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ABSTRACT Global increases in the use of carbapenems have resulted in several
strains of Gram-negative bacteria acquiring carbapenem resistance, thereby limiting
treatment options. Klebsiella pneumoniae is a common carbapenem-resistant patho-
genic bacterium that is widely studied to identify novel antibiotic resistance mecha-
nisms and drug targets. Antibiotic-resistant clinical isolates generally harbor many
genetic alterations, and the identification of responsible mutations would provide in-
sights into the molecular mechanisms of antibiotic resistance. We propose a method
to prioritize mutated genes responsible for antibiotic resistance on the basis of ex-
pression changes in their local subnetworks, hypothesizing that mutated genes that
show significant expression changes among the corresponding functionally associ-
ated genes are more likely to be involved in the carbapenem resistance. For
network-based gene prioritization, we developed KlebNet (www.inetbio.org/klebnet), a
genome-scale cofunctional network of K. pneumoniae genes. Using KlebNet, we recon-
structed the functional modules for carbapenem resistance and virulence and identified
the functional association between antibiotic resistance and virulence. Using comple-
mentation assays with the top candidate genes, we were able to validate a novel gene
that negatively regulated carbapenem resistance and four novel genes that positively
regulated virulence in Galleria mellonella larvae. Therefore, our study demonstrated the
feasibility of network-based identification of genes required for antibiotic resistance
and virulence of human-pathogenic bacteria.

IMPORTANCE Klebsiella pneumoniae is a major bacterial pathogen that causes pneu-
monia and urinary tract infections in human. K. pneumoniae infections are treated
with carbapenem, but carbapenem-resistant K. pneumoniae has been spreading
worldwide. We are able to identify antimicrobial-resistant genes among mutated
genes of the antibiotic-resistant clinical isolates. However, they usually harbor many
mutated genes, including those that cause weak or neutral functional effects. There-
fore, we need to prioritize the mutated genes to identify the more likely candidates
for the follow-up functional analysis. For this study, we present a functional network
of K. pneumoniae genes and propose a network-based method of prioritizing the
mutated genes of the resistant clinical isolates. We also reconstructed the network-
based functional modules for carbapenem resistance and virulence and retrieved the
functional association between antibiotic resistance and virulence. This study dem-
onstrated the feasibility of network-based analysis of clinical genomics data for the
study of K. pneumoniae infection.
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arbapenem-resistant Klebsiella pneumoniae is an important opportunistic bacterial

pathogen that causes pneumonia and urinary tract infections with a mortality rate
of around 40% (1). Carbapenem is known as an antibiotic of last resort because of its
broad spectrum of activity among B-lactam antibiotics and resistance to most
B-lactamases produced by bacteria (2). However, carbapenem-resistant K. pneumoniae
strains have been spreading worldwide. The U.S. CDC has reported that more than
9,000 health care-associated infections are caused by carbapenem-resistant Enterobac-
teriaceae each year (Antibiotic resistance threats in the United States, 2013), and K.
pneumoniae is isolated most commonly in strains of carbapenem-resistant Enterobac-
teriaceae (3). The percentages of invasive infections by carbapenem-resistant K. pneu-
moniae have been reported to be =50% in Greece, =25% in Italy, and <1% in
Scandinavian countries (Surveillance of antimicrobial resistance in Europe, 2013). In Sri
Lanka and Western Australia, there have been waves of infections by strains of
carbapenem-resistant K. pneumoniae (4, 5). The World Health Organization identified
carbapenem-resistant Klebsiella species as being among the most urgent problems in
their first global report on antimicrobial resistance in 2014 (6). We focus on mero-
penem, a member of the carbapenem class of antibiotics, in this study.

Resistance mechanisms for carbapenem-nonsusceptible K. pneumoniae isolates,
including carbapenemase (such as KPC, NDM, etc.), upregulation of efflux pumps,
extended-spectrum B-lactamases accompanied by porin loss, and hyperproduction of
AmpC B-lactamase, have been reported previously (7). However, some cases of car-
bapenem resistance in K. pneumoniae cannot be explained using the mechanisms
mentioned above. In this study, we collected two consecutive K. pneumoniae isolates
retrospectively from a single patient. The strain was initially meropenem susceptible
but became resistant after the meropenem treatment. We could not explain the
mechanisms conferring carbapenem resistance to the strain. Hence, further identifica-
tion of K. pneumoniae genes responsible for carbapenem resistance is required to
provide important clues for solving the problems of antibiotic resistance.

Mutated genes of the antibiotic-resistant clinical isolates are putative genes hypoth-
esized to be responsible for the antimicrobial resistance phenotype. However,
antibiotic-resistant strains isolated from patients usually harbor many mutated genes,
including those that cause weak or neutral functional effects. Therefore, we need to
prioritize the mutated genes to identify the more likely candidates, which can facilitate
follow-up functional analysis. In this report, we propose a method of network integra-
tive genomic and transcriptomic analysis for prioritizing the mutated genes of
carbapenem-resistant clinical isolates.

RESULTS

K. pneumoniae strains with acquired carbapenem resistance show genomic and
transcriptomic alterations for many genes. Meropenem is a member of the carbap-
enem class of B-lactam antibiotics used to treat K. pneumoniae infections. We used two
strains of K. pneumoniae clinical isolates from a single patient who had undergone
meropenem treatment, namely, YMC2014/2/R777 and YMC2014/3/P345, which we
refer to as K26 and K56, respectively, in this paper, that were isolated before and after
the meropenem administration, respectively. In K. pneumoniae, two major outer mem-
brane porins, OmpK35 and OmpK36, play roles in both antimicrobial resistance and
virulence (8), and both K26 and K56 have a mutation in ompK35 (Table 1). Porin loss is
a well-known mechanism for the acquisition of carbapenem resistance in K. pneu-

TABLE 1 B-Lactamase and porin gene profiles of K. pneumoniae strains used in this study
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Mutation in porin genes

Strain B-Lactamase genes OmpK35 (KPHS_18380) OmpK36 (KPHS_37010)
K26 blagy.12, blapya., bla en.14 1-bp deletion (54/435 nt),® C insertion (398/435 nt) No mutation
K56 blagyy.12, blapya.q, blagenq, 1-bp deletion (54/435 nt), C insertion (398/435 nt) No mutation

ant, nucleotide.
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moniae (9). The presence of a defective ompK35 gene in susceptible strain K26 can be
explained by a previous report where a single deletion of ompK35 (AompK35) had no
significant effect on antibiotic resistance (8). Although both strains have genes for
B-lactamase, they differ in their susceptibility to carbapenem. There was no known
carbapenemase gene present in these clinical isolates. An increase in the meropenem
MIC, from 0.5 ng/ml to =32 ug/ml, was observed in K56 compared with K26.

The acquisition of antimicrobial resistance is attributable to some genetic alterations
that occurred in the resistant strains. To identify genetic variations of the antibiotic-
resistant strains, we conducted whole-genome sequencing for the susceptible strain
(K26) and the resistant strain (K56) and performed a mutation calling analysis using
breseq software (v. 0.33.1) (10), which identifies mutated nucleotide sequences based
on sequence read alignment on a reference genome. We used a two-step procedure of
mutation calling using the K56 genome rather than the K26 genome, because a
completely assembled genome for the K26 is not yet available. First, we aligned
sequence reads from K26 to a completely assembled genome of K. pneumoniae
HS11286 to identify mutations on the K26 genome compared with HS11286 genome.
Then, using the APPLY function of gdtools in breseq software, we applied identified
mutations (described in GenomeDiff format) of K26 to the HS11286 genome to
generate a “pseudo-K26” genome. Alignment of sequence reads from K56 on the
pseudo-K26 genome allowed us to identify 16 deleted genes (representing one large
deletion) and 14 mutated genes in K56 compared with susceptible parent strain K26
(see Table ST in the supplemental material). Both the deleted genes and the mutated
genes are referred to simply as “mutated” genes in this article.

Genomic alterations cause changes in transcriptome profiles in antibiotic-resistant
strains. We measured gene expression levels via RNA sequencing for the same strains.
The raw sequence reads were aligned to the reference genome using STAR aligner (11),
and relative changes in gene expression between the susceptible parent strain (K26)
and the resistant strain (K56) were quantified using DESeq?2 software (12). We found 34
and 7 genes that were upregulated and downregulated significantly (fold change, >4;
P < 0.01), respectively, in the resistant strain (K56) compared with the parent suscep-
tible strain (K26) (Table S2).

Gene set enrichment analysis revealed that the set of 34 upregulated genes in strain
K56 were significantly associated with the GO biological process terms “response to
antibiotics,” “lipid A biosynthetic process,” “lipopolysaccharide (LPS) biosynthetic process,”
“lipid A metabolic process,” “4-amino-4-deoxy-alpha-L-arabinopyranosyl undecaprenyl
phosphate biosynthetic process,” and “lipid metabolic process” (P < 0.01 by Fisher's exact
test; overlap of at least two genes) and were involved in the formation of the outer
membrane and its function. These results may suggest that trajectories of molecular
evolution for the acquisition of a meropenem-resistant strain (K56) in the patient changed
the activity of effector genes, resulting in increased bacterial outer membrane biosynthesis.
Since most antibiotics target intracellular processes, they must be able to penetrate the
bacterial cell envelope (13). In Gram-negative bacteria such as K. pneumoniae, the outer
membrane is mainly composed of LPS, which provides a formidable barrier against xeno-
biotics. Therefore, bacterial cells may often enhance outer membrane formation to counter
antibiotics that decrease membrane permeability.

Network-based strategy to prioritize mutated genes for acquired carbapenem
resistance. As mentioned above, antibiotic-resistant clinical isolates such as K56 usually
contain many genomic alterations, and it is unlikely that all the mutated genes are
involved in the antibiotic resistance. Thus, we need to prioritize the mutated genes to
facilitate the discovery of novel genes for antibiotic resistance. We hypothesized that if
genetic alterations in a gene resulted in antibiotic resistance, the mutations might
cause significant expression changes among the functionally associated genes that
might comprise a subsystem responsible for the acquired antibiotic resistance pheno-
type. Because cofunctional networks connect functionally associated genes (14), we can
represent subsystems as a local subnetwork that is composed of a mutated gene and
its neighbors in the cofunctional network. We may then prioritize the mutated genes
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FIG 1 Schematic overview of network-based prioritization of mutated genes of clinical isolates for antibiotic resistance. Based on the DNA and RNA sequencing
profiles of the isolated resistant strains and a susceptible parent strain, we identified genetic alterations and expression (Exp.) changes for all K. pneumoniae
genes. Using a cofunctional network of K. pneumoniae genes, we extracted local subnetworks (a mutated gene and its neighbor genes) and overlaid them with
expression fold changes. We then measured the significance of the expression changes [log,(fold change)] for network neighbors of each mutated gene by
the use of the two-sample Kolmogorov-Smirnov (K-S) test. The four examples of local subnetworks given are ordered from the top row by the P values
determined by the K-S test.

in accordance with the significance of expression changes in the local subnetworks.
Here, to avoid bias from the different functional effects of the mutations, we did not use
expression changes of the mutated genes for the statistical analysis. We measured the
significance of the expression changes based on log,(fold change) for the local sub-
network of each mutated gene using the two-sample Kolmogorov-Smirnov (K-S) test
(Fig. 1).

Construction of KlebNet for network-based study of K. pneumoniae genes. To
conduct a network-based study of K. pneumoniae genes such as gene prioritization for
the acquired antibiotic resistance, we constructed KlebNet, a genome-scale cofunc-
tional network (14) of K. pneumoniae genes, by machine learning and integration of
diverse types of omics data using Bayesian statistics (Fig. 2). Peer-to-peer relations
between K. pneumoniae genes that were likely to participate in the same biological
process were inferred by the following approaches: cocitation (15, 16) of K. pneumoniae
genes across PubMed abstracts, mutual association between protein domain profiles
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FIG 2 Overview of KlebNet. (A) Network construction by cofunctional link inferences from diverse types of omics data and species and their integration.
(B) Assessment of cofunctional links of KlebNet and individual component networks based on proportions of gene pairs annotated by same KEGG pathway
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TABLE 2 Thirteen component networks of KlebNet?

mSystems’

No. of No. of
Code Description genes links
KP-CC Inferred links by cocitation across PubMed Central articles for K. pneumoniae biology 504 5,505
KP-DP Inferred links by correlation of protein domain profiles of K. pneumoniae coding genes 3470 17,402
KP-GN Inferred links by neighborhood of K. pneumoniae orthologs in bacterial genomes 4,533 94,499
KP-PG Phylogenetic profiling and coinheritance patterns of K. pneumoniae ortholog genes across organisms 2,492 44,496
EC-CC Associalogs of inferred links by cocitation across PubMed Central articles for E. coli biology 1,641 30,464
EC-CX Associalogs of inferred links by coexpression across gene expression profiles in the GEO database for E. coli 2946 42,489
EC-LC Associalogs of bacterial protein-protein interactions derived from literature curation of small-scale analysis for E. coli 646 840
PA-CC Associalogs of inferred links by cocitation across PubMed Central articles for P. aeruginosa biology 1,187 12,181
PA-CX Associalogs of inferred links by coexpression across gene expression profiles in the GEO database for P. aeruginosa 1,433 6,356
SC-CC Associalogs of inferred links by cocitation across PubMed Central articles for S. cerevisiae biology 495 4,294
SC-CX Associalogs of inferred links by coexpression across gene expression profiles in the GEO database for S. cerevisiae 630 9,513
SC-LC Associalogs of bacterial PPI derived from literature curation of small-scale analysis for S. cerevisiae 435 896
BA-HT Associalogs of bacterial PPl derived from high-throughput data of E. coli, S. aureus, and M. pneumoniae 2,415 23,493
KlebNet Integrated network 4,674 160,450

aKP, K. pneumoniae; EC, E. coli; PA, P. aeruginosa; SC, S. cerevisiae; BA, multiple bacterial species; CC, cocitation; DP, domain profile; GN, gene neighborhood; PG,

phylogenetic profiles; CX, coexpression; LC, literature-curated protein-protein interactions; HT, high-throughput protein-protein interactions.

(DP) (17) between K. pneumoniae genes, association of genomic context information
between K. pneumoniae genes by gene neighborhood (GN) (18), and phylogenetic
profiles (PG) (19, 20). In addition to the information derived from K. pneumoniae genes,
we also inferred functional links by orthology-based transfer of cofunctional or protein-
protein interactions from other microbial species (21), including Escherichia coli, Pseu-
domonas aeruginosa, Saccharomyces cerevisiae, Mycoplasma pneumoniae, and Staphy-
lococcus aureus. We were able to construct 13 networks from various data sources
(Table 2). Those 13 component networks were then integrated into a single network by
the use of a Bayes statistical framework (22). Methods of inferring cofunctional links
from each data source are described in Materials and Methods. The KlebNet integrated
network covers approximately 88% of the 5,316 coding genes of K. pneumoniae strain
HS11286 with 160,450 cofunctional links. Information regarding the 13 component
networks and KlebNet is available from a public Web server (www.inetbio.org/klebnet).

Although KlebNet performs network searches on the basis of a K. pneumoniae subsp.
pneumoniae HS11286 gene network, the network search is also compatible with four
other K. pneumoniae strains of major importance: NTUH-K2044, MGH 78578, KCTC 2242,
and Ecl8. For example, if users submit gene names for strain Ecl8, the webserver uses
orthologous HS11286 strain genes for the network search. All candidate genes are
reported by both H511286 gene names and Ecl8 gene names. For orthologous gene
mapping of major K. pneumoniae strains, we used bidirectional best hits according to
BLASTP (Basic Local Alignment Search Tool for Proteins).

KlebNet is highly predictive with respect to diverse pathways in K. pneu-
moniae. To ensure the efficacy of network-based prioritization of mutated genes, we
assessed the quality of KlebNet. To assess the precision of prediction of cofunctional
gene pairs by KlebNet, we used test data that were independent of those used for
training the network to avoid circularity. We compiled gene pairs from KEGG pathways
(23), independent annotations from UniProt Gene Ontology biological processes
(UniProt-GOBP) (24), and the MetaCyc metabolic pathways (25) that were used for
training KlebNet (see Materials and Methods). Consistent with their independent origin,
the test data derived from KEGG pathway annotations overlapped only 19% of the gene
pairs used for network training. In the network assessment performed on the basis of
the test data, we observed higher precision of cofunctional gene pairs from the
integrated KlebNet than were seen with the component networks derived from indi-

FIG 2 Legend (Continued)

terms, measured for each bin of 1,000 links from the most confident one. (C) Assessment of prediction efficacy of KlebNet based on retrieval rate of known
pathway genes for individual KEGG pathways and random gene sets with the same size, measured by area under the receiver operating characteristic curve

(AUROC) scores.
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vidual data sources, which indicates that integration of diverse omics data effectively
improved the quality of KlebNet (Fig. 2B).

Next, we evaluated the capability of KlebNet to predict pathways in K. pneumoniae
by measuring the efficacy of retrieval of known genes for each KEGG pathway. If genes
known for a pathway are effectively retrieved by network connections to other member
genes of the same pathway, novel genes for the pathway are also likely to be retrieved
by the network. We therefore measured the rate of retrieval of known genes for each
of 93 KEGG pathway terms that have no fewer than five member genes, using receiver
operating characteristic (ROC) analysis. The ROC curve behavior can be summarized as
a score, the area under the ROC curve (AUC), which would be close to 0.5 for a network
of randomly selected genes and would approach 1 for a perfect network. We found that
efficacy of KlebNet retrieval for the KEGG pathway terms was significantly higher than
that for random gene sets (P <2.2e—16 [Wilcoxon rank sum test]) (Fig. 2C). These
results indicate that KlebNet accurately mapped cofunctional links between K. pneu-
moniae genes and would also be able to predict novel genes for a pathway based on
network links to the genes already known to the same pathway.

KlebNet-based prioritization of mutated genes for the acquired carbapenem
resistance. Using the computationally validated cofunctional network of K. pneu-
moniae genes, KlebNet, and the network-based strategy summarized in Fig. 1, we
prioritized mutated genes of the strain with acquired carbapenem resistance (K56).
Mutations may not influence expression levels of all local neighbor genes. Thus, we
sorted the local neighbor genes for each mutated gene by descending order of edge
weight (log-likelihood score [LLS]) and then repeated the K-S test with the cumulative
number of closest neighbor genes from 5 to 100 in increments of 5. For each mutated
gene, we chose a set of neighbor genes with the most significant P value by K-S test.
We excluded genes that were predicted to encode putative prophage tail, sheath, and
capsid proteins from the candidate list because their sequences differ among strains.
For a typical significance threshold (P < 0.05), we were able to obtain 15 candidate
genes that are possibly involved in carbapenem resistance (Table S1).

KlebNet retrieved functional associations between antibiotic resistance and
virulence. The set of 34 upregulated genes in meropenem-resistant strain K56 were
likely to be responsible for the increased antibiotic resistance. Therefore, we refer to the
34 upregulated genes in the meropenem-resistant strains as “positive-resistance”
genes. Because the meropenem resistance genes were significantly enriched for bio-
logical processes involving outer membrane formation, we tested if these genes were
also functionally coherent using a within-group connectivity analysis in KlebNet. To
measure the significance of the within-group connectivity for a given gene set, we
generated a null distribution model of within-group edge counting using 10,000
random gene sets of the same size and examined the rank of the within-group edge
count of the real gene set in the null distribution. As expected, the results reflecting
network connectivity among the meropenem resistance genes were significant
(P < 0.0001 by permutation test) (Fig. 3A), which indicated that KlebNet was highly
predictive for positive modulators of meropenem resistance.

Mutated genes in the meropenem-resistant strains were likely to be potentially associ-
ated with the antibiotic susceptibility of the parent strain (K26). We found that 15 mutated
genes of K56 with significant expression changes in local subnetworks were functionally
coherent as indicated by the significant within-group connectivity in KlebNet (Fig. 3B). Here,
we refer to the group of 15 genes as “negative-resistance genes.”

As expected, there was no overlap of the 34 positive-resistance genes and 15
negative-resistance genes. However, we hypothesized that antibiotic resistance genes
with different modes of action (positive and negative) were still functionally associated
with each other and comprised a cellular subsystem for the regulation of antibiotic
resistance. If so, two groups of genes, a group of 34 genes for positive resistance and
another group of 15 genes for negative resistance, should be significantly connected by
cofunctional links in KlebNet. To measure the significance of between-group connec-
tivity for the given two gene sets, we generated a null distribution model of edge
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FIG 3 Within-group and between-group connectivity in KlebNet for genes involved in carbapenem resistance and virulence. (A) Analysis of
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counts of 10,000 pairs of random gene sets with the same sizes (one set had 34 random
genes and the other set had 15 random genes) and then examined the ranks of
between-group edge counts of two real gene sets in the null distribution. We found
that the data representing functional connections between the positive-resistance and
negative-resistance genes were significant (P < 0.0069 by permutation test) (Fig. 3C)
but not as significant as the data representing within-group connectivity for each mode
of action (see Fig. 3A and B).

Antibiotic resistance is known to be associated with a fitness cost, because reduced
growth rates are often observed in antibiotic-resistant strains (26). The observed phenotypic
association suggests a functional association between the genetic modules for antibiotic
resistance and those for virulence. To model a functional module for the virulence of K.
pneumoniae, we compiled genes from an earlier study that simultaneously screened
thousands of transposon insertion mutants for fitness defects during a mouse lung infec-
tion by high-throughput sequencing (27). In this analysis, fitness defects were represented
by a read count ratio of the inoculum to lung. We selected as “virulence genes” only 59
genes that showed at least 10-fold higher read counts in the inoculum for our analysis
(Table S3). We found that the data from the 59 virulence genes showed significant
connections among those genes (P < 0.0001 by permutation test) (Fig. 3D).

Using these virulence genes, we measured the significance of association between
virulence and antibiotic resistance with either positive or negative mode of action. First,
we examined the gene-based overlap of 59 virulence genes and either 34 genes for
positive resistance or 15 genes for negative resistance. We found no overlap of 15
negative-resistance genes and only a single gene overlap of 34 positive-resistance
genes with the 59 virulence genes. Therefore, the data reflecting the gene-based
overlap could not support the idea of a functional association between antibiotic
resistance and virulence in K. pneumoniae. Alternatively, two functional modules were
found to be associated with each other with respect to functional connections between
genes from different modules. We measured the significance of functional connections
between a module of 59 virulence genes and a module of 34 positive-resistance genes
or a module of 15 negative-resistance genes by using null models of between-group
edge counts generated as described above. We found that both the positive resistance
and negative-resistance modules were significantly connected with the virulence mod-
ule in KlebNet (P < 0.0045 and P < 0.0249, respectively, by permutation test) (Fig. 3E
and F). Therefore, KlebNet was successfully used to retrieve the association between
antibiotic resistance and virulence in K. pneumoniae.

Experimental validation of prioritized mutated genes for carbapenem resis-
tance and virulence of K. pneumoniae. We chose 15 mutated genes with significant
expression changes among the local subnetworks in K56 (P < 0.05 by K-S test) for the
follow-up functional analysis. We were able to complement the meropenem-resistant
strains with only 11 of the 15 candidate genes (see Table S1). In the assay, mutated
genes in the resistant strains were complemented with the intact gene of the suscep-
tible parent strain (K26) to determine the changes in meropenem susceptibility. One
candidate gene, K. pneumoniae HS_33600 (KPHS_33600), showed increased susceptibil-
ity to meropenem as indicated by the presence of an increased inhibition zone
diameter in the disk diffusion assay (Fig. 4A) and by the decreased MIC of meropenem

FIG 3 Legend (Continued)

mSystems’

generated by the use of 10,000 random sets of 34 genes. The horizontal line in the violin plot indicates the median, and the red dot indicates the
within-group edge count for the positive-resistance genes. The P value was determined on the basis of a permutation test. (B) Analysis of
within-group connectivity among negative (—)-resistance genes (15 genes that were mutated in meropenem-resistant strain K56). A significance
test was performed as described for panel A. (C) Analysis of connectivity between 15 negative-resistance genes and 34 positive-resistance genes.
KlebNet edges for within-group connections are indicated by shading in the network. The null model of the between-group edge count was
generated by the use of 10,000 paired random sets, one set of 15 random genes, and one set of 34 random genes. The P value was determined
on the basis of a permutation test. (D) Analysis of within-group connectivity among 59 virulence genes associated with mouse lung infections. A
significance test was performed as described for panel A. (E) Analysis of connectivity between 34 positive-resistance genes and 59 virulence genes.
Significance testing was performed as described for panel C. (F) Analysis of connectivity between 15 negative-resistance genes and 59 virulence

genes. Significance testing was performed as described for panel C.
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A

Parent strain (K56) Complemented strain Parent strain (K56) Complemented strain

FIG 4 Complementation assay for resistant strains performed with KPHS_33600. (A) A meropenem disk diffusion
assay showed an inhibitory zone diameter increase (from 10 to 27 mm) resulting from complementation of K56
with KPHS_33600. (B) A meropenem Etest strip assay revealed that the MICs of K56:ZpUC19 and K56:ZpUC19-
KPHS_33600 were =32 and 0.25 ug/ml, respectively, as indicated by the red arrows. The data were confirmed by
CLSI broth dilution tests. Upon complementation, a 128-fold reduction in the MIC for the resistant strain was seen
as indicated.

in the Etest (Fig. 4B). The results were confirmed using two independent broth
microdilution experiments.

Next, we examined whether the mutated genes could affect fitness using an in vitro
growth assay (26). We observed no differences in growth rates in comparisons between
the parent resistant strain (K56) and the complemented candidates (K56 complemented
with KPHS_33600) in the antibiotic-free media (Fig. 5A). Although the antibiotic resistance
acquired as a consequence of defects of KPHS_33600 did not result in a fitness cost with
respect to their growth in vitro, there could still have been a cost with respect to virulence
(i.e., in vivo fitness). We thus examined the effects on virulence of complementation with
the 11 candidate genes in Galleria mellonella larvae as described in Materials and Methods.
We found that complementation with KPHS_33600 increased the virulence of parent
resistant strain K56 (Fig. 5B). Interestingly, K56 strains complemented with three additional
candidate genes, KPHS_33520 (Fig. 5C), KPHS_33590 (Fig. 5D), and KPHS_35510 (Fig. 5E),
failed to show increased meropenem susceptibility but showed increased virulence. There-
fore, we successfully validated 4 of the 11 tested candidate genes with respect to either
antibiotic resistance or virulence (discovery rate, 36.4%).

DISCUSSION

In this study, we demonstrated the feasibility of our network-based method for
effective identification of genes involved in carbapenem resistance by focusing on
meropenem and virulence. For network-based prioritization of K. pneumoniae genes,
we constructed KlebNet, a genome-scale cofunctional network of K. pneumoniae genes.
We found that KlebNet was highly predictive of genes involved in various KEGG
pathways and in carbapenem resistance and virulence. KlebNet was also used to
explain the fitness cost of antibiotic resistance using significant functional connections
between antibiotic resistance and virulence genes. In the complementation assay of the
11 top candidate genes, we were able to identify 1 novel gene involved in carbapenem
resistance and 4 novel genes involved in the virulence of K. pneumoniae.

To obtain mechanistic clues for the novel genes for the carbapenem resistance and
virulence, we conducted literature surveys. KPHS_33600, required for both carbapenem
resistance and virulence, which was annotated as a putative transmembrane transport
protein by GO biological process annotation, turned out to be homologous to the
genes encoding the major facilitator superfamily (MFS) transporter present in many
bacteria. Although MFS transporters generally work as efflux pumps and their defects
are expected to increase antibiotic susceptibility, mutated KPHS_33600 induced anti-
biotic resistance, and its complementation increased antibiotic susceptibility in our
study. To justify these unexpected observations, we conducted a literature survey and
found multiple studies that previously reported similarly counterintuitive observations.
Deletion of efpA, a putative efflux pump gene of Mycobacterium smegmatis, increased
susceptibility to fluoroquinolones, ethidium bromide, and acriflavine but also de-

July/August 2019 Volume 4 Issue 4 e00202-19

msystems.asm.org 10


https://msystems.asm.org

K. pneumoniae Functional Gene Network

A B, )
€ ©
C 1.54 > 8
S z <, T
c
© 3 6
® 1.4 - K56 » \
a
Q = K56:: ZpUC19 g 4
O o5 == K56:: ZpUC19-KPHS 33600 o
o 2
o
0.0F—Tr—T—T—T—TTT"TT } . y . )
& S 0 i 2 3 H
Time Days
— -»- PBS ©
g - K56:7pUC19 2
s = K56:ZpUCI 9+MEM =
7 =~ K56:2pUC19-KPHS 33520 »
— &= K56::ZpUC19-KPHS 33520 z
s +MEM 9
e &
[0
o o

m

PBS

K56::2pUC19
K56::ZpUC19+MEM
K56::2pUC19-KPHS_35510
K56::2pUC19-KPHS_35510
+MEM

Percent survival

Days

it s

mSystems’

K56::ZpUC19+MEM
K56::ZpUC19-KPHS 33600
K56::ZpUC19-KPHS_33600

K56::ZpUC19+MEM
K56::ZpUC19-KPHS 33590
K56::ZpUC19-KPHS 33590

FIG 5 In vitro and in vivo fitness assays. For the in vitro fitness assay, growth assays were conducted in LB broth at 37°C with continuous shaking
for the two complemented strains (K56:ZpUC19 and K56:ZpUC19-KPHS_33600) (A) along with the parent strain K56 with and without the
ZpUC-19 empty vector, respectively. There were no differences seen between the results determined with the resistant strain and the
complemented strain. For the in vivo fitness assay, G. mellonella larvae were infected with approximately 1 X 106 CFU of bacteria. After 4 h of
infection, meropenem was injected and the larvae were observed for 4 days. Data represent results of comparisons of percentages of survival
between larvae infected by the parent strain (K56) and those infected by strains complemented with (B) KPHS_33600, (C) KPHS_33520, (D)

KPHS_33590, and (E) KPHS_35510. MEM, meropenem.

creased susceptibility to rifamycins, isoniazid, and chloramphenicol (28). Overexpres-
sion of a multidrug efflux pump encoded by cmlA in E. coli caused spectinomycin
hypersensitivity (29). Overexpression of efflux pump protein genes smeDEF and smeX in
Stenotrophomonas maltophilia resulted in decreased aminoglycoside resistance (30, 31).
To date, there has been no clear explanation for these counterintuitive observations.

Next, we conducted a survey of the literature to look for evidence of associations
with virulence for the three genes involved in fitness but not in antibiotic susceptibility.
KPHS_33520 is a putative rRNA large-subunit methyltransferase A gene. The 16S rRNA
methyltransferases encoded by rsml/ and rsmH have been reported to be involved in
virulence in Staphylococcus aureus (32). Although we could not detect significant
homologies between KPHS_33520 genes and Rsml or RsmH proteins using BLASTP
analysis, there could be another rRNA methyltransferase involved in the virulence of K.
pneumoniae. KPHS_33590 is a putative IcIR family transcriptional regulator. KdgR, a
member of the IcIR family, has been shown to be involved in virulence in plant-
pathogenic Erwinia spp. (33). We found significant homology between the KdgR gene
and KPHS_33590 (87% BLASTP sequence identity with an E value of 6.83e—179).
KPHS_35510 is a putative UDP galacturonate 4-epimerase gene. The K. pneumoniae
MGH 78578 strain has a gene named uge (for “UDP galacturonate 4-epimerase”) which
has been shown to be essential for virulence in septicemia and pneumonia animal
models (34). Furthermore, KPHS_33590 is an uge homolog (98% BLASTP sequence
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identity with E value = 0). In summary, we were able to identify literature evidence
supporting the idea of associations of virulence with all three novel K. pneumoniae
genes for in vivo fitness.

Given that cofunctional gene networks are available for many pathogenic microbial
species, application of the proposed network-based method for prioritizing mutated
genes from clinical isolates of other species should be straightforward and will facilitate
our understanding of other human-pathogenic microbes. In addition, the KlebNet web
server (www.inetbio.org/klebnet) would be a useful resource for the study of other
biological processes involved in host-pathogen-drug interactions of K. pneumoniae.

MATERIALS AND METHODS

Bacterial selection, identification, and susceptibility testing. Two K. pneumoniae clinical isolates,
K26 and K56, used in this study were selected from a collection of bacteria maintained in the laboratory
of Severance Hospital, Seoul, South Korea. The strains were isolated from a single patient who had
undergone meropenem treatment. K26 was collected before the meropenem treatment, while K56 was
collected after the treatment. The strains were identified using a matrix-assisted laser desorption
ionization-time of flight mass spectrometry (MALDI-TOF MS) Biotyper CA System (Bruker Daltonik
GmbH). The clonal relatedness was determined using pulse-field gel electrophoresis as previously
described (35). The meropenem MIC was determined by the Etest and by CLSI disk diffusion and broth
dilution protocols. P. aeruginosa ATCC 27853 and E. coli ATCC 25922 were used as control strains as
recommended by the CLSI guidelines. The results were confirmed using three independent experiments.

DNA and RNA sequencing for K. pneumoniae clinical isolates. For genomic sequence analysis of
two clinical strains, genomic DNA was extracted using a Wizard genomic DNA purification kit (Promega,
Madison, WI, USA). Library preparation was carried out using a TruSeq Nano DNA sample preparation kit
(Ilumina, San Diego, CA, USA) per the manufacturer’s protocol, and the sequencing was carried out by
using an lllumina-MiSeq sequencing platform (2 300-bp paired-end protocol).

For gene expression analysis, we isolated RNA by growing the clinical isolates to the logarithmic
phase in high-osmolality LB broth at 37°C and extracting the RNA using an RNeasy minikit (Qiagen
GmbH, Hilden, Germany). On-column DNA digestion was carried out using an RNase-free DNase kit
(Invitrogen, Carlsbad, CA, USA). RNA concentrations were measured using a NanoDrop spectrophotom-
eter (Thermo Fisher Scientific, Waltham, MA, USA). Sequencing library preparation was carried out using
a TruSeq stranded total RNA library preparation kit (Illumina, San Diego, CA, USA). We performed RNA
sequencing for two biological replicates using an lllumina NextSeq 500 sequencer (lllumina, San Diego,
CA, USA) with ~25 million paired-end reads.

Genome data and gold standard cofunctional gene pairs used for network construction. We
developed a cofunctional network for the K. pneumoniae HS11286 strain, which has 5,867 genes. To
include only protein-coding genes for the network, we excluded 88 RNA genes and 463 plasmid genes,
leaving 5,316 protein-coding genes for the network construction. We constructed cofunctional networks
based on machine learning approaches, which require gold standard (GS) data for model training. We
compiled GS cofunctional gene pairs from the following two independent biological processes or
pathway annotations: UniProt Gene Ontology biological processes (UniProt-GOBP) (24) and MetaCyc
metabolic pathways (25). GS-positive gene pairs were generated by pairing genes annotated by the same
biological process or pathway terms. Biased gold standard data can lead to biased network training (36).
Thus, we excluded UniProt-GOBP terms that have more than 100 member genes as well as MetaCyc
superpathway terms. We compiled 19,899 and 6,989 gene pairs that share annotations by the UniProt-
GOBP and MetaCyc pathways, respectively, and then combined them to generate 25,526 GS-positive
gene pairs, which covered 2,139 K. pneumoniae genes (40.2% of coding genes). To generate negative
gold standard data, we used pairs of genes that were annotated by either the UniProt-GOBP pathway or
the MetaCyc pathway but that did not share any annotation terms, which resulted in 2,261,065
GS-negative gene pairs.

Benchmarking and integrating cofunctional links. Cofunctional links inferred from different data
sets initially come with data-intrinsic scores. These data-specific scores need to be recalibrated to be
integrated with those from other data sets. Therefore, we previously developed a log-likelihood score
(LLS) (22) based on a Bayes statistics framework. LLS values were calculated by the following equation:

LLS = ln(P(L|D)/P( —L|D) )

P(L)/P(—=L)

where, for a given datum D, P(L|D) and P(=L|D) represent the probabilities of the presence of GS-positive
and GS-negative links, respectively, and P(L) and P(—L) represent the probabilities of the presence of all
GS-positive and GS-negative links, respectively. To avoid overfitting problems, 0.632 bootstrapping was
used. This method is based on subsampling of the training data set with replacements to generate test
data sets as described in our previous work (22). The final LLS value was equal to 0.632 X LLS,., + (1 -
0.632) X LLS,aining-

Since cofunctional links were found from various sources, a functional link was found to be supported
by extensive evidence with respect to LLSs. However, the data were not independent, so the weighted
sum (WS) method that was previously developed to take into account the correlation among multiple
pieces of evidence were used (36). The WS is defined as follows:

test
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where L indicates LLS, L, represents the highest LLS among all supporting pieces of evidence, and L,
represents the remaining LLSs from data supporting the link ordered by rank i. D and T represent free
parameters for the weight factor and LLS threshold, respectively.

Cofunctional links between K. pneumoniae genes inferred from cocitation (KP-CC). A cocitation
approach (15, 16) was utilized to identify functional links between K. pneumoniae genes from PubMed
articles. First, 3,420 Medline abstracts that included either “Klebsiella pneumoniae” or “K. pneumoniae”
were collected. Then, the significance of the presence of two K. pneumoniae genes (identified by the use
of either systematic or common names) that appeared together in the same article was calculated by the
one-tail Fisher’s exact test. Inferred cofunctional links were ordered by decreasing -log(P value), and then
the LLS was calculated for every bin of 1,000 gene pairs from the most significant one. We found a
sigmoid regression model for the relationship between —log(P value) and LLS and then assigned LLS
values for individual gene pairs using the regression model.

Cofunctional links between K. pneumoniae genes inferred from similarities in protein domain
profiles (KP-DP). Protein domains are functional and evolutionary units of proteins. Therefore, proteins
that are functionally associated tend to share similar domains. We previously developed a method to
infer cofunctional links between coding genes based on similarities between domain profiles (17).
Domain occurrence profiles of proteins were generated based on data in the InterPro database (37). The
similarities of domain profiles between proteins were measured based on weighted mutual information
(WMI) (17), in which rarer domains were weighted more for calculating the mutual information (M) score.
Next, we found the nonlinear regression between WMI and LLS, which was later used to assign LLS values
to individual gene pairs.

Cofunctional links between K. pneumoniae genes inferred from phylogenetic profiles (KP-PG)
and gene neighborhood (KP-GN). Cofunctional links between K. pneumoniae genes were inferred
based on two types of genomic context information: phylogenetic profiles (PG) and gene neighborhood
(GN). In this study, we used a total of 1,747 (122 archaea and 1625 bacteria) genomes.

During speciation, functionally associated genes are likely to be retained together or lost together.
Therefore, cofunctional links can be inferred from the coinheritance pattern across many species. We first
performed a BLASTP search of all K. pneumoniae protein-coding genes against 1,747 genomes. Phylo-
genetic profiles of K. pneumoniae protein-coding genes were built on the basis of the best hit score and
the —log(E value) for each genome. The association of two phylogenetic profiles was then measured by
calculating the MI score as described in our previous work (20). We previously found that we were able
to construct a better cofunctional network using phylogenetic profiles that are specific for each domain
of life (Archaea, Bacteria, and Eukarya) (19). Two networks were inferred from a profile based on 122
archaeal genomes and from a profile based on 1,625 bacterial genomes and were then integrated into
a single network.

We also inferred the cofunctional relationships between genes based on their genomic neighbor-
hood. For example, genes encoded in bacterial operons are cotranscribed and generally participate in
the same biological process. Even eukaryotic genes, orthologs of which have neighborhood relationships
in bacterial genomes, tend to be functionally associated. We inferred cofunctional links based on the
gene neighborhood across the 1,747 archaeal and bacterial genomes with two complementary measures
of gene neighborhood: distance-based measures and probability-based measures (18). In addition, a
metagenome-based gene neighborhood method (38) was used for KlebNet. We utilized contig se-
quences from the Human Microbiome Project (39) and TARA Ocean Project (40). All protein-coding genes
of K. pneumoniae were aligned to the contigs by the use of DIAMOND software (41).

Cofunctional links between K. pneumoniae genes by orthology-based transfer from other
species (associalog). Because pathways are conserved between species, we can infer functional links
between genes by transferring the functional association between orthologous gene pairs from other
species. We previously named such evolutionarily conserved gene pairs “associalogs” (21). We inferred
cofunctional links between K. pneumoniae genes from cofunctional networks previously constructed for
three other microbial organisms: Escherichia coli (EcoliNet) (42), Pseudomonas aeruginosa (Pseudomon-
asNet) (43), and Saccharomyces cerevisiae (YeastNet) (44). We could transfer cofunctional links based on
the cocitation between E. coli genes (EC-CC), P. aeruginosa genes (PA-CC), S. cerevisiae genes (SC-CC);
links based on coexpression (45) between E. coli genes (EC-CX), P. aeruginosa genes (PA-CX), and S.
cerevisiae genes (SC-CX); and links based on literature-curated protein-protein interactions between E.
coli genes (EC-LC) and P. aeruginosa genes (PA-LC). In addition, we inferred functional links from
high-throughput protein-protein interactions between Mycoplasma pneumoniae genes and Staphylococ-
cus aureus genes. We mapped orthologous relationships between genes using Inparanoid software,
which takes in-paralogs into account (46).

Complementation assay. To determine whether the putative candidates had any role in mero-
penem resistance, the genes were complemented using ZpUC19 plasmid (a gift from Y. Suzuki at the J.
Craig Venter Institute, USA) (47). The plasmids were then introduced into electrocompetent cells as
previously described (48), and the electroporated cells were recovered in low-salt LB broth (Sigma-
Aldrich, St. Louis, MO, USA) and selected on low-salt LB agar plates carrying 1,000 ug/ml of zeocin. The
complemented strains were confirmed using M13-pUC19_F and M13-pUC19_R primers. The comple-
mented strains were then grown overnight in 5 ml of LB broth at 37°C with continuous shaking. On the
following day, the strains were inoculated into fresh LB broth, and the optical density at 600 nm (ODy,,)
was measured at 0, 1, 2, 3, 4, 5, 6, 8, 12, and 24 h. The values were plotted using GraphPad Prism 5.01
for Windows (GraphPad Software Inc., San Diego, CA, USA). The experiments were carried out in triplicate.
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Fitness assay in Galleria mellonella larvae. G. mellonella larvae were purchased from SWorm Ltd.,

South Korea, and were used within 5 days of receipt. The bacterial strains were grown in low-salt LB broth
for 3 h and centrifuged at 4,000 X g for 20 min at room temperature. The obtained pellets were washed
once and resuspended in phosphate-buffered saline (PBS) buffer to obtain the required concentration.
The larvae were injected with 10 ul of the bacterial cells (ODg,, of 1.0) into the last left proleg using a
Hamilton syringe and incubated at 37°C inside a petri dish. Control strains were maintained by injecting
10 ul of PBS buffer. Rates of survival of the larvae were recorded every 24 h up to 4 days. Similarly, at 4-h
postinfection, the larvae were injected with a single dose of 60 mg meropenem/kg of body weight, and
the survival rate was monitored every 24 h up to 4 days.

Data availability. The gene expression data sets generated during the current study are available in

the Gene Expression Omnibus (GSE115539). Genome sequencing short-read data for K26 and K56 strains
were deposited in SRA (SRP150097).

SUPPLEMENTAL MATERIAL

mSystems.00202-19.

TABLE S1, XLSX file, 0.01 MB.
TABLE S2, XLSX file, 0.3 MB.
TABLE S3, XLSX file, 0.1 MB.
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