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Abstract

Successful extensions of protein-folding energy landscape theory to intrinsically disordered 

proteins’ (IDPs’) binding-coupled-folding transition can enormously simplify this biomolecular 

process into diffusion along a limited number of reaction coordinates, and the dynamics 

subsequently is described by Kramers’ rate theory. As the critical pre-factor, the diffusion 

coefficient D has direct implications on binding kinetics. Here, we employ a structure-based model 

(SBM) to calculate D in the binding–folding of an IDP prototype. We identify a strong position-

dependent D during binding by applying a reaction coordinate that directly measures the 

fluctuations in a Cartesian configuration space. Using the malleability of the SBM, we modulate 

the degree of conformational disorder in an isolated IDP and determine complex effects of 

intrinsic disorder on D varying for different binding stages. Here, D tends to increase with disorder 

during initial binding but shows a non-monotonic relationship with disorder in terms of a 

decrease-followed-by-increase in D during the late binding stage. Salt concentration, which 

correlates with electrostatic interactions via Debye–Hückel theory in our SBM, also modulates D 
in a stepwise way. The speeding up of diffusion by electrostatic interactions is observed during the 

formation of the encounter complex at the beginning of binding, while the last diffusive binding 

dynamics is hindered by non-native salt bridges. Because D describes the diffusive speed locally, 

which implicitly reflects the roughness of the energy landscape, we are eventually able to portray 

the binding energy landscape, including that from IDPs’ binding, then to binding with partial 

folding, and finally to rigid docking, as well as that under different environmental salt 

concentrations. Our theoretical results provide key mechanistic insights into IDPs’ binding–

folding that is internally conformation- and externally salt-controlled with respect to diffusion.

Graphical Abstract

The topography of binding energy landscape of intrinsically disordered protein is hierarchically 

heterogeneous and modulated by conformational disorder and salt concentration.
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1 Introduction

The energy landscape theory has become a standard framework for our mechanistic 

understanding of protein folding over the last three decades1,2. One remarkable postulate 

derived from the energy landscape theory is that despite the extreme complexity of the high-

dimensional protein-folding process, which involves the intricate self-organization of 

hundreds or thousands of atoms, folding can be effectively described by a few (usually one 

or two) important collective reaction coordinates3. By means of such enormous 

simplifications, protein folding can be significantly simplified as a diffusive process along a 

limited number of coordinates. The low-dimensional free energy projection approach has 

been widely demonstrated to be effective in theory4, simulations5–7, and experiments8,9. The 

kinetics from this lowdimensional diffusive protein-folding model can be described by the 

Kramers’ rate theory10,11, where the stochastic kinetics is determined exponentially by the 

thermodynamic free energy profile and a diffusion coefficient D as the pre-exponential 

factor in a diffusive dynamics formalism2.

Quantifying the thermodynamic protein-folding free energy landscape experimentally has 

always been a challenging problem. Nevertheless, it can be plausibly achieved by carefully 

fitting the thermodynamic differential scanning calorimetry (DSC) thermogram to one-

dimensional representations of folding free energy landscapes12 or by analyzing the single-

molecule (SM) spectroscopy trajectories along particular relevant reaction coordinates13,14. 

However, measuring D is more elusive in experiments. The recently developed SM Förster 

resonance energy transfer (FRET) experiment technique seems to be a promising approach, 

by which D at the free energy barrier top can be inferred by directly comparing the folding 

and transition path times, as these two critical kinetic quantities depend differently on the 

thermodynamic barrier height15. In addition, D at the unfolded states can be estimated by 

probing the reconfiguration time based on the autocorrelation function of the end-to-end 

distance measurements16. Increasing experimental evidence implies that D is position-

dependent during protein folding17, but it is still technically challenging in experiments to 

acquire reliable measurements of D along the folding process. Recent SM force 

spectroscopy experiments have underlined the difficulties in measuring D, because the 

inherent artifacts led by the handle linkers and probes in force spectroscopy experimental 
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apparatus can signficiantly affect the results of D18,19. As an informative complement, 

molecular dynamics simulations clearly show that D is highly configuration-, coordinate- 

and temperature-dependent and may have remarkable impacts on the protein-folding 

process15,20–22.

D has been established to be critically influential to the folding kinetics in terms of rate or 

flux23. One pronounced demonstration is to possibly shift the position of the kinetic 

transition state and barrier height22,24–29. Such implications in kinetics may have significant 

impacts for fast-folding proteins that often inherently possess marginal thermodynamic 

barriers. In this case, the folding rate is close to the “speed-limit”30, which is primarily 

controlled by the diffusion. In addition, the pre-factor of the diffusive chain dynamics from 

Kramers’ theory can be interpreted as an incorporation of the solvent external viscosity and 

protein internal friction31,32. The latter is directly related to the protein intrinsic diffusion 

coefficient, which is embedded in the roughness of the folding energy landscape4,33. It 

therefore provides a practical strategy to infer the topography of the energy landscape by 

measuring the protein internal diffusion coefficient16.

Intrinsically disordered proteins (IDPs), which lack a stable three-dimensional structure 

isolated in solution, often (not always) undergo a “binding-coupled-folding” transition 

during their functioning process34–39. Recent experimental developments on measuring the 

internal friction of unfolded chains16,40–42 have significantly improved our understanding of 

IDPs’ intra-chain conformational dynamics. However, it is still a challenge to extend it to the 

binding process because of the anticipative difficulties that seemingly come along with the 

complex coupled binding– folding transition. From kinetic aspects, the most prominent 

functional advantage of IDP may be adequately seizing the “flycasting” mechanism, which 

can accelerate the binding process by increasing the capture radius through flexibility43. 

However, it is unclear how the conformational disorder impacts the diffusion at the late 

binding stage, where the coupled-folding often occurs concomitantly.

By quantifying the binding energy landscapes through molecular simulations44,45, we found 

that introducing conformational disorders into the dissociative proteins increases the degree 

of funnelness of the binding energy landscape, intriguingly through decreasing the 

roughness of the binding energy landscape. The results uncovered an unprecedented effect 

of conformational disorder on IDPs’ binding, wherein flexibility can accelerate the diffusive 

binding dynamics by smoothing the binding energy landscape surface. It is worth noting that 

previous approaches calculated the average of the roughness based on the overall topography 

of the energy landscape, taking no account of the heterogeneity at different hierarchical 

layers of the energy landscapes44–46; thus, they lack a description of the local diffusive 

dynamics at specific stages during binding. Because D encodes information about the energy 

landscape roughness, stepwise measuring D along IDPs’ binding–folding process can 

complement the quantification of the energy landscape and finally solidify our 

understanding of IDPs’ binding–folding from an energy landscape point of view.

Here, we implemented coarse-grained structure-based models (SBMs) to investigate the 

diffusive binding dynamics of an IDP prototype47,48. Given their validity and computational 

efficiency for investigating protein folding, SBMs have been successfully extended to study 
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IDPs’ binding-coupled-folding49–52, relying on the hypothesis that binding occurs on a 

funneled binding energy landscape48. We found that the binding D is strongly position-

dependent along the binding process by applying a reaction coordinate that directly 

measures the fluctuations in Cartesian configuration space. D in general decreases when 

approaching bound states, similar to the protein-folding case16,27,28,40,53. The binding D is 

correlated to the folding or collapsed degree in IDP, while the conformational disorder 

smooths the initial diffusive binding but impedes the diffusive formation of the binary 

complex in the last stage to a moderate degree. Electrostatic interactions are found to play a 

dual role with positive and negative effects on diffusion at the transition and post-transition 

stage. Finally, with quantitative knowledge of D as the binding process progresses, we are 

able to gain profound insights into the topography of the energy landscape for IDP binding.

2 Materials and methods

2.1 Structure-based models

We use SBMs to explore the binding-coupled-folding of a well-studied IDP system that 

includes the phosphorylated kinase inducible domain (pKID) of the cAMP response 

element-binding (CREB) protein, which is an IDP when isolated in solution54, and the KIX 

domain of the coactivator CREB-binding protein (CBP), which is a natively structured three-

helix bundle protein55,56 (Figure S1, ESI†). Here, we utilize the SBM at the one-bead Cα 
level, initially taking only into account interactions in the native structure; thus, the folding–

binding process is significantly accelerated in the SBM simulation at the cost of completely 

removing the non-native interactions. A typical potential of the plain SBM can be expressed 

as follows47:

VSBM
(KIX, pKID, pKID − KIX) = VBond + V Angle + VDihedral + VNative + VNon − native

, where the first three terms describe local interactions, including bond stretching, angle 

bending, and dihedral rotations; the last two terms are non-local interactions, including 

native variant Lennard-Jones (LJ) interactions and non-native purely volume-repulsive 

interactions47. The native contact map is built using the Contacts of Structural Units (CSU) 

software57, which generates the numbers of intra-chain contacts for KIX and pKID (159 and 

25), as well as the number of inter-chain contacts between KIX and pKID (50). The default 

parameters widely applied in previous research44,48,50, are used here, unless explicitly 

specified.

To describe the binding process, we use the fraction of native contacts (Q) as a reaction 

coordinate. Q has been found to be an ideal reaction coordinate in SBM simulations to 

capture the transition states and distinguish native and non-native states58. To make Q 
continuous, we instead used a switching function that is included in the PLUMED 

software59: for rij ≤1.2rij0, Q=1, while for rij >1.2rij0, Q decays smoothly with the following 

expression:
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Q = 1 − tanh(
ri j − 1.2ri j0

rs
)

, where rs controls the steepness of the decaying function and is usually set to 0.01 nm. We 

have further normalized Q by dividing the number of contacts in the native structure to make 

Q be in the range from 0 (completely non-native) to 1 (fully native). To describe different 

dynamics, different parts of Q are used; for example, QF is used for pKID’s folding and QB 

is used for pKID-KIX binding.

As an alternative coordinate, we also introduce dRMS 60, which is defined as the difference 

in the distance rij between Npairs native pairs

dRMS = 1
N pairs

∑
i < j − 3

ri j − ri j0

2

, to measure the native similarity of folding. dRMS is equal to 0 for the native structure and 

increases with unfolding. dRMS preserves the magnitude of Cartesian space and is in units of 

length (nm here).

Upon binding, pKID undergoes a large-scale folding transition to form two perpendicularly 

placed helical structures (αA and αB), connected by a post-translational phosphorylated 

Serine13355. To achieve different folding degrees for pKID in isolated states, a pre-factor 

(α) is applied to the dihedral and native LJ potentials in the SBM potential of pKID (VSBM
pKID)

(Figure S9, ESI†), as was previously used to control the conformational flexibility of IDP in 

SBM simulations51,61,62.

To investigate the effects of salt concentration, an additional electrostatic potential, modeled 

by Debye-Hückel theory, is added to the aforementioned plain SBM with the following 

expression:

VEle = KCoulombB(κ)∑
qiq jexp −κri j

εrri j

, where KCoulomb is a constant, B(κ)≈1 in dilute solutions, qi is the point charge of the 

residue i, εr is the dielectric constant, and κ is the reciprocal of the Debye radius, which is 

directly related to the environmental salt concentration. To simplify, only Lysine and 

Arginine are modeled to take one positive charge, and Glutamic and Aspartic acids, as well 

as the phosphorylated serine, are modeled to take one negative charge. The typical 

parameters used in the Debye-Hückel model in SBM simulations can be found 

elsewhere63–66. We have re-scaled the strength of LJ and electrostatic interactions for the 

oppositely charged residues that already form the native contacts to have a reasonable 

energetic balance63 (Figure S11, ESI†).
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All simulations are performed using Gromacs (Version 4.5.7)67 following the standard 

protocol proposed by SMOG web tools68. Reduced units are used, so the time, mass, and 

energy scales are set to 1, except that the length scale is in units of nm68. The temperature is 

converted to energy units by multiplying by the Boltzmann constant. A Langevin dynamics 

with time step 0.0005 is applied. The friction coefficient is set to 1.0. All non-local 

interactions are cut-off at 3.0 nm. A periodic cubic box with dimensions of 10 nm × 10 nm × 

10 nm is used to generate an effective concentration of molecules of 1.66 mM (only one 

pKID and KIX are placed in each box). For each replica-exchange molecular dynamics 

(REMD) simulation69, 24 replicas are used, with a temperature range basically covering the 

binding–folding transition temperature, and the neighbor replica attempts to exchange every 

2000 steps. The Weighted Histogram Analysis Method (WHAM) is then used to collect the 

data for all temperatures and generate the free energy landscapes70.

The transition state ensembles are characterized by calculating the conditional probability 

p(TP|x) for the system on a transition path along the reaction coordinate x with Bayesian 

expression71,72:

p TP x = p x TP p TP / peq x

, where p(x|TP) and peq(x) are the probabilities of the system with x being at the transition 

path and equilibrium ensemble, respectively; p(TP) is the probability of the system being on 

a transition path. In principle, the highest probability for the transition state lay along the 

transition path. If p(x|TP) is able to reach the theoretical maximum (0.5), x can be regarded 

as a good reaction coordinate to describe the system diffusion process. To calculate p(TP|x), 

six independent long constant-temperature simulations (1×109 steps) starting from different 

dissociative conformations are performed. All trajectories are then collected and a total of ~ 

1100 transitions are observed by monitoring the (un)binding along either dRMS−B or Q 
reaction coordinates. This good sampling, especially on the transition path, provides reliable 

estimation of p(TP|x).

2.2 Diffusion coefficient calculations

We use restraining molecular simulations to calculate the diffusion coefficient along the 

binding reaction22,24–26,73,74. The biasing potential is implemented with a harmonic 

potential centered at a set interested binding point x with strength Kx, where x is the reaction 

coordinate. Here, we use binding dRMS−B instead of Q as the reaction coordinate because Q 
preserves 0 constantly at unbound states, leading to difficulty calculating the D there. By 

fulfilling a quasi-harmonic diffusive dynamics approximation, the coordinate-dependent 

diffusion coefficient (D(dRMS−B)) can be calculated as:

D dRMS − B =
ΔdRMS − B

2

τcorr dRMS − B
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, where ΔdRMS − B
2  is the mean-squared fluctuation in dRMS−B, and τcorr(dRMS−B) is the 

relaxation time for the autocorrelation function of dRMS−B, CdRMS − B
(t). In practice, 

τcorr(dRMS−B) can be estimated by fitting CdRMS − B
(t) to an exponential decay (single or 

multiple) to obtain the relaxation time or by integrating CdRMS − B
(t) based on the knowledge 

that τcorr dRMS − B = ∫ 0
∞CdRMS − B

(t)dt. We use the latter to obtain the relaxation time and 

integrate CdRMS − B
(t) only up to the first zero-crossing73,75. Note that the strength of the 

biasing potential KdRMS − B
 should be high enough to make the landscape locally harmonic, 

fulfilling the need for quasi-harmonic approximation, but should not be too high when the 

underlying topology of the local energy landscape is completely distorted (Figure S6, 

ESI†)22,24–26,74. Practically, the value of KdRMS − B
 is determined by performing a series of 

simulations with different values of KdRMS − B
 and choosing the one from a range when 

D(dRMS−B) is independent of KdRMS − B
, so that D(dRMS−B) can probe the underlying 

landscape, rather than the artificially biasing potential (Figure S6, ESI†). There is another 

alternative way to calculate D using a Bayesian approach20,21,27,28. It has been demonstrated 

that for small dipeptide dynamics and SBM folding, the values of D estimated from these 

two approaches are similar20,21.

Constant long simulations with biasing potential (2 × 108 MD steps for each simulation) are 

performed for each dRMS−B with different strengths of KdRMS − B
. To have sufficient 

statistics for D calculations, each long trajectory is then divided into 100 same-length pieces 

of segment to ensure the starting points to calculate the CdRMS − B
(t) are random and thus the 

resulting CdRMS − B
(t) from different pieces of trajectory segments are irrelevant. We note 

that such post-segmented trajectory (2 × 106 MD steps for each) is long enough to ensure a 

good estimation of τcorr, and then D (Figure S8, ESI†).

The effective free energy is calculated by taking into account the diffusion coefficient 

correction of kinetics with the following expression22,24:

Fe f f dRMS − B = F dRMS − B − kTln D dRMS − B /Du

, where Du is the diffusion coefficient at unbound state, where dRMS−B is sufficiently large 

with no interactions between two protein chains. Here, we choose dRMS−B having a 

thermodynamic free energy minimum equal to 4.00 nm.

The diffusion coefficient D(x) of the system at x is related to the energy landscape roughness 

with the following relationship33,76:
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D(x) = D0exp[−(ΔE(x)/kT)2]

where D0 is the diffusion coefficient in the absence of roughness and ΔE(x) is the energy 

roughness at x. The above expression is valid by assuming the energy roughness is random 

with a Gaussian distribution76, and it gives a direct connection between the diffusion 

coefficient and energy roughness.

The mean D of a certain binding stage can be estimated from integration of D(x):

< D > = ∫ D(x)dx/∫ dx

, where D(x) is the position-dependent diffusion coefficient at reaction coordinate x.

3 Results and discussion

3.1 Diffusion coefficient modulates the binding

Using the SBM, we quantified the free energy landscape along folding and binding reaction 

coordinates at the binding temperature (Fig. 1A and 1B). The binding temperature, 

analogous to the folding temperature, is defined as the temperature when the bound and 

unbound states are equally populated, so it can be practically extracted from the peak of the 

heat capacity curve. Simulations at the binding temperature can provide sufficient sampling 

of (un)binding transition events and are thus conducted in our work. Our results are valid 

based on the assumption that changing the temperature does not qualitatively change the 

binding mechanism, as a universal phase boundary between monomers and oligomers 

appears to exist in different ranges of conditions77. We have also performed the simulations 

at different effective temperatures and salt concentrations and found that the binding 

mechanisms remain similar (See section “Effects of salt concentration on diffusive 

binding”). The free energy landscapes clearly show a coupled folding of pKID with binding 

to its target KIX (Fig. 1A and 1B). In detail, pKID remains unfolded over a broad range of 

conformational fluctuations when it is far away from KIX. Then, in the free energy barrier 

region, pKID initiates binding with anchoring KIX through unfolded conformations. Finally, 

pKID folds with strongly coupled binding after overcoming the barrier. This “binding prior 

to folding” mechanism, deduced from our 2D free energy landscape, is in line with previous 

simulations49,51 and experiments78, serving as the basis for the following investigations of 

the diffusion coefficient.

We then plotted the one-dimensional free energy landscape along binding dRMS−B (Fig. 1E). 

It apparently shows a two-state binding transition, with a barrier located at dRMS−B=1.49 

nm, which appropriately separates the bound (0.01 nm) and unbound states (≥ 4.0 nm) (Fig. 

1C). The barrier heights for binding and unbinding from The thermodynamic free energy 

landscapes are respectively 1.42 kTB and 4.43 kTB. Projection to another well-known SBM-

optimized reaction coordinate QB 58, which is the fraction of native binding contacts, also 

leads to a typical two-state binding process, but the free energy barriers for both binding and 
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unbinding change drastically (5.00 kTB and 2.65 kTB) (Fig. 1D and 1F). Despite such 

differences in the free energy barrier, the positions of transition states that are obtained from 

the thermodynamic free energy landscape and kinetic transition path analyses71,72 (Fig. 1G 

and 1H), which are performed by analyzing hundreds of (un)binding pathways within 

additional constant-temperature simulations, are very similar, based on both of the reaction 

coordinates. This indicates the validity of these two reaction coordinates to identify the 

characteristics of the transition states. In addition, it is interesting to note that dRMS−B 

provides a better description of the binding kinetics because the conditional probability of 

the transition state being on the transition path identified by dRMS−B is greater than that 

found along QB (0.45±0.03 versus 0.35±0.01), and is very close to the theoretical maximum 

0.5. This implies that for IDP binding, dRMS−B, which preserves the fluctuations in Cartesian 

space, seems to be a better binding reaction coordinate than QB, in contrast to protein-

folding cases27.

Because dRMS−B offers a better description of the kinetics than QB does based on the 

transition path conditional probability calculation, D is calculated along dRMS−B within 

restraining simulations. We extracted the values of D(dRMS−B) at KdRMS − B
= 500, when 

D(dRMS−B) roughly remains constant in a range of biasing potential strengths for each 

dRMS−B, and the distributions of dRMS−B are quasi-harmonic (Figure S6, ESI†). With 

quantified D(dRMS−B) (Fig. 2), several interesting insights can be gained: (1) D(dRMS−B) 

almost monotonically decreases as binding proceeds, in line with intuition and experiments 

on protein collapse16. The difference between unbound and bound states is 30-fold, showing 

a strong position-dependent D. (2) The initial slightly increasing D(dRMS−B) from unbound 

states proceeding to transition states (dRMS−B ~ 2 nm) implies that interfacial interactions 

may drive the binding using the “fly-casting” mechanism43. (3) The sharply decrease of 

D(dRMS−B) that occurs immediately after passing the transition states is similar to that 

observed in protein folding, where the formation of a native compact structure may increase 

the local barrier, hindering the diffusive dynamics16,24. (4) The decrease in D(dRMS−B) starts 

synchronously with binding after the transition states, giving a hint that the binding 

transition states are quite loose and the binding collapse may occur after the transition states, 

consistent with the structural analyses of the transition state ensemble (Figure S5, ESI†), 

previous simulations49, and recent experiments79. Furthermore, our findings imply that the 

considerable amount of interfacial disorders, which are retained after binding in terms of 

“fuzziness”80, are capable of facilitating the diffusive dynamics existing in the binding 

complex, as theoretically proposed43 and also observed in protein-protein/DNA recognition 

processes experimentally and computationally81–83.

We are then able to have an effective kinetic free energy landscape by incorporating the 

position-dependent D into the thermodynamic free energy landscape (Fig. 2). The positions 

of transition states obtained from the thermodynamic and kinetic free energy landscapes are 

quite similar, consistent with the results from the transition path analysis (Fig. 1). 

Furthermore, as expected, the effective kinetic free energy remains quite similar to the 

thermodynamic one before the transition state, but changes dramatically after the transition 

state, finally resulting in a rising height shift of 1.85 kTB and right barrier position shift at 

bound states. Therefore, the effective free energy barrier height for binding is almost the 
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same as that obtained in the thermodynamic case, but differs by ~2 kTB in the post-

transition-state regions. This implies that for IDPs with such a binding mechanism, i.e., 

collapsed complex forms after crossing the barrier, the position-dependent D plays a major 

role at the last stage, which falls into the fast inactivated “downhill” regime, where the 

binding kinetics is fully determined by the diffusive dynamics. It would be very interesting 

to see how D influences the binding kinetics and effective free energy landscape when a 

compact transition state ensemble is formed during IDPs’ binding–folding.

3.2 Effects of conformational disorder on diffusive binding

The different degrees of conformational disorder in pKID are realized by changing the pre-

factor α of intra-chain interaction strength in SBMs (Figure S9, ESI†). With α=5.0, pKID is 

almost fully folded, with negligible conformational disorder, while with α=0.1, pKID is 

quite flexible and extended with very few folded conformations. The monotonic relationship 

between the SBM parameter α and structured degree serves as the basis for the following 

investigations of the effects of conformational disorder on D. The two helical segments (αA 
and αB) of pKID were experimentally found to have different propensities for forming 

helical structures at unbound states54. Further calibrating the strengths of intra-chain 

interactions at the corresponding segments in the SBM potential for experimental 

measurements could improve the precision of the current SBM49,51; nevertheless, it was not 

performed in the current work. The uniform and gradual introduction of conformational 

disorder into pKID could help focus on characterizing the general effects of disorder on 

IDPs’ binding62.

We observed a similar tendency for D along dRMS−B compared with that of the default SBM 

parameter (α=1.0) for different degrees of conformational disorder (Fig. 3A). Then, we 

divided the binding process into three stages: the binding state ensemble (BSE), transition 

state ensemble (TSE), and unbinding state ensemble (USE), based on the transition path 

analysis at α=1.0 (Fig. 1). From Fig. 3A, we can see that while approaching the bound state 

(decreasing dRMS−B), D slightly increases at USE, then starts to decrease at TSE, and finally 

decreases sharply at BSE for all degrees of conformational disorder. We applied SBMs with 

a wide range of flexibility-control parameter α, which basically covers binding from 

completely unfolded to partially folded, and finally fully folded, monomers. Therefore, our 

results here imply that such dRMS−B−dependent D behavior, which is also similar to that 

observed in protein folding27,28, may be applicable to general protein-protein binding cases. 

In addition, D(dRMS−B) appears to increase with additional conformational disorder, in line 

with intuition and experimental findings that loosely unstructured conformation favors fast 

diffusion16.

Interestingly, careful examination of the last binding stage within the BSE at low α (high 

degree of folding) shows an increase in D turnover as dRMS−B decreases. This leads to an 

opposite result with respect to the relationship between conformational disorder and 

D(dRMS−B), where a rigid protein chain can diffuse quickly. To quantitatively identify such 

an effect, we calculated the mean D(dRMS−B) for the three typical aforementioned stages and 

also the entire process (WSE) (Fig. 3B). The mean Ds of USE, TSE, and WSE increase 

monotonically with decreasing α. This indicates that as the conformational disorder 
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increases, the diffusion at the unbinding stage, transition stage, and for the whole binding 

process that the protein chain can achieve is faster. However, at the last binding stage (BSE), 

increasing conformational disorder initially decreases the diffusion rate, probably because of 

the boost in local barriers for the energy landscape, led by non-native conformational 

topology. Finally, the conformational disorder increases the diffusion rate because of the 

loose binding, the same result that occurred in other binding stages. Such dual effects of 

conformational disorder on D at different stages point to a complex binding diffusive process 

that the IDP inherently possesses.

To explain the non-monotonic relation between conformational disorder and D, in particular 

at high values of α, we calculated the free energy landscapes and evolution of the two 

helices αA and αB along the binding (Fig. 4). It is interesting to see that the binding 

transition pathways are different at different degrees of conformational disorder. At low α 
(0.1 and 1.0), the two helices intend to bind primarily through two rectangular edges, along 

with an additional intermediate pathway from QBαA ~ 0.2,QBαB ~ 0.0 to QBαA ~ 0.2,QBαB 

~ 0.8. These distinct pathways are separated from each other without apparent connections. 

These two parallel binding pathways were also observed in previous work, when a similar 

SBM approach was applied49. At high α (3.0 and 5.0), many binding pathways emerge that 

can potentially connect the states reciprocally on the free energy landscapes. Such binding 

scenarios, along with different conformational disorders, can also be observed from the 

binding evolution of the two helices to KIX (Fig. 4B). Binding of the two helices starts to be 

distinct after passing the TSE, and at α = 1.0, the differences are the most prominent, with 

binding of αB accomplished prior to that of αA. This is probably due to the fact that αB has 

more binding contacts formed in the native structure than αA does. Decreasing or increasing 

α can modulate the two helices to bind synchronically; however, they have different 

mechanistic factors. At low α, entropy dominates the binding, so the energetic stabilization 

term has less effect on managing the pathway than that in α = 1.0. At high α, the 

stabilization of the binding complex largely comes from the intra-chain energetic term of 

pKID, so the inter-chain interactions become less dominant with respect to control of the 

binding pathway. The binding coupling between the two helices at high α with low 

conformational disorder can lead to multiple binding pathways, which increases the possible 

connections of states on the free energy landscape, facilitating the escape from local 

energetic or topological traps, which directly corresponds to the diffusion coefficient. The 

other factor that increases the diffusion coefficient at a high degree of conformational 

disorder may be contributed by the loose binding complex formed, according to previous 

experiments40–42.

3.3 Effects of salt concentration on diffusive binding

Adding electrostatic interactions into the plain SBM will inevitably introduce non-native 

interactions beyond the repulsive volume term existing in the SBM. Intuitively, the non-

native competing interactions decrease the stability, as also is observed in our simulations 

(Figure S13, ESI†), but realistically may have more complicated impacts on kinetics84. To 

determine how the electrostatic interactions modulate D, we change the environmental salt 

concentration, which controls the length of the Debye radius, thus leading to different 

strengths of electrostatic interactions.
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Binding with electrostatic interactions also leads to a similar tendency of D along dRMS−B 

(Fig. 5A). With different salt concentrations, which lead to different strengths of electrostatic 

interactions, the change in D(dRMS−B) is not significant and the effects seem to vary at 

different binding stages. We then calculated the mean D at different binding stages (Fig. 5B). 

The results show that electrostatic interactions have very little influence on the diffusion rate 

at USE, which corresponds to the completely unbinding stage, but facilitates diffusion at 

TSE, implying that the “flycasting” mechanism may be effective at TSE for diffusive 

binding with long-range steering electrostatic interactions, although they may be non-

native50. At the BSE, where pKID has overcome the barrier accompanying the coupled-

folding occurring in a downhill manner, the electrostatic interactions slow down the binding 

diffusion, mostly because they are formed along with the increasing compactness of the 

binary complex, where the short-ranged nonnative electrostatic interactions will increase the 

roughness of the energy landscape. Finally, the mean rate of diffusive dynamics shows a 

slight increase with increasing electrostatic interactions, as a net gain from compensation 

between TSE and BSE. These findings are similar to those obtained from different 

conformational disorders of pKID and temperatures (Figure S17 and S18, ESI†), implying 

that a salt-dependent diffusion coefficient may persist for general protein-protein binding 

cases.

To explain such salt-dependent diffusive binding dynamics, we further calculated the 

number of non-native salt bridges progressively formed during the binding process (Fig. 6). 

From both the structural characteristic and free energy landscape (Figure S14, ESI†), the 

two helices αA and αB show unsynchronized steps with binding to KIX. The αA helix 

contains more charged residues than the αB helix does. This gives a hint that the 

electrostatic interactions may play more important roles in binding of the αA than the αB 
helix. In Fig. 6, there are more non-native salt bridges formed between KIX and αA helix 

than αB throughout the binding process. In particular, the number of salt bridges formed by 

αA with KIX initially increases in both the USE and TSE stages, then decreases slightly at 

the beginning of the BSE Stage, followed by a sharp increase at dRMS−B ~ 0.5nm, and 

finally decreases to 0 at the completely bound state. The number of salt bridges formed by 

αB simply increases at the USE and TSE stage, and finally decreases in the BSE stage to 0 

at the bound state. At different salt concentrations, stronger electrostatic interactions lead to 

a higher number of non-native salt bridges (Figure S16, ESI†). The distinct dependence of 

salt bridge formation in the two helices can shed light on the explanation of the relationship 

between D(dRMS−B) and the salt concentration. Binding of pKID is steered by the long-

range non-native sparsely formed interactions, which primarily rely on the highly charged 

αA helix in accordance with the “fly-casting” mechanism43 at the USE and TSE stages 

(Figure S15, ESI†), whereby the diffusive binding dynamics is thought to be facilitated. 

When pKID and KIX are close in space to the BSE from dRMS−B ~ 1.0 nm, the αB helix is 

triggered to specifically anchor with KIX through short-range native binding contacts prior 

to the αA helix. This is based on the fact that αB has a larger number of native binding 

contacts with KIX than αA. Therefore, the nonnative salt bridges between the αB helix with 

KIX are weakened. For the αA helix, the native binding shows only a slight change, but the 

number of non-native salt bridges decreases first because the native binding of the αB helix 

aids in eliminating the nonnative interactions. Then, the non-native salt bridge increases, 
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mostly because the non-native interactions between αA and KIX can guide the search for 

binding sites after αB accomplishes the binding (Figure S15, ESI†). Further proceeding, the 

binding of pKID to KIX in the BSE (dRMS−B from ~ 0.5nm to ~ 0nm) mostly relates to a 

slight adaption of the αB helix by native contacts on the surface of KIX to native binding 

sites with further elimination of the non-native salt bridges, as well as native binding of the 

αA helix by breaking the strongly pre-formed non-native salt bridges. This will certainly 

lead to slow diffusive binding dynamics (Figure S15, ESI†). In summary, although the salt 

concentration exhibits little impact on the overall binding diffusion coefficient, it 

manipulates the diffusive dynamics step-by-step during binding by forming periodical 

intermittent non-native salt bridges and heterogeneous binding pathways.

4 Conclusions

One functional advantage of IDPs is that (un)binding is efficiently fast thanks to the inherent 

disorder. To explain this effect, theory has successfully introduced a “fly-casting” 

mechanism43, by which a flexible chain possesses a larger capture radius than a rigid one, to 

facilitate binding at the very beginning stage. The simulations and experiments also have 

unambiguously observed the phenomena of binding acceleration by conformational 

disorder85–88. Previously, the “fly-casting” mechanism was interpreted in terms of free 

energy, where conformational disorder tends to lower the binding energy barrier43, which 

contributes to the exponential term in Kramers’ theory. The pre-factor as diffusion 

coefficient was often ignored. Incorporating the effects of the diffusion coefficient by careful 

assessments of the “fly-casting” mechanism on binding rates has given contradictory results, 

where the influence of the “fly-casting” mechanism on the binding kinetics led by the 

conformational disorder is overestimated61. This occurs because the diffusion of a flexible 

chain is likely slowed down by its extended conformation because of the larger 

hydrodynamic radius38. Based on our quantified D, one may draw another conclusion: as 

from Fig 3, when the two chains are completely dissociative at dRMS−B > 4.0 with QB=0, 

D(dRMS−B) increases monotonically with added conformational disorder. The seeming 

contradiction primarily occurs because dRMS−B reflects the Cartesian coordinates of the 

residues evolved in the binding native contacts. This not only describes the binding process, 

but also captures the intra-chain dynamics. The conformational disorder has more flexible 

dynamics on each residue of the isolated IDP. This may result in a higher diffusion along 

dRMS−B, compared with a rigid chain, where the diffusion of dRMS−B only derives from 

binding.

Nevertheless, the effect of the “fly-casting” mechanism on diffusive binding dynamics is 

faithfully observed within our salt concentration-dependent simulations. The isolated IDP 

has an inherent diffusive characteristic, which is insensitive to ionic strength. However, the 

environment with low salt concentration has a weaker Debye screening effect on 

electrostatic interaction. Thus, the capture radius of the charged protein chain is relatively 

larger than that with high salt concentration. The initially formed electrostatic interactions, 

which are mostly non-specific and nonnative, can drive the two chains close to each other in 

space. This indirectly accelerates the diffusive binding until the transition state stage. 

Therefore, we state that the “fly-casting” mechanism can not only reduce the 

thermodynamic free energy barrier, but can also accelerate local diffusion at the beginning 
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of binding. In general, IDPs hold higher percentages of charged residues than globular 

proteins38,89, and the vicinity of IDP binding interfaces are rich in complementary 

charges90. These facts likely enhance the effects of the “fly-casting” mechanism on IDPs’ 

binding kinetics in practice.

It is still controversial whether the pre-formed structures in IDPs aid or hinder binding91–95. 

From a diffusion perspective, we have addressed the complex non-monotonic role of 

conformational disorder on IDP binding at the last stage, from initial to final complex. A 

large degree of conformational disorder can prevent the orientational restraints and steric 

hindrance as topological frustrations39. This leads to loosely formed or fuzzy complexes80 

that consequently accelerate the local diffusion. Decreasing conformational disorder may 

partition the energy landscape into a handful of disconnected binding pathways, where the 

diffusion is likely hindered by limited directional constraint movements. Further decreasing 

conformational disorder into completely folded proteins, in some cases, boosts the 

possibility that a rigid protein can smoothly slide in the vicinity of the binding sites to 

accomplish docking, particularly when the binding interfaces are extended96. This 

potentially increases the chance of escaping the traps on the energy landscape with the 

emergence of additional pathways. Our results regarding the impacts of conformational 

disorder on diffusive binding reveal an unprecedented complex binding mechanism for 

IDPs.

The quantified position-, disorder-, and salt-dependent diffusion coefficient, which 

inherently encodes the roughness of the energy landscape, provides a practical way to infer 

the topography of the binding energy landscape hierarchically. This moves beyond previous 

investigations44–46, where the roughness was mostly estimated by implicit averaging from 

the overall energy landscape, lacking detail at each layer of the funnel. The topography of 

the energy landscape is quantified by the quantity Λ = δE /(ΔE 2S), where δE, ΔE, and S are 

the average energy gap, roughness, and entropy, respectively. Combined with our previous 

work on quantification of the energy landscape44–46, we are now able to provide a more 

precise portrait of the binding energy landscape (Fig. 7): the roughness at the top of the 

binding funnel is moderate, then with binding proceeding to the middle of the funnel, the 

roughness tends to slightly decrease because of transiently formed attracting intermolecular 

interactions; finally, the roughness increases significantly at the bottom of the funnel when 

the compact binary complex forms. This funnel picture is in accord with the disconnectivity 

graph energy landscape representation of a protein-folding SBM97,98, implying that even a 

native-centric model without any energetic frustration still has remarkable topology-led 

energy roughness, which varies stepwise differently during the binding/folding process.

The increase in intrinsic disorder in binding protein has a distinct influence on increasing 

entropy, but decreasing energy roughness, in modulation of the binding energy landscape. 

This results in a higher Λ, representing a more funneled binding energy landscape45. 

Incorporating current studies based on quantifications of the diffusion coefficient, we 

therefore offer a profound understanding of the roles of intrinsic disorder on modulating the 

binding energy roughness (Fig. 7): a fully unfolded protein with a high degree of 

conformational disorder eliminates the roughness triggered by topological frustrations 

throughout the binding process, portraying a smooth binding energy landscape; decreasing 
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the intrinsic disorder in a protein chain increases the binding roughness at every layer of the 

funnel, where the bottom layer of the binding funnel appears to be more affected as a result 

of the higher topological frustration that the compact complex potentially has; further 

decreasing the conformational disorder continuously increases the roughness at the funnel 

top, but smoothens the bottom of the funnel by means of multiple emerging binding 

pathways that assist to smooth the local topological barriers on the energy landscape. 

Overall, the global roughness of the binding energy landscape monotonically decreases with 

increasing conformational disorder, consistent with our previous work, where a completely 

different approach based on calculation of density of states was applied45.

Electrostatic interactions, which are more common in IDPs than globular proteins38,89,90, 

also have heterogeneous roles in modulation of the topography of the binding energy 

landscape (Fig. 7): removing the ions in the solution increases the strengths of electrostatic 

interactions by eliminating the ionic screening effect. This facilitates diffusive binding by 

smoothing the energy roughness at the middle of the funnel via non-native long-range 

transiently formed electrostatic interactions. Conversely, the nonnative salt bridges formed 

during the approach to the binding complex lead to energetic roughness at the bottom of the 

funnel. Such dual effects of electrostatic interactions on the roughness are compensated 

during the binding process and lead to a slightly decreasing global roughness of the binding 

energy landscape in the end. In addition, electrostatic interactions in IDPs have been found 

to contribute to the stabilization of the binding complex99–101, which can deepen the bottom 

of the funnel and increase the energy gap. Conversely, the intra-chain electrostatic 

interactions of some IDPs, which in particular have high net or bipolar charge, are capable of 

collapsing the conformation of isolated IDPs, depending on the environment65,102–106. 

These collapsed structures in IDPs, either native or non-native, are expected to have distinct 

effects on the energy gap and entropy. This adds baffling complexity into the effects of 

electrostatic interactions on the binding energy landscape, whereby the interpretation seems 

to proceed on a case-by-case basis.

The other advantage of intrinsic disorder in protein recognition is the capability of binding 

with high specificity but low affinity35,36,39,107–109. However, it is always practically 

challenging to measure the specificity, which is conventionally defined as the relative 

affinities between all possible binding targets. We have verified the validity of transferring 

the conventional specificity to intrinsic specificity, which describes the distributions of 

different binding modes and is determined by the energy landscape110–112. Therefore, 

measuring specificity is feasible by quantifying the topography of the binding energy 

landscape. Based on our previous work45, the intrinsic binding specificity is found to 

increase with conformational disorder, along with decreasing energy roughness and 

increasing entropy, while the first factor dominates to eventually increase the degree of 

funnelness of the binding energy landscape. In the current work, we delineate this effect by 

means of the diffusion coefficient, whereby the conformational disorder increases the 

flexibility of the protein chain and therefore leads to dynamic interaction patterns in the 

complex concomitant with multiple binding pathways. This smooths the binding roughness 

and finally results in high binding specificity. By the same token, we can conclude a lower 

specificity for rigid docking than highly flexible binding. However, gradually increasing the 

partially stabilizing or pre-formed structures in IDPs’ isolated states has distinct effects on 
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energy roughness during different binding process, so the specificity of binding is 

anticipated to be complicated to determine and be understood. The difficulty encountered 

here calls for future upgrades or completely new developments of theory, with deduction 

basically relying on each layer of the funnel hierarchically, rather than integrally.

Summarizing, we have addressed the position-, disorder-, and salt-dependent diffusion 

coefficient behavior of IDPs’ binding coupled with folding to targets. Our study has filled 

the gap in current research regarding IDPs, where major efforts are focused/based on using a 

free energy approach. With the quantified diffusion coefficient, the shape of the binding 

energy landscape can be inferred. Our theoretical investigations provide a profound 

understanding of the topography of the binding energy landscape in IDPs’ binding–folding 

and may provide guidance for biophysical experiments regarding the affinity/specificity 

engineering of IDPs by means of the energy landscape.
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Fig. 1. Trajectories, transition path analyses, and free energy landscapes of binding-coupled-
folding of pKID to KIX.
2D binding–folding free energy landscapes are calculated from REMD simulations and 

projected along (A) dRMS−B, QF and (B) QB, QF. dRMS−B is the root-meansquare deviation 

of the distances of binding native contact pairs to those in the native structure, while QB and 

QF are the fractions of binding and folding native contacts for pKID, respectively. The 

typical structures of pKID-KIX are shown corresponding to the indicated binding stages. A 

sample binding trajectory (C, D), 1D free energy landscape (E, F), and transition path 

analyses (G, H) are shown along dRMS−B and QB, respectively. p(TP|x) is the conditional 

probability of being on a transition path, where x is the reaction coordinate. The dashed 

vertical lines in free energy landscapes and p(TP|x) are plotted according to the maximum 

values as an identification of the transition state. The values at the peak of p(TP|x) for 

dRMS−B and QB are 0.45±0.03 and 0.35±0.01, respectively. The transition state locations are 

very similar, according to different identifications of the barrier of free energy landscapes 

and the peak of p(TP|x). In detail, for dRMS−B, the transition states’ dRMS−B are 1.49 and 

1.52 from the free energy landscape and p(TP|x), respectively, while for QB, the transition 

states’ QB are 0.22 and 0.20 from the free energy landscape and p(TP|x), respectively. We 

denote the transition state ensembles that have p(TP|x) higher than 0.30 by gray shadow 

regions. The errors of p(TP|x) are calculated by analyzing different trajectories. A total of 

1108 and 1099 (un)binding transition paths are observed along dRMS−B and Q, respectively. 

Time is in reduced units, dRMS−B is in units of nm, and free energy is in units of kTB, where 

TB is the binding temperature.
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Fig. 2. Position-dependent diffusion coefficient and free energy landscapes.
1D binding thermodynamic (solid line), effective (circles) free energy landscapes, and the 

diffusion coefficient D are plotted along dRMS−B. The insert plot indicates the slight height 

and position shift of the transition state between the thermodynamic and effective free 

energy landscapes. The free energy landscape is obtained from thermodynamic REMD 

simulations, and D is calculated from restraining simulations, at constant binding 

temperature. dRMS−B is in units of nm, and free energy is in units of kTB, where TB is the 

binding temperature. D is in units of nm2/time
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Fig. 3. Diffusion coefficient at different degrees of conformational disorder.
(A) The position-dependent D along dRMS−B. Free energy landscape with default disorder 

parameter α =1.0 at binding temperature is shown with dashed line as a guidance of the 

binding process, which can be further divided into three stages: the binding state ensemble 

(BSE), transition state ensemble (TSE), and unbinding state ensemble (USE), based on the 

transition path analysis shown in Fig. 1E. (B) The ratio between the mean D(dRMS−B) of 

different degrees and default (α =1.0) parameter of conformational disorder for different 

binding stages. “WSE” is an acronym for the “whole state ensemble”.
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Fig. 4. Binding mechanisms at different degrees of conformational disorder.
(A) 2D binding free energy landscapes projecting onto QBαA and QBαB. QBαA and QBαB 

are the fractions of native binding contacts of helices αA and αB of pKID to KIX, 

respectively. The free energy landscapes of α=0.1, 1.0, 3.0, and 5.0 are plotted. The lines in 

each panel illustrate pathways, with thick ones indicating large flux and vice versa. (B) 

Evolutions of binding contacts of helices αA and αB of pKID along dRMS−B. Solid and 

dashed lines are QBαA and QBαB, Respectively, and different colored lines correspond to 

different degrees of conformational disorder. The color of shadows and lines follow the same 

scheme used in Fig. 3A.
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Fig. 5. Diffusion coefficient at different strengths of electrostatic interactions.
(A) The position-dependent D along dRMS−B. Free energy landscape with moderate salt 

concentration CSalt=0.15 M at binding temperature is shown with dashed line as a guidance 

of the binding process (B) The ratio between the mean D(dRMS−B) of different salt 

concentrations and moderate salt concentration (CSalt =0.15M) for different binding stages.
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Fig. 6. Non-native salt bridges and native contact formations of the two helices during binding at 
moderate salt concentration
Csalt = 0.15M. SB is an acronym for “salt bridge”.
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Fig. 7. Scheme illustrating the effects of conformational disorder and salt concentrations on the 
topography of binding energy landscapes.
The deepness, the size, and the roughness of the funnels represent the energy gap, entropy, 

and energy roughness of the energy landscapes, respectively. The single funnel at the top 

shows binding with moderate conformational disorder and low salt concentration (strong 

electrostatic interactions). The three funnels at the bottom show the change according to the 

conformational disorder. Conformational ensembles of pKID are shown on the top of each 

funnel, with the native structure colored blue. The bound complex of pKID-KIX is shown at 

the basin of the funnel, indicating the destination of binding.
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