutation is benign. Therefore, in the 

context of rare disease research, we recommend the use of high-percentile CCRs as an 

annotation to complement the predictions made by variant prioritization tools.
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Estimating the rate of false positive discovery of coding constraint.

The explosive human population growth over the last two millennia58 and the resulting 

excess of very rare genetic variation in the human genome raise a natural question about our 

model of coding constraint: is constraint measured from 123,136 exomes sufficient to 

empower the prioritization of mutations in newly sequenced disease cohorts? Zou et al.59 

estimate that even 500,000 individuals will be insufficient to catalog the majority of protein-

changing variants in the human population. Yet if predicted regions of constraint are truly 

under strong purifying selection, they should remain largely free of protein-changing 

variation, even as genetic variation is collected from much larger cohorts mostly composed 

of healthy individuals.

To test the predictive power of the current model, we compared CCRs to DNMs observed in 

both the neurodevelopmental disorder probands and the unaffected siblings of autism 

probands. As above, we assumed that DNMs from neurodevelopmental disorder probands 

represent true positives. DNMs from unaffected siblings represent true negatives, and thus 

false positives when they lie in regions of highest constraint. We measured the false 

discovery rate (FDR) of each CCR in the 90th, 95th, and 99th percentiles (Table 1 and 

Methods). We estimate an FDR of 2.8% from the fraction of CCRs in the 99th percentile and 

higher that coincide with a DNM from an unaffected sibling. Merely 0.6% of these 

ostensibly benign DNMs lie within a 99th percentile or higher CCR. This suggests that, 

while many more genomes are necessary to identify all variation in the human genome, our 

model illuminates coding regions under true constraint at a low predicted FDR.

A fundamental strength of our approach is that the resolution of predicted constraint can, in 

principle, improve as variation from larger cohorts of individuals free of developmental 

disorders is sequenced. To test the expected increase in the resolution of coding constraint 

with larger sample sizes, we compared the described CCR model created from 123,136 

gnomAD individuals to a CCR model based on the 60,706 individuals in ExAC v.1. As 

expected, we find that the enrichment of known ClinVar pathogenic mutations at the 95th 

percentile in the gnomAD model (OR = 161.8) is significantly greater than the enrichment 

observed for the ExAC v.1 CCR model (OR = 22.8; Supplementary Fig. 8).

Discussion

Deep sampling of human variation provides a richly textured ‘topographical map’ of 

constraint within protein-coding genes. The map of CCRs we have created highlights the 

largest voids of protein-changing variation from a sample of 246,272 human chromosomes. 

We hypothesize that such regions are depleted for protein-changing variation because 

mutations therein have strong selective pressures against them. Supporting this hypothesis, 

we have shown that CCRs at or above the 95th percentile are enriched for disease-causing 

variants, especially in dominant Mendelian disorders. Furthermore, protein domains with 

critical function are enriched for the highest local constraint. These observations 

demonstrate the utility of CCRs for prioritizing de novo mutations and rare variants in 

studies of dominant disease phenotypes. While correlated, local coding constraint 

complements phylogenetic conservation measures. The work of Samocha et al.41 suggests 

that future improvements in variant prioritization will arise by combining models of local 
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coding constraint with single-nucleotide metrics that incorporate complementary 

information such as phylogenetic conservation, amino acid substitution scores, and three-

dimensional protein structure.

Although we have demonstrated that highly constrained CCRs recover variants known to 

underlie human disease, we acknowledge that our approach is conservative. By requiring the 

complete absence of protein-changing variation within a CCR, we are prone to false 

negatives in larger constrained regions where variation is extremely sparse yet not 

completely absent in healthy individuals. This problem is likely to worsen with variant sets 

from ever larger cohorts, given that pathogenic variants with reduced penetrance are more 

likely to be included. We argue, however, that this complication reduces sensitivity for 

detecting constraint rather than creating spurious constraint predictions. Indeed, the 

precisely resolved regions that remain in light of such variants will represent even more 

confident predictions of regional constraint that are intolerant of any variation. We also 

emphasize that the presented approach is a simplification of a more general strategy that 

defines constrained regions based upon flanking variants meeting a minimum allele or 

genotype frequency. We anticipate that such extensions to our approach could be used to 

mitigate the effect of ‘contamination’ from recessive or incompletely penetrant alleles in 

future models. This will be the focus of future research as new population-scale variant 

catalogs emerge.

Nonetheless, our current method provides higher resolution than existing gene-wide 

constraint measures and minimizes false positives by strictly identifying regions with the 

highest constraint within each gene. CCRs are ill-suited to recessive disease yet empowered 

to reveal constrained regions under autosomal dominant disease models. Therefore, CCRs 

are best suited to the interpretation of de novo mutations observed in rare disease cohorts. 

Another important caveat of our model is that 55% (76,266 of 138,632) of the individuals 

sequenced in the gnomAD cohort are of European ancestry. As a result, the local coding 

constraint we predict has lesser predictive power for mutations observed in non-European 

individuals. However, we expect that the majority of truly constrained regions in any one 

population will also be constrained in others.

Looking forward, we argue that the most useful outcome of detailed maps of coding 

constraint is the ability to highlight critical regions in genes that have not yet been linked to 

human disease phenotypes. We have shown that the most constrained regions are enriched 

for disease-causing variants (Fig. 1a). However, more than 72% of genes harboring at least 

one CCR in the 99th percentile or higher lack any known pathogenic or likely pathogenic 

variants in ClinVar. It is likely that some of these regions exhibit such extreme constraint 

because mutations therein either lead to extreme developmental disorders or are embryonic 

lethal. Investigating the phenotypic effects of disrupting these regions provides an 

opportunity to identify new coding regions that drive disease phenotypes and are vital to 

human fitness.
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Methods

CCR model construction.

The map of CCRs is constructed from the catalog of genetic variation observed among 

123,136 exomes in gnomAD (https://storage.googleapis.com/gnomad-public/release/

2.0.1/vcf/exomes/gnomad.exomes.r2.0.1.sites.vcf.gz). We first applied vt61 variant 

normalization and decomposition to the gnomAD VCF using the commands ‘vt decompose 

$gnomad_vcf -o $gnomad_ decomp_vcf -s’ and ‘vt normalize $gnomad_decomp_vcf -o 

$gnomad_decomp_ norm_vcf -r grch37.fasta’.

We then annotated the decomposed and normalized gnomAD VCF file with VEP62 (v.81 

using Ensembl v.75 transcripts). The CCR model uses solely variants that VEP predicts to be 

‘protein-changing’, which we define as any variant having the following Sequence Ontology 

terms for at least one Ensembl transcript: ‘missense_variant’, ‘stop_gained’, ‘stop_lost’, 

‘start_lost’, ‘frameshift_variant’, ‘initiator_codon_variant’, ‘rare_amino_acid_variant’, 

‘protein_altering_variant’, ‘inframe_insertion’, ‘inframe_deletion’, and 

‘splice_donor_variant’ or ‘splice_ acceptor_variant’ when paired with 

‘coding_sequence_variant’. In addition, the variants must have a filter value of ‘PASS’, 

‘SEGDUP’, or ‘LCR’. The rationale behind including ‘LCR’ and ‘SEGDUP’ labeled 

variants is that we already account for segmental duplications and self-chains in our model.

Coding exons from all protein-coding transcripts in ENSEMBL17 v.75 were ‘flattened’ into 

a single, combined model of coding sequence for each gene. Constraint ‘regions’ are defined 

by measuring the exonic nucleotide distance between each pair of protein-changing variants, 

excluding the 5ʹ and 3ʹ variants flanking each region, as the flanking variants are inferred to 

represent the least constraint. We did not impose a minimum distance between protein-

changing variants. Constraint regions can encompass a single exon or span multiple exons.

To prevent false identification of constraint that could arise solely because of reduced power 

to detect genetic variation, the length of each region is weighted by the fraction of 

individuals in gnomAD having at least 10× coverage at each bp. For example, if a region is 

100 bp long and at each bp 90% of individuals have 10× coverage, the resulting weighted 

distance would be 90. Additionally, if the coverage for a single base falls below 50% of 

gnomAD individuals having at least 10× coverage, the region is immediately broken and a 

new region is not started until the coverage exceeds 50% of individuals at 10× coverage. 

Finally, coding regions that overlap either segmental duplications or self-chain alignments 

with at least 90% identity are removed from our model. The rationale is that we cannot trust 

variant patterns in these regions owing to known artifacts that may arise when aligning short 

sequencing reads to paralogous genome segments.

For all remaining constraint regions, we compute the region’s CpG density as a proxy for the 

region’s mutability owing to spontaneous deamination of methylated cytosines. We then 

create a linear regression of the weighted length (dependent variable) versus CpG density 

(independent variable) for all regions. Each region’s degree of constraint is measured on the 

basis of its distance from the resulting regression line. Regions having a greater weighted 

distance between protein-changing variants than expected based upon their CpG density (the 
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residual from the linear regression line) are predicted to be under the greatest constraint. The 

resulting residuals are scaled from 0 to 100, ranked by residual (highest to lowest), and 

assigned a percentile such that regions with the largest residual value are assigned the 

highest percentile, reflecting the highest predicted constraint. Genomic positions harboring 

observed variants in gnomAD are assigned the lowest residual and a percentile of 0. This is 

based on the fact that such variants were obtained from individuals who either are healthy or 

did not have developmental abnormalities and should therefore be interpreted as 

unconstrained loci.

Lastly, since the gnomAD dataset contains ~25% fewer X chromosomes than autosomes, 

assuming a composition of males and females, constrained regions on the X chromosome 

are likely to be larger, on average, owing to less observed genetic variation. We therefore 

generated a separate model of constraint for the X chromosome that incorporates solely the 

coding gnomAD variants observed on the X chromosome. This X-specific model uses the 

same coverage cutoff and fraction of individuals as the full autosomal model, as well as the 

same source self-chains and segmental duplication exclusions.

Evaluation of CCRs with ClinVar.

ORs were used to test the power of our CCRs to predict the pathogenicity of new variants 

using ClinVar variants (v.20170802, ftp://ftp.ncbi.nih.gov/pub/clinvar/vcf_GRCh37/

archive_2.0/2017/clinvar_20170802.vcf.gz) as a truth set. Our evaluation set consisted of 

solely ClinVar variants that were designated as ‘pathogenic’ or ‘likely pathogenic’ for true 

positive variants and ‘benign’ as true negative variants. All variants from both sets were also 

required to have at least ‘criteria provided, single submitter’ review status or greater with no 

conflicts. Any variant designated as ‘no assertion criteria provided’, ‘no assertion provided’, 

or ‘no interpretation for the single variant’ was excluded from the evaluation set. Variant 

alleles were also excluded if they matched those observed in ExAC v.1 and gnomAD 

datasets. True positive (pathogenic) and true negative (benign) variants were also required to 

have a predicted impact of ‘stop_gained’, ‘stop_lost’, ‘start_lost’, ‘initiator_codon’, 

‘rare_amino_acid’, ‘missense’, ‘protein_ altering’, ‘frameshift’, ‘inframe_deletion’, 

‘inframe_insertion’, or ‘coding_sequence_ variant’ combined with either 

‘splice_acceptor_variant’ or ‘splice_donor_variant’. These restrictions resulted in 2,677 

genes, 24,544 pathogenic and 4,689 benign variants from ClinVar when including all disease 

inheritance models. They resulted in 478 genes, 10,781 pathogenic, and 865 benign variants 

when including solely autosomal dominant disorders.

ORs in Fig. 2a were based on a curated set of genes underlying autosomal dominant disease 

phenotypes from Berg et al.63. ORs for each percentile bin were calculated by OR = a/b
c/d , 

where a is the number of pathogenic variants in a bin, b is the number of benign variants in a 

bin, c is the number of pathogenic variants not in the bin, and d is the number of benign 

variants not in the bin. In other words, we are measuring the ratio of pathogenic variants in 

the bin to benign variants in that bin divided by the ratio of pathogenic variants not in that 

bin to the benign variants not in that bin. We also calculated 95% percent CIs from the 

standard error, s.e. = 1/a + 1/b + 1/c + 1/d . The lower bound of the CI is calculated 
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using the expression eln OR − 1.96 × s.e., and the upper bound of the CI is calculated by 

eln OR + 1.96 × s.e..

We report the values for each cell of the contingency table used for the Fisher’s exact test 

OR calculation in each percentile range below as follows [in percentile bin and pathogenic; 

not in percentile bin and pathogenic; in percentile bin and benign; not in percentile bin and 

benign]: All ClinVar genes: 0–20 bin, [11,468.0; 16,276.0; 3,855.0; 102.0]; 20–80 bin, 

[11,073.0; 16,671.0; 87.0; 3,870.0]; 80–90 bin, [2,014.0; 25,730.0; 12.0; 3,945.0]; 90–95 

bin, [1,091.0; 26,653.0; 1.0; 3,956.0]; 95–100 bin, [2,098.0; 25,646.0; 2.0; 3,955.0]. 

Autosomal dominant ClinVar genes: 0–20 bin, [4,968.0; 8,137.0; 729.0; 29.0]; 20–80 bin, 

[5,074.0; 8,031.0; 21.0; 737.0]; 80–90 bin, [1,098.0; 12,007.0; 6.0; 752.0]; 90–95 bin, 

[624.0; 12,481.0; 1.0; 757.0]; 95–100 bin, [1,341.0; 11,764.0; 1.0; 757.0].

Evaluation of CCRs on neurodevelopmental disorder versus control de novo mutations.

We used OR comparisons to test the power of our CCRs to predict the pathogenicity of new 

variants that lie within their boundaries, and in this case, a well-curated set of DMNs was 

used as a truth set. The set of DNMs curated by Samocha et al.41 was used as an 

independent truth set for evaluating CCRs and other variant pathogenicity prediction tools. 

Predicted pathogenic variants in this truth set are composed of DNMs observed in 

individuals with developmental delay, severe intellectual disability, and epileptic 

encephalopathy42–47. Predicted benign variants reflect DNMs from unaffected siblings of 

autism probands48,49. Pathogenic mutations were filtered on their presence in ExAC v.1 and 

gnomAD. ORs and CIs were calculated as above.

We report the values for each cell of the contingency table used for the Fisher’s exact test 

OR calculation in each percentile range below as follows [in percentile bin and pathogenic; 

not in percentile bin and pathogenic; in percentile bin and benign; not in percentile bin and 

benign]: Fig. 5a: 0–20 bin, [757.0; 2,388.0; 648.0; 508.0]; 20–80 bin, [1,358.0; 1,787.0; 

377.0; 779.0]; 80–90 bin, [279.0; 2,866.0; 65.0; 1,091.0]; 90–95 bin, [208.0; 2,937.0; 33.0; 

1,123.0]; 95–100 bin, [543.0; 2,602.0; 33.0; 1,123.0]. Figure 5c: 0–20 bin, [757.0; 2,388.0; 

208.0; 466.0]; 20–80 bin, [1,358.0; 1,787.0; 348.0; 326.0]; 80–90 bin, [279.0; 2,866.0; 62.0; 

612.0]; 90–95 bin, [208.0; 2,937.0; 27.0; 647.0]; 95–100 bin, [543.0; 2,602.0; 29.0; 645.0]. 

Supplementary Fig 7a (X chromosome CCRs): 0–20 bin, [17.0; 138.0; 20.0; 16.0]; 20–80 

bin, [55.0; 100.0; 13.0; 23.0]; 80–90 bin, [28.0; 127.0; 2.0; 34.0]; 90–95 bin, [20.0; 135.0; 

0.0; 36.0]; 95–100 bin, [35.0; 120.0; 1.0; 35.0].

Comparing CCRs to missense depletion scores.

We compared CCRs in the 99th percentile and higher to missense depletion scores defined 

by Samocha et al.41 by intersecting CCR regions with missense depletion regions using 

bedtools64. CCRs to the right of the black dashed vertical line in Fig. 4b reflect highly 

constrained CCRs that fall below the threshold (0.4) for significant missense depletion 

defined by Samocha et al.
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CCRs in Pfam domain families.

Human genome build 37 genome coordinates for Pfam domains were curated from the 

University of California, Santa Cruz (UCSC) Table Browser (Pfam Domains in UCSC 

Genes track). Pfam domain families were then intersected with all CCRs to measure the 

distribution of regional constraint across each protein domain family. Under a null 

hypothesis of a uniform distribution of CCRs overlapping domains across different 

percentiles, we used a two-tailed Fisher’s exact test to ask whether there is an enrichment of 

domain intersections with CCRs in the 95th percentile or higher. For each Pfam domain, a 

contingency table was constructed with the following cells: (1) the count of unique CCRs at 

the 95th percentile or higher that intersected the given Pfam domain, (2) the count of all 

unique CCRs below the 95th percentile that intersected the given Pfam domain, (3) the count 

of all CCRs at or above the 95th percentile that intersect with other Pfam domains, and (4) 

the count of all CCRs below the 95th percentile that intersect with other Pfam domains. The 

OR is calculated as OR = a/b
c/d . P value is calculated as P = a + b ! c + d ! a + c ! b + d !

a!b!c!d!n! . The 

internal control for the inherently greater length of the 95th percentile and higher CCRs 

comes from the fact that these CCRs are not only intersected with the Pfam domain intervals 

of interest (a in the above calculation) but also with all other Pfam domain intervals as a 

control (c in the above calculation). This gives these CCRs equal opportunity to overlap not 

only with the Pfam domain in question but also with all other Pfam domains. The Fisher’s 

exact test is therefore testing for the enrichment of ≥95th percentile CCRs with the Pfam 

domain of interest versus the enrichment of these CCRs with all other Pfam domains. 

Furthermore, it also tests for similar enrichment in CCRs below the 95th percentile (b and d 
in the above calculation). We emphasize that we use the count of intersections in this test 

rather than the number of bp, because the Fisher’s exact test assumes that every intersection 

is independent. However, since bp from the same CCR are clearly not independent, we use 

the count of intersections for each cell of the contingency table.

Comparing vertebrate conservation to regional coding constraint.

To evaluate the enrichment of highly constrained CCRs in Pfam domains, we divided CCR 

percentiles into 20 equal ranges (for example, 0–5%, 5–10%, …, 95–100%) and measured 

the proportion of Pfam domain bp intersecting each CCR percentile range. We then used a 

binomial test (expected success rate = 0.05) to assess the significance of enrichment in the 

highest CCR bin (95% or greater). The number of overlapping bases across all CCRs was 

used as the number of trials. We investigated the relationship between CCR percentiles and 

vertebrate conservation scores by intersecting CCRs with per-base GERP++ scores. The 

mean GERP++ score was calculated for each CCR. We defined CCRs in the 95th percentile 

or higher as constrained yet not conserved if the CCR had a mean GERP++ rejected 

substitution score of less than 0.7 RS, as this falls 1 RS below the GERP++ confidence 

threshold for interspecies mammalian constraint24.

Comparing CCRs to other metrics for variant prioritization.

To understand how CCRs compare to other methods of variant pathogenicity prediction, we 

conducted a ROC curve analysis on the ClinVar truth set and a well-curated set of de novo 

variants in developmental disorders (described above). The true positives were taken from 
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both the neurodevelopmental de novo and ClinVar pathogenic and likely pathogenic variant 

sets, respectively, filtered on matching ExAC v.1 and gnomAD alleles, and the true negatives 

are represented by the unaffected autism sibling de novo mutations and the ClinVar variants 

designated as benign.

We chose five metrics with which to compare CCRs. The first, MPC41, was chosen because 

it is the only other variant pathogenicity prediction tool that models regional constraint. 

Second, we chose REVEL51 because it is a recently developed tool that performs extremely 

well on ClinVar compared with all other metrics. Third, we chose GERP++ (ref. 24) as a 

measure of conservation for a point of comparison between constraint and conservation in 

human-based pathogenicity prediction. Fourth, we chose CADD50 as it is a widely used 

variant pathogenicity prediction method. Finally, MTR52 is a new, per-base metric that 

leverages a 93 bp sliding window to estimate local constraint.

ROC curves were calculated using scikit-learn in Python 2.7. We included solely variants 

defined as protein-changing by pathoscore (https://github.com/quinlan-lab/pathoscore), as 

explained above in the section ‘Evaluation of CCRs with ClinVar’. CIs for the AUC of each 

metric were calculated with the pROC R package (https://cran.r-project.org/web/packages/

pROC/).

Gene pathway and subnetwork over-representation analysis.

We used the ‘pathway-based sets’ gene set over-representation method from 

ConsensusPathDB (http://cpdb.molgen.mpg.de/) to test for gene over-representation in 

distinct pathways. The ConsensusPathDB over-representation is calculated using a binomial 

test, where the null hypothesis assumes that genes in the list given are sampled from the 

same superset and thus the probability of observing a gene in a pathway in the given list is 

the same as in the original superset65.

Estimation of FDR and false positive rate.

We estimate FDR as false positives/(false positives + true positives), where true positives are 

the developmental de novos that lie within a CCR above our threshold, and false positives 

are the unaffected autism sibling de novos also above that threshold. Similarly, to estimate 

the false positive rate, we create an estimate using the equation false positive rate = false 

positives/(false positives + true negatives). We assume that, as with the FDR, the false 

positives are the true negatives above the CCR percentile cutoff, and that the true negatives 

are the set of all true negatives, which, in this case is a superset of the false positives. 

Therefore, the false positive rate is the true negatives above the cutoff divided by the number 

of all true negatives.

Correlating exonic CpG density with gnomAD variant density.

By employing the ‘flattened’ exons we utilized for the CCR model and by filtering out exon 

regions with the same restrictions (no coverage below of 50% at 10×, overlapping of 

segmental duplications or 90% identity self-chains), we calculated the CpG density of all 

exons that were at least 20 bp in length. Exonic CpG density was compared to the density of 

variant changes that were either ‘PASS,’ ‘SEGDUP,’ ‘LCR,’ or ‘RF’. We measured variant 
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density of all variant types, as well as solely for C>T or G>A transitions that could be the 

result of deamination of a 5mC (5-methylcytosine).

Coverage threshold for optimization and creation of the model.

To justify our cutoff of 50% of individuals having coverage at 10×, and the use of 10× 

instead of another coverage cutoff, we created both ROC and precision-recall curves for 

various cutoffs of our model. We used 1× with a cutoff of 10%, 1× with a cutoff of 90%, 5× 

with a cutoff of 10%, 5× with a cutoff of 90%, 10× with a cutoff of 50%, 3× with a cutoff of 

50%, 50× with a cutoff of 10%, and 50× with a cutoff of 90%. We chose a minimum of 10× 

coverage in 50% of gnomAD individuals since it performed as well as more restrictive 

thresholds (Supplementary Fig. 1). The model parameters besides coverage were the same 

for all instances of the model used in the comparison.

Comparing CCR models created from variation observed in larger cohorts.

As a demonstration of the improvement in granularity in our model when more individuals 

are sequenced for variants, we compared our CCR model based on gnomAD (ExAC v.2) 

with 123,136 individuals to an older version based on ExAC v.1 containing 60,706 

individuals’ variant data. The OR comparison was performed for percentile bins 0–20, 20–

80, 80–90, 90–95, and 95–100 as with the gnomAD version in Figs. 2 and 5.

We report the values for each cell of the contingency table used for the Fisher’s exact test 

OR calculation in each percentile range below as follows [in percentile bin and pathogenic; 

not in percentile bin and pathogenic; in percentile bin and benign; not in percentile bin and 

benign]: For the gnomAD version of CCR the numbers are the same as for Fig. 2a. For the 

ExAC v.1 version of CCR: 0–20 bin, [9,283.0; 17,042.0; 3,787.0; 169.0]; 20–80 bin, 

[11,400.0; 14,925.0; 119.0; 3,837.0]; 80–90 bin, [2,081.0; 24,244.0; 25.0; 3,931.0]; 90–95 

bin, [1,202.0; 25,123.0; 8.0; 3,948.0]; 95–100 bin, [2,359.0; 23,966.0; 17.0; 3,939.0].

Comparison to the missense Z, RVIS, and pLI metrics.

We assessed the correlation between the missense Z, RVIS, and pLI gene-wide constraint 

metrics and CCRs at or above the 95th percentile by comparing the count of 95th percentile 

or higher CCRs per gene with the constraint metrics’ values for the gene.

For missense Z constraint, we used Supplementary Table 13 from ref. 4, which contained 

missense Z constraint scores for every gene. pLI was obtained from the Broad Institute’s 

website at ftp://ftp.broadinstitute.org/pub/ExAC_release/release1/manuscript_data/

forweb_cleaned_exac_r03_march16_z_data_pLI.txt.gz as well as from ref. 4. Lastly, the 

version of RVIS used for this comparison was the most up-to-date version based on CCDS v.

20 and gnomAD data at http://genic-intolerance.org/data/

RVIS_Unpublished_ExACv2_March2017.txt.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Gene-wide summary measures of constraint are prone to overstating and understating 
constraint within specific regions of protein-coding genes.
a, KCNQ2 has the highest possible pLI score of 1.0, yet there are entire exons (for example, 

the leftmost exon) with many protein-changing variants, indicating they are under minimal 

constraint. Highly constrained (that is, in the 95th percentile or higher, as described in the 

text) CCRs highlighted in red are devoid of protein-changing variation in gnomAD. b, In 

contrast, TNNT2, which regulates muscle contraction and has been implicated in familial 

hypertrophic cardiomyopathy60, has a very low pLI of 0.01. However, there are focal regions 

lacking protein-changing variation, indicating a high degree of local constraint. Numbers 

above each CCR reflect the number of ClinVar pathogenic variants in each CCR and 

illustrate that CCRs often coincide with known disease loci.
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Fig. 2. The most constrained CCRs are enriched for pathogenic variants and are restricted to a 
small subset of genes.
a, OR enrichment for ClinVar pathogenic variants versus benign variants for different CCR 

percentile bins among all autosomal ClinVar genes (light cyan) and genes that underlie 

autosomal dominant diseases (dark cyan). For all ClinVar genes, the error bars represent 

95% CIs of 0.015–0.023 for the 0–20 percentile bin, 23.9–36.6 for the 20–80 percentile bin, 

14.6–45.4 for the 80–90 percentile bin, 22.8–1,151.0 for the 90–95 percentile bin, and 40.4–

647.5 for the 95–100 percentile bin. For autosomal dominant ClinVar genes, the 95% CIs are 

0.017–0.035 for the 0–20 percentile bin, 14.3–34.3 for the 20–80 percentile bin, 5.12–25.7 

for the 80–90 percentile bin, 5.32–269.5 for the 90–95 percentile bin, and 12.1–613.9 for the 

95–100 percentile bin. A total of 24,554 pathogenic variants and 4,689 benign variants from 

ClinVar were intersected with CCRs; 10,781 pathogenic and 865 benign ClinVar variants lie 

within autosomal dominant genes. b, Histogram of the number of autosomal genes with at 

least one CCR greater than or equal to different percentile thresholds. c, Histogram of the 

number of 95th and 99th percentile CCRs with 0 to 10 or more overlapping ClinVar 

pathogenic variants. Highly constrained CCRs that harbor no known pathogenic variants 

may reflect regions under extreme purifying selection. Of the 24,554 ClinVar pathogenic 

variants, 2,172 (8.8%) and 551 (2.7%) were found in CCRs at or above the 95th and 99th 

percentile, respectively.
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Fig. 3. The relationship between CCRs and interspecies conservation.
a, A comparison of intraspecies constraint (CCRs) and interspecies conservation, as 

measured by the mean GERP++ score in each CCR. Regions in the dotted box reflect 

intraspecies constraint not revealed by interspecies conservation. That is, they have a GERP

++ score less than 0.7 and 95th percentile or greater CCR score. b, Example Pfam domain 

families for which constraint is nearly uniformly distributed among instances of the domain. 

c, Representative Pfam domain families exhibiting enrichment for higher levels of 

intraspecies constraint across the whole exome. P values and ORs reflect a Fisher’s exact 

test for a domain’s genomic intersection enrichment with CCRs in the 95th percentile or 

higher.
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Fig. 4. A comparison of CCRs with other models of genic and regional constraint.
a, The correlation (Pearson r) between a gene’s pLI and the number of CCRs in the 95th 

percentile or higher observed in the gene. In general, genes with high pLI (>0.9) tend to 

harbor many such CCRs, while genes with low pLI (<0.1) do not. However, many low-pLI 

genes exhibit focal constraint at or above the 95th percentile. b, The relationship between 

CCRs in the 95th percentile or higher and the missense depletion score for the same coding 

region. The dashed line reflects the missense depletion threshold (ɣ > 0.4) below which 

Samocha et al.41 define regional constraint. Light blue bars beyond this threshold reflect 

CCRs at or above the 95th percentile that would not be deemed as constrained by the 

missense depletion metric. Gray bars reflect CCRs that coincide with regions deemed to be 

under constraint by missense depletion. There are 8,065,333 unique CCRs, with 21,650 at or 

above the 95th percentile.
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Fig. 5. Evaluation of de novo mutations from a cohort with severe developmental delay, 
intellectual disability, and epileptic encephalopathy versus de novo variation from unaffected 
siblings of autism probands.
a, Enrichment of pathogenic de novo mutations in the most constrained CCRs, excluding 

pathogenic variants present in gnomAD. The 95% CI error bars are 0.22–0.29 for the 0–20 

percentile bin, 1.36–1.81 for the 20–80 percentile bin, 1.24–2.16 for the 80–90 percentile 

bin, 1.66–3.50 for the 90–95 percentile bin, and 4.96–10.2 for the 95–100 percentile bin. b, 

ROC analysis for the developmental disorder de novo variant evaluation set described for a, 

where true positives are the pathogenic mutations and true negatives are the set of benign 

mutations. Of the 3,400 pathogenic and 1,269 benign mutations, each tool scored (M 
pathogenic; N benign): CCR (3,108; 1,149), CADD (3,399; 1,269), GERP++ (3,400; 1,269), 

MPC (3,221; 1,205), REVEL (3,368; 1,251), pLI (3,283; 1,212), MTR (3,389; 1,260). The 

dots in b and d indicate the score cutoff with the maximal Youden J statistic for each tool. 

Values in parenthesis indicate the AUC and the maximal J, respectively. c, Enrichment of 

pathogenic de novo mutations in the most constrained CCRs, after excluding benign and 

pathogenic mutations on the basis of their presence in gnomAD. The 95% CI error bars are 

0.59–0.85 for the 0–20 percentile bin, 0.60–0.84 for the 20–80 percentile bin, 0.72–1.28 for 

the 80–90 percentile bin, 1.13–2.56 for the 90–95 percentile bin, and 3.16–6.81 for the 95–

100 percentile bin. d, ROC analysis for the developmental disorder de novo variant 

evaluation set from c. Of the 3,400 pathogenic and 731 benign mutations, each tool scored 

(M pathogenic; N benign): CCR (3,108; 670), CADD (3,399; 731), GERP++ (3,400; 731), 

MPC (3,221; 704), REVEL (3,368; 726), pLI (3,283; 709), MTR (3,389; 728). CIs for each 

metric’s ROC AUC in b: CCR (0.711–0.745), CADD (0.567–0.603), GERP++ (0.542–

0.579), MPC (0.643–0.676), REVEL (0.612–0.646), pLI (0.586–0.622), MTR (0.608–
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0.642). CIs for the ROC AUCs in d: CCR (0.586–0.629), CADD (0.581–0.624), GERP+

+ (0.509–0.556), MPC 0.627–0.667), REVEL (0.593–0.635), pLI (0.576–0.621), MTR 

(0.598–0.639).
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Table 1 |

Estimated FDR and false positive rate for the 90th, 95th, and 99th percentiles

Minimum CCR percentile FDR False positive rate

90 0.077 0.057

95 0.055 0.029

99 0.028 0.006

A total of 3,400 DNMs from neurodevelopmental disorder probands are treated as true positives; 1,269 DNMs from unaffected siblings of autism 
probands represent true negatives, and when overlapping a CCR, they are treated as false positives. FDR is calculated as false positives/(false 
positives + true positives) and false positive rate as false positives/(false positives + true negatives).
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