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•  Background and Aims  Branching is a main morphogenetic process involved in the adaptation of plants to the 
environment. In grasses, tillering is divided into three phases: tiller emergence, cessation of tillering and tiller re-
gression. Understanding and prediction of the tillering process is a major challenge to better control cereal yields. 
In this paper, we present and evaluate WALTer, an individual-based model of wheat built on simple self-adaptive 
rules for predicting the tillering dynamics at contrasting sowing densities.
•  Methods  WALTer simulates the three-dimensional (3-D) development of the aerial architecture of winter 
wheat. Tillering was modelled using two main hypotheses: (H1) a plant ceases to initiate new tillers when a critical 
Green Area Index (GAIc) is reached, and (H2) the regression of a tiller occurs if its interception of light is below 
a threshold (PARt). The development of vegetative organs follows descriptive rules adapted from the literature. 
A sensitivity analysis was performed to evaluate the impact of each parameter on tillering and GAI dynamics. 
WALTer was parameterized and evaluated using an initial dataset providing an extensive description of GAI dy-
namics, and another dataset describing tillering dynamics under a wide range of sowing densities.
•  Key Results  Sensitivity analysis indicated the predominant importance of GAIc and PARt. Tillering and GAI 
dynamics of expt 1 were well fit by WALTer. Once calibrated based on the agronomic density of expt 2, tillering 
parameters allowed an adequate prediction of tillering dynamics at contrasting sowing densities.
•  Conclusions  Using simple rules and a small number of parameters, WALTer efficiently simulated the wheat 
tillering dynamics observed at contrasting densities in experimental data. These results show that the definition of 
a critical GAI and a threshold of PAR is a relevant way to represent, respectively, cessation of tillering and tiller 
regression under competition for light.

Keywords: Cessation of tillering, competition for light, critical GAI, Functional Structural Plant Model, 
L-systems, tiller regression, Triticum aestivum, wheat.

INTRODUCTION

As sessile organisms, plants are shaped by phenotypic plas-
ticity: their response to environmental conditions (Cahill and 
McNickle, 2011; Abley et al., 2016). Light is a major environ-
mental factor affecting plant development through the quantity 
of absorbed photons, which determines the rate of photosyn-
thesis and water transpiration; however, plants have also devel-
oped specific photoreceptors able to sense the spectral quality 
of light, mainly the red: far red (R: FR) ratio and the amount of 
blue light (Smith, 1982). Branching (i.e. the ability to produce a 
new ramification from an axillary bud) is one of the main mor-
phogenetic processes involved in the adaptation of plant archi-
tecture to the environment. In Poaceae, tillers are ramifications 
that initiate from the bottom of the plant and their develop-
ment is strongly affected by the density of neighbouring plants, 
leading to wide variability in the number of tillers produced 
per plant. For cereals, the number of tillers that complete their 
development and bear a spike is a key yield component (Gate, 
1995), and tillering ability is therefore a central trait in breeding 

strategies. Tillering in cereals can be divided into three distinct 
phases: tiller emergence, the cessation of tillering and tiller re-
gression (Porter, 1985; Xie et al., 2016).

The phase of tiller emergence is characterized by two 
aspects: (1) the rate of bud production and (2) the probability 
of bud outgrowth. The emergence of tillers in wheat and barley 
has been shown to be synchronized with that of leaves in the 
main stem: a tiller initiated from the axillary bud of leaf n on 
the main stem has the opportunity to emerge at the emergence 
of leaf n + 2 of the main stem (Masle-Meynard, 1982; Kirby 
et al., 1985). Once a tiller has emerged, it produces buds that 
may initiate a new tiller of a higher rank, and so forth until 
tiller cessation. Despite this synchronization between the emer-
gence of tillers and leaves on the main stem, not all buds lead 
to emerged tillers. The probability of bud outgrowth is a result 
of multiple interactions between plants and the environment 
that can be mediated by changes in internal variables such as 
phytohormones or the trophic status of the plant (for reviews 
see Tomlinson and O’Connor, 2004; Assuero and Tognetti, 
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2010). The synchronism and probability of bud outgrowth have 
been described in plant models following various approaches. 
Some authors have modelled bud outgrowth according to the 
trophic status of the plant [Evers et al. (2010) for spring wheat; 
Luquet et al. (2006) for rice; Mathieu et al. (2009) for trees] 
while other studies are based on an empirical approach using 
fixed probabilities estimated from experimental observations 
(Barillot et al., 2014; Abichou et al, 2018).

The end of the phase of tiller emergence, i.e. tiller cessation, 
may occur when apices turn from vegetative to flowering status, 
although it generally takes place earlier. Variations in light 
quality, which result from the development of the canopy and 
its optical properties, act as photomorphogenetic signals regu-
lating many processes, including tillering (Ballaré et al., 1987, 
1990; Casal et al., 1990; Smith et al., 1990; Gautier and Varlet- 
Grancher, 1996; Barillot et al., 2010; Gommers et al., 2013). 
In the absence of other stresses, cessation of tillering seems to 
be related to the early detection of neighbouring plants, which 
is mainly sensed by plants through the R: FR ratio (Franklin, 
2005; Casal, 2013). Thus, the quality of light perceived by 
plants is a signal characterizing the surrounding environment 
(neighbouring plants) and capable of inducing morphogenetic 
responses that allow plants to anticipate the trophic aspects 
of light competition, such as limitation in photosynthesis (for 
reviews see Franklin, 2005; Casal, 2013). When comparing 
contrasting sowing densities, some authors have observed al-
most identical R: FR values at the base of the canopy when til-
lering stopped (Evers et al., 2006; Sparkes et al., 2006; Dreccer 
et  al., 2013). Evers et  al. (2007a) modelled the cessation of 
tillering based on such an R: FR threshold value. However, 
their formalism based on a unique R: FR threshold value did 
not accurately reproduce the tillering patterns observed at three 
experimental sowing densities. Moreover, simulating the cessa-
tion of tillering from an R: FR ratio raises some complex ques-
tions (Demotes-Mainard, 2016): (1) Which parts of the plant 
are involved in the perception of the R: FR signal? (2) Over 
what period of time should the R: FR signal be integrated? In 
addition, using the strong correlation between the R: FR ratio 
and the Green Area Index (GAI) (Sattin et al., 1994), several 
authors proposed using a critical Leaf Area Index to predict the 
cessation of tillering in various species such as Italian ryegrass 
(Simon and Lemaire, 1987), wheat (Sparkes et al., 2006) and 
rice (Zhong et al., 2002; Wei et al., 2013).

Not all emerged tillers produce an ear, as a variable pro-
portion of tillers dies between the onset of stem elongation 
and anthesis (Xie et al., 2016). The signals and mechanisms 
involved in tiller death are not fully understood, but one main 
hypothesis is based on resource limitation resulting in a com-
petition between plant shoots (Sachs et al., 1993). A stable 
chronological order of tiller death has been well described in 
wheat: tillers die in reverse order of their emergence (Porter, 
1985). Therefore, it can be assumed that tiller success in 
this competition depends on their relative size. Tiller death 
has been rarely modelled, probably because the underlying 
mechanisms are still poorly understood. Lafarge et al. (2005) 
proposed to model tiller death in grasslands according to 
probabilities depending on light extinction in the canopy, al-
though to our knowledge a model that predicts the number of 
ears produced by cereals is missing.

Finally, despite its importance in cereal ecophysiology and 
its impact on crop yield, the whole tillering process remains 
difficult to analyse and to predict. Due to their explicit three-
dimensional (3-D) description of plant structure, functional 
structural plant models (FSPMs) (Fourcaud et  al., 2008; Vos 
et al., 2010; DeJong et al., 2011) are suitable tools to represent 
plant functioning and its complex interactions with environ-
mental factors, and are particularly relevant to model tillering 
plasticity (Evers and Vos, 2013). In the present paper, we pro-
pose an individual-based 3-D model of wheat inspired from the 
ADEL-Wheat FSPM formalism (Fournier et al., 2003), which 
simulates tillering dynamics on the basis of the three previously 
described phases, i.e. emergence, cessation and regression. 
Contrary to ADEL-Wheat, which describes the three tillering 
phases using experimental data, WALTer is built on three main 
assumptions: (1) tiller emergence is modelled using fixed em-
pirical probabilities, coupled with coordination rules between 
tiller emergence and leaf emergence on the main stem; (2) 
cessation of tillering is assumed to occur when a critical GAI 
is reached; and (3) tiller regression is assumed to occur for a 
threshold of light intercepted by the tiller. The model was evalu-
ated through its ability to predict tillering dynamics within a 
wide range of sowing densities described by Darwinkel (1978).

MATERIALS AND METHODS

Model description

The present model, hereafter named WALTer, simulates the 
3-D development of the aerial architecture of winter wheat 
from sowing to flowering. Here we describe the hypotheses 
and rules integrated within WALTer to represent plant de-
velopment and particularly all steps of tillering. The model 
is defined at the plant scale, the crop being represented as a 
population of individual plants. The WALTer model is based on 
the L-systems formalism (Lindenmayer, 1968; Prusinkiewicz 
and Lindenmayer, 1990) using the L-Py simulation platform 
(Boudon et  al., 2012). The L-systems formalism allows de-
scription of plant architecture through a dynamic set of mod-
ules representing the plant’s components, their topology and 
geometry. A plant is composed of several axes (main stem + til-
lers from primary order to higher orders). Each axis is built by 
an apex that initiates subunits called phytomers. Each phytomer 
consists of an axillary bud, an internode and a leaf composed of 
a sheath and a blade. WALTer includes both deterministic and 
adaptive processes. The development and extension of vegeta-
tive organs (blades, sheaths and internodes) follows descriptive 
rules. By contrast, tillering is described as a self-regulated pro-
cess and is modelled through two simple rules considering (1) 
a critical GAI at which the emergence of tillers stops and (2) a 
critical amount of light intercepted by each tiller under which 
tiller death is triggered.

To simulate tiller regression, the interception of light by each 
tiller was computed by a radiative model (CARIBU: Chelle and 
Andrieu, 1998) applied to the 3-D representations of plants, 
and thus accounting for the competition for light among neigh-
bouring plants. Competition for other resources, such as water, 
nitrogen or other nutrients, is not considered. The model is run 
with a daily time step and time is expressed as thermal time 
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with a base temperature of 0 °C (Gate, 1995; Jamieson et al., 
1998). The model is initiated at the emergence of the tip of the 
first leaf, considering a mean delay after sowing (Δse, °Cd).

For the sake of realism, some stochasticity was included in 
the model. We considered that the final number of main stem 
leaves, probability of tiller emergence, duration before plant 
emergence, and plant and organ positions depend partly or to-
tally on probabilities, thus allowing the effect of micro-envi-
ronmental heterogeneity or the variability usually observed in 
plant development to be taken into account.

The parameters used in the processes described below are 
indicated in Table 1, while other parameters can be found in 
corresponding supplementary appendices.

Development of vegetative organs: the descriptive part of the 
model.  Phytomer production, leaf emergence, the date of floral 
transition and tiller emergence are simulated by WALTer using 
descriptive functions derived from the ADEL-Wheat formal-
isms (Fournier et al., 2003), whereas organ elongation, organ 
final dimensions and organ death are derived from its more re-
cent update Plantgen-ADEL (Abichou, 2016).

Phytomer production and leaf emergence.  The apical meri-
stem of each axis produces successive vegetative phytomers 
at fixed thermal-time intervals (Pls: plastochron) until the final 
leaf number is reached. The apex then turns into a reproductive 
state leading to floral transition and thus the production of an 
ear. Initiated leaves emerge acropetally at fixed intervals (Phl: 
phyllochron). Plastochron and phyllochron are model param-
eters, are identical for all axes and are constant during the 
whole simulation, as is commonly approximated in plant mod-
els (Jamieson et al., 1998).

Final leaf number and floral transition.  Final leaf number on 
the main stem is a model parameter, and the floral transition of 
the main stem occurs when the apical meristem has produced 
all vegetative phytomers. As some authors have noted that the 
floral transition is not always synchronous between tillers and 
the main stem (Ljutovac, 2002; Abichou, 2016), we assumed a 
constant duration (ΨFT) between the floral transition of tillers 
belonging to two successive cohorts (first cohort: primary til-
lers initiated on the main stem, second cohort: tillers initiated 
on primary tillers, etc.). Therefore, the dates of floral transition 
of all tillers are calculated once the floral transition occurs on 
the main stem (Supplementary Data SI-A1).

Tiller emergence.  The axillary buds, located at the basis of each 
phytomer of the main stem, remain inactive during a defined dur-
ation (Δb) and then start to produce the vegetative phytomers of 
a new tiller. The vegetative phytomers of a tiller also bear ax-
illary buds following the same developmental rules, potentially 
leading to the production of secondary, tertiary or even higher 
order tillers. Each axillary bud may emerge according to em-
pirically fixed probabilities (pT or pCT) but these developmental 
rules are modulated by self-adaptive rules described below, trig-
gering the fate of axillary buds (death or production of vegetative 
phytomers). For those buds that develop in a tiller, coordination 
rules follow the work of Kirby et al. (1985), considering a strict 
coordination between the emergence of bud n on the main stem 
(tiller (1,n)) and the emergence of leaf n + 2 of the bearing stem.

Organ extension.  Organs of a phytomer grow in a sequen-
tial order: (1) the blade extends, (2) the sheath starts to extend 

once the blade has reached its final length and (3) the internode 
starts to extend once the sheath has reached its final length. The 
length of an organ is assumed to increase linearly with thermal 
time during the period of extension. The durations of these 
periods are fixed, depending on organ type (i.e. blade, sheath, 
internode), but are identical for all phytomers and tiller orders 
(Supplementary Data SI-B1, SI-B2). Rates of extension are cal-
culated so that the organ reaches its final dimension at the end 
of the extension period.

Final dimensions.  For a given axis, blade final lengths are 
expressed as a function of both phytomer rank and final leaf 
number on the main stem. Final sheath lengths and blade 
maximal widths are computed from the final length of blades 
(Dornbusch et al., 2011a). Internode final lengths are expressed 
as a function of the phytomer rank and the rank of the last short 
internode. The number of elongated internodes is identical for 
all axes (Ljutovac, 2002). Analogous rules are used to compute 
internode, blade and sheath final lengths for the main stem and 
tillers, except that blade and sheath of lower leaves are slightly 
longer on tillers than on the main stem (Supplementary Data 
SI-C1–C5).

Organ death.  All types of organs enter senescence according 
to an empirical function, considering a non-progressive sen-
escence: an organ is either alive or dead. At the axis scale, 
the number of dead blades at time t (°Cd) is calculated as the 
difference between the Haun stage, i.e. the decimal number 
of ligulated leaves simulated by the model and the number 
of green blades, defined by an empirical function of thermal 
time (Supplementary Data, Eq SI-D1, SI-D2). The function 
for the number of green blades was obtained by a linear ad-
justment made on experimental observations on four different 
dates (Abichou, 2016). For sheaths, internodes, peduncles and 
ears, the timing of death was based on that of the blade. For the 
sheath and internode of phytomer n, death occurs synchron-
ously with that of the blade of phytomer n + 1. For the peduncle 
and ear, a fixed duration after senescence of the blade of the 
last phytomer of an axis was assumed before triggering senes-
cence. The lower dead blades are removed from the plant, while 
the five uppermost blades and all sheaths, internodes, peduncles 
and ears stay on the plant and therefore intercept light.

Plant geometry.  The 3-D reconstruction of plants is based on 
simplified representations of organ geometry. Blades are repre-
sented as flat elements, the main part being a rectangle and the 
tip a triangle. Internodes and sheaths are represented by cylin-
ders with a constant diameter during internode extension and 
identical for all phytomers. Blade orientation is defined by (1) 
a phyllotaxic angle (ΨB

zen, degrees) parameterized to represent 
the alternate phyllotaxy of wheat and (2) an inclination angle 
(ΨB

azi, degrees). The azimuth (ΨT
zen, degrees) and zenith (ΨT

azi, 
degrees) of successive tillers are parameterized pragmatically 
to avoid artificial overlap among tillers. Heterogeneity in plant 
representations was achieved by randomizing the azimuths and 
part of the inclinations of leaves and tillers.

Self-adaptive rules: the tillering process.  In WALTer, the til-
lering process is modelled at the plant scale according to two 
self-adaptive rules that account for regulation of tillering by the 
plant environment. These original rules allow description of (1) 
the cessation of tiller emergence, according to a critical GAI 
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Table 1.   List of model parameters, definition, values and units. Parameters were estimated from (1) the literature, (2) directly from ex-
perimental data, (3) calibrated from experimental data or (4) pragmatically calibrated

Parameter Description Estimation Value Unit

Development of vegetative organs
Organ initiation, emergence, elongation
Pls Thermal time interval between the initiation of two 

successive vegetative phytomers
Expt 1 44.5 °Cd

Phl Thermal time interval between the emergence of two 
successive leaves

Expt 1 99 °Cd

EDB Duration from leaf emergence to end of extension ADEL-Wheat* 1.6 °Cd per 
phylochron

EDS Duration of sheath extension ADEL-Wheat* 0.4 °Cd per 
phylochron

EDL Duration of internode extension ADEL-Wheat* 2 °Cd per 
phylochron

EDFB Duration of the extension of the flag leaf blade ADEL-Wheat* 1 °Cd per 
phylochron

Tiller emergence
∆b Duration between the initiation of a bud and the start of its 

activity
Calibrated 1 Plastochron

pT Probability of emergence of a tiller (except coleoptile tiller) Expt 1 Table2 Dimensionless
pCT Probability of emergence a coleoptile tiller Expt 1 Table2 Dimensionless
Floral transition and final leaf number
NB

MS Final number of leaves on the main stem Expt 1 11.3  
ψFT Duration between the floral transition of axes belonging to 

two consecutive cohorts
Abichou et al (2018) 1/3 Plastochron

∆se
mean (sd) Mean (s.d.) delay between sowing and emergence Expt 1 81 

(30)
°Cd

Ns
p Number of primordia already preformed inside the seed Jamieson (1998) 4 Primordia

Organ death
tsen
1 Date of the end of the first phase of leaf senescence Abichou et al (2018) 691 °Cd

tsen
2 Date of the end of the second phase of leaf senescence 

(only for tillers)
1131 °Cd

tsen
3 Date of the end of leaf senescence 2000 °Cd

nsen
0 Haun stage of the beginning of the first phase of leaf 

senescence
4.75  

nsen
1 Number of green blades at the end of the first phase of leaf 

senescence
3.31  

nsen
2 Number of green blades at the end of the second phase of 

leaf senescence (only for tillers)
4.5  

nsen
3 Number of green blades at the end of leaf senescence 0  

∆ flsp Thermal time between senescence of the flag leaf and the 
beginning of peduncle senescence

 100 °Cd

Plant geometry
ψB

zen Angle between blade inclination and y-axis Calibrated 40 Degrees
ψB

azi Angle between the azimuth of two consecutive blades Calibrated 185 Degrees
ψT

zen Angle between the zenith of two consecutive blades Calibrated 0 Degrees
ψT

azi Angle between the azimuth of two consecutive tillers Calibrated 40 Degrees
Mechanistic tillering rules
Cessation of tillering and Green Area Index
GAIc Green Area Index threshold above which tillering stops Fit on expt 1 and 

calibrated on 
expt 2

Table2 Dimensionless

dGAIp Maximal range for plant detection Calibrated 1 m
Ls

b Buried length of the first sheath Calibrated 2 cm
Tiller death
treg
beg

Date of the beginning of the regression Expt 1 Table2 Haun stage

∆l Duration of the radiation integration to determine the 
survival of a tiller

Calibrated 100 °Cd

PARt PAR threshold below which a tiller does not survive Fit on expt 1 and 
calibrated on 
expt 2 

Table2 µmol cm−2 °Cd–1

∆prot Thermal time interval during which two tillers of the same 
plant cannot die

Fit on expt 1 and 
calibrated on 
expt 2

Table2 °Cd

∆sgc Thermal time between the moment a tiller stops growing 
and its entire removal

Calibrated 600 °Cd

* ADEL-Wheat is a 3-D model of wheat developed by Fournier et al. (2003).
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reached around the plant and (2) tiller regression according to 
the amount of light intercepted by the tiller in question. Values 
for the tillering parameters are listed in Table 4.

Cessation of tillering and GAI.  The cessation of tillering is cal-
culated for each plant and is assumed to occur simultaneously 
for all axillary buds of a plant. For a given plant, the cessa-
tion of tillering occurs when the GAI around the plant reaches 
a critical threshold (GAIc). The surrounding plants taken into 
account for the calculation of GAI are those located within a 
given distance (dGAIp, cm) from the considered plant. When 
the GAIc is reached, all buds of the plant which have not yet 
emerged become inactive. After the plant has reached the GAIc, 
axillary buds do not follow the developmental rules described 
(i.e. tiller emergence based on probabilities).
GAI calculation integrates all visible and alive organs of an axis 
(i.e. blade, sheath, internode, peduncle and ear). The length of 
the first sheath (LB

S, cm) is not included in the calculation of 
GAI because it is usually partly buried in the soil.

Tiller death.  The hypotheses implemented in WALTer are that 
(1) tiller death may occur only during a defined window of 
time, starting around the beginning of stem extension and (2) 
during that window, a tiller dies if the amount of intercepted 
light per unit area integrated over a given duration (Δl, °Cd) 
falls below a threshold (PARt, µmol cm−2 °Cd−1). When a tiller 
dies, its development is immediately stopped, and organ death 
follows sequentially, following the same rules as described 
above. Moreover, after a fixed protection period (Δsgc, °Cd), the 
organs remaining on the dead tiller (i.e. sheaths and internodes) 
are completely removed. Sequential death of tillers occurs ac-
cording to their age, i.e. the tillers belonging to the youngest 
cohort die first. If several tillers belong to the youngest cohort, 
the tiller with the lowest amount of intercepted light dies first. 
Moreover, to more accurately represent the dynamics of tiller 
death, we assumed a duration (Δprot, °Cd) between the death of 
two successive tillers. That duration could originate from a re-
allocation of carbon from the dead tiller to the rest of the plant, 
as such fluxes between shoots have been identified (Quinlan 
and Sagar, 1962). The period during which tiller regression 
may occur starts at time (Dreg

beg), which corresponds to the exten-
sion of the lower elongated internode and lasts until the heading 
of the main stem; Dreg

beg is estimated following eqn (1):

Dreg
beg = treg

beg +
(
NB

MS − 11
)

� (1)

where NB
MS  is the final number of leaves on the main stem 

and treg
beg is a model parameter estimated from the experimental 

data of Abichou et al. (2018) for a plant with 11 leaves on the 
main stem.

To model the interception of light by plants we used the 
nested radiosity model Caribu (Chelle and Andrieu, 1998). 
The computations considered only diffuse radiation ac-
cording to the standard overcast sky radiation distribution 
(Moon and Spencer, 1942). Diffuse radiation was approxi-
mated using a set of 20 light sources (five azimuths and four 
zeniths). Using the meteorological data of photosynthetically 
active radiation (PAR), the amount of intercepted light was 
calculated at the organ level and aggregated at the axis scale 
when needed.

Design of virtual crops.  The virtual crop was sown on a rect-
angular surface, where seed positions followed a lattice de-
fined by the distance between rows and by sowing density. 
As the edges of the virtual field were subject to border effects 
(lower shading), border strips were defined and trimmed after 
simulations, in order to analyse only the central plants, sub-
mitted to homogeneous radiation. All seeds were sown syn-
chronously but a variable delay was generated between sowing 
and the emergence of the first leaf of each plant, as a result 
of random sampling according to a normal distribution. Four 
phytomers were assumed to be already present in the seeds (He 
et al., 2012).

Numerical methodology

WALTer uses a large number of parameters aimed at tuning 
organ size and rate of development. These were not the focus of 
this study, so Triticum aestivum ‘Maxwell’ was used as a refer-
ence cultivar for setting realistic values of the parameters that 
define the deterministic aspects of the model. Parameter values 
for plastochron, phyllochron, tiller emergence probabilities, 
number of leaves and organ dimensions were inferred from data 
from expt 1, an intensive phenotyping of ‘Maxwell’ sown at a 
density 217 plants m−2 (‘E08’ in Abichou et al., 2018).

The model was then evaluated through:

a sensitivity analysis focusing on parameters controlling 
GAI and tillering dynamics, to identify the inputs with the 
greatest impact on WALTer outputs;
the ability of WALTer to fit very detailed kinetics of GAI and 
tillering dynamics recorded in expt 1;
the ability of WALTer to predict tillering dynamics at sowing 
densities not used to fit the model, on the basis of expt 2 data 
that described tillering dynamics at seven contrasting sowing 
densities (Darwinkel, 1978).

Calibration of organ dimensions in the expt 1 data-
set.  Plastochron, phyllochron, tiller emergence probabilities, 
as well as the parameters governing internode, blade and sheath 
final dimensions were parameterized using the expt 1 dataset 
and were kept constant in all simulations. The experiment was 
conducted at the INRA campus of Thiverval-Grignon, France. 
Winter wheat cultivar ‘Maxwell’ was sown on 26 October, 
2010 at 217 plants m−2 with inter-row fixed at 17.5  cm (see 
Abichou et al., 2018 for more details). This sowing design was 
reproduced in the simulation scheme, using rectangular plots of 
200 plants sown in eight rows, surrounded by a border of 20 cm 
(Fig.  1). Simulations were based on daily temperatures and 
PAR data collected at the meteorological station of Thiverval-
Grignon for the year 2010/11.

The nine parameters governing blade and internode final 
lengths were calibrated by fitting blade and internode final 
lengths to observed values with a grid approach. Optimal 
parameters were selected by minimizing the root mean square 
error (RMSE) criterion. RMSE between experimental data and 
outputs of WALTer were calculated for each axis and were 
weighted by the observed frequency of tiller emergence: the 
more frequent an axis, the more impact it had on the average 
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RMSE. Linear regressions on blade final length were then per-
formed to fit sheath final length and maximal blade width.

Sensitivity analysis.  This was carried out by considering three 
steps: (1) selection of WALTer’s output of interest, (2) selection 
of major inputs that have an impact on tillering dynamics and 
(3) setting and analysis of an optimal simulation design.

Selection of output of interest.  The two main outputs of interest 
of WALTer were (1) the tillering dynamics and (2) the GAI 

dynamics, which provided information at the crop scale. We 
defined a set of descriptors to summarize those dynamics in the 
most relevant way. GAI dynamics were characterized by two 
scalar measures: the maximum value of the simulated GAI dur-
ing the crop cycle (GAImax) and the date at which GAImax was 
reached (DGAImax). Tillering dynamics were characterized by 
four scalar measures: the maximum number of axes produced 
per plant (Nmax

axes), the duration of the tillering plateau (Δplateau), 
the number of ears produced per plant (Near) and the rate of tiller 
regression (Sreg) (Table 2).

Selection of input factors.  WALTer was based on more than 
50 input parameters, so a subset of input factors was selected 
for the sensitivity analysis. After discarding parameters with 
values known with good confidence from the literature, the 
effects of parameters with no/sparse experimental data and/
or parameters directly impacting the tillering and GAI dy-
namics in WALTer formalism were investigated. Among the 
eight input parameters selected for the sensitivity analysis 
(Table  3), six were ecophysiological (detailed in Table  1): 
the critical GAI inducing cessation of tillering (GAIc), the 
threshold of PAR needed for the survival of a tiller (PARt), the 
protection duration between the death of two successive til-
lers of a plant (Δprot), the maximal length of the longest blade 
(LB

max), the final number of leaves on the main stem (NB
MS ) and 

the range of the proximity GAI (dGAIp). Two ‘environmental’ 
parameters were also selected: sowing density, known to af-
fect tillering dramatically, and incident light, which defines 
the amount of PAR incoming each day and on which tiller 
regression is based. The range of variation of each input par-
ameter was set to represent the largest range using only three 
values. These values were chosen according to published and 
experimental data as well as exploratory simulations. For 
PAR, the range of variation over time was limited to minimum 
and maximum daily PAR values averaged over 10 years in five 
locations around France.

A fractional factorial design.  Given the high number of po-
tential inputs and the computational time needed for one simu-
lation, a screening method (Iooss, 2011) based on a fractional 
factorial design (Monod et al., 2006) was chosen. Three levels 
were considered for each input in order to detect non-monotonic 
effects. A  fractional factorial design of resolution V (Bailey, 
2008) was chosen to ensure estimation with no confusion of 
main effects and pairwise interaction of input factors. It was 
assumed that third-order and higher-order interactions were 
negligible. This resulted in a design with only 243 simulations 

Table 3.  List of input parameters explored through the sensitivity 
analysis and their chosen ranges

Parameter Values Units

Density 50 200 600 Plants m−2

GAIc 0.25 0.6 1 GAI
PARt 5000 50000 100 000 µmol cm−2.°Cd
Δprot 10 50 100 °Cd

LB
max 15.0 22.5 30.0 cm

NB
MS 10.3 11.3 12.3 Blades

dGAIp 0.2 0.5 1 m

Light Low Medium High –

Table  2.  List of the six output descriptors for the sensitivity 
analysis

Output 
descriptor

Description Units

GAImax Maximum value of GAI (Green Area Index: 
ratio of green surfaces over soil surface) 
reached by the crop

GAI

DGAImax Date at which the maximum value of GAI is 
reached (°Cd)

°Cd

Near Final number of ears per plant Tiller
Nmax

axes Maximum number of axes per plant Tiller
Δplateau Duration of the tillering plateau °Cd
Sreg Rate of regression Tiller °Cd–1

A

B

C

D

E

F

Fig. 1.  Vertical (A, B, C) and oblique views (D, E, F) of a simulated plot at 
three stages of growth: at emergence (A, D), during mounting (B, E), and at 
the end of the cycle (C, F). The plot consists of 99 plants at 217 plants m–2 
according to expt 1; red denotes border plants, green represents emerged and 

non-senescent organs, and yellow represents dead organs.
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instead of the 6561 simulations needed for a complete factorial 
design.

The fractional factorial design was generated via the planor 
package (Kobilinsky et al., 2012) in R software.

The impact of each input factor on each output was esti-
mated by computing the main effect indices (eqn 2) and the 
sensitivity indices for second-order interactions (eqn 3). For 
each output, the total interaction sensitivity indices (eqn 
4) were computed to estimate the impact of all the second-
order interactions on the variance. For each output, these in-
dices were based on the sum of squares associated with main 
effects and second-order interactions in an analysis of vari-
ance model (Monod et al., 2006). For a given output, a and b 
are input factors, n is the total number of input factors in the 
analysis, SSa is the sum of squares associated with the main 
effect of a, SSa,b is the sum of squares associated with the ef-
fect of the interaction between a and b, and SST is the total 
sum of squares of the output. These sum of squares are used to 
compute Main Sensitivity index, MSi, Interaction Sensitivity 
index, ISi, and Total Interaction index, TISi, as follows:

MSia =
SSa

SST
� (2)

ISia =
1

SST

∑

b = 1, n
a �= b

SSa,b

� (3)

TISi =
1

SST

∑

a = 1, n
b = 1, n

a < b

SSa,b

� (4)

Calibration of tillering parameters on the expt 1 dataset.   fit of 
GAI and tillering dynamics. After using the expt 1 dataset to fit 
various architectural parameters (from plastochron to leaf di-
mensions), we also assessed the ability of WALTer to properly 
fit GAI and tillering dynamics.

Sensitivity analysis highlighted that GAIc and PARt and, to 
a lesser degree, Δprot and NB

MS  were the most important tillering 
parameters. Thus, NB

MS  was set at its experimental value ac-
cording to data from the expt 1 dataset and GAIc, PARt and 
Δprot were calibrated based on expt 1 as we had no clear hints of 
their range. As the cessation of tillering takes place before tiller 

regression, calibration was performed sequentially, starting 
with GAIc, and then calibrating Δprot and PARt. The explored 
GAIc values ranged from 0.2 to 0.8 (dimensionless) with a 0.02 
step. The best GAIc was selected based on the RMSE calcu-
lated from two outputs: the maximal number of active axes per 
plant (Nmax

axes) and the maximal number of active axes per m2 
(Nm2max

axes); between experimental data and outputs of WALTer. 
Both outputs were weighted equally after centring and reduc-
tion. PARt values started at 1000 and then ranged from 5000 
to 80 000 (µmol cm−2 °Cd–1) with a 5000 step. Six values were 
selected for Δprot: 5, 15, 25, 35, 50 and 75 (°Cd). The best set 
of PARt/Δprot was also selected based on the RMSE criterion 
calculated from four outputs: the final number of axes per plant 
Near, the final number of axes per area Nm2ear, the duration of til-
lering plateau (Δplateau) and the rate of tiller regression (Sreg). For 
each combination of four parameters, the RMSE between ex-
perimental data and outputs of WALTer were weighted equally 
after centring and reduction.

Cross validation by prediction of tillering dynamics on expt 
2.  A cross-validation of the tillering parameters was performed 
using expt 2 in which the winter wheat cultivar ‘Lely’ was sown 
on 19 October, 1975 at seven densities (5, 25, 50, 100, 200, 
400 and 800 plants m−m) in plots of 1 m2 (Darwinkel, 1978). 
In this experiment, the author measured the dynamics of the 
mean number of axes per plant at each sowing density. Tillering 
parameters were estimated for one sowing density and predic-
tions of WALTer using these parameters were compared to ex-
perimental data at other sowing densities.

The three most influential tillering parameters GAIc, PARt 
and Δprot were calibrated at a density of 200 plants m−2 of expt 
2. The calibration process took place as explained above: GAIc 
was calibrated before PARt and Δprot. In these simulations, we 
kept ‘Maxwell’ parameters (expt 1) for organ dimensions, leaf 
emergence and senescence, and used the original sequence of 
PAR available in Darwinkel (1978) and a sequence of daily 
temperatures obtained by averaging Lelystad data from 2004 
to 2014. Square plots of 200 plants were simulated, with plants 
equidistant from each other and sown on 19 October, 1975. 
The analysis was performed on the 50 central plants to discard 
border effects. The best set of GAIc/PARt/Δprot was selected 
based on the RMSE calculated on the same two and then four 
outputs as described previously. The optimal set of parameters 
was used to simulate the other six densities and simulations 
were compared with measurements to evaluate the prediction 
of tillering dynamics at a wide range of densities.

RESULTS

Representation of organ dimensions and growth for ‘Maxwell’ 
genotype from expt 1 dataset

The representation of organ dimensions were summarized by 
two traits: (1) the surface of each blade and collar height (i.e. 
the insertion height of blades and thus internode final length 
and the length of the longest sheath). After fitting the associ-
ated parameters, blade surfaces and collar heights of both main 
stems and tillers were reasonably simulated by the model with 
an RMSE of 1.37 cm2 and 2.1 cm, respectively (Fig. 2). Thus, 
the simple formalisms used to describe organ growth and final 

Table 4.  Tillering parameters and their values used in the model. 
Parameters were fitted on expt 1 and expt 2 respectively

Parameter Value Units

Calibration 
on expt 1

Calibration on expt 2

GAIc 0.6 0.52 GAI
PARt 30°000 35°000 µmol cm−2 °Cd–1

Δprot 50 35 °Cd
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dimensions in WALTer provided realistic dynamics of organ 
growth. The simple rules implemented for leaf senescence also 
allowed us to simulate the number of green leaves, similar to 
the measured dynamics (RMSE = 0.34, Supplementary Data, 
Fig SI-E1).

Sensitivity analysis: the predominant influence of tillering 
parameters and density

Sensitivity analysis allowed the variance of each output to 
be decomposed into main effects, second-order interactions 
(see Fig. 3) and residuals that represent the combined effects 
of higher-order interactions and of the stochasticity of WALTer. 
For all six outputs, the impact of the residuals never exceeded 
9.02 %. For the number of ears per plant (Near), the maximum 
number of axes per plant (Nmax

axes), the maximum GAI (GAImax) 
and the date at which the maximum GAI was reached (DGAImax), 
main effects explained at least 75 % of the variance, while sec-
ond-order interactions explained between 11 % and 20 % of the 
variance. For the rate of tiller regression (Sreg) and for the dur-
ation of the tillering plateau (Δplateau), main effects explained a 
lower fraction of the variance (64.5 % and 58.8 %, respectively) 
and there was a greater importance of second-order interactions 
(26.5 % and 33.8 %, respectively).

When considering the total sensitivity indices, density ex-
plained the major part of the variance of all the studied out-
puts. As expected, the input parameters GAIc and PARt also 
had a considerable impact on the variance of the outputs, es-
pecially of those describing tillering dynamics. The leaf-size 
parameter (LB

max) appeared important for both GAI-related 
outputs, while the final number of leaves (NB

MS ) was only crit-
ical for DGAImax. Predictably, the duration of protection (∆prot) 
influenced the variance of the rate of tiller regression (Sreg), 
although this input did not have a large impact on the vari-
ance of the other outputs. Finally, for all studied outputs, the 
range of the proximity GAI (dGAIp) and the incident light were 
unimportant. GAIc and PARt, which lead the two rules aiming 
at representing tillering, were the parameters that impacted 
tillering dynamics the most.

WALTer reasonably reproduced the GAI and tillering dynamics of 
the expt 1 dataset

The calibration process led to a set of optimized parameters 
(Table 4) allowing the simulated tillering dynamics to closely 
match the number of active axes observed in expt 1 during the 
whole cycle of the crop (Fig.  4A). The model accounted for 
the three steps of tillering: emergence, cessation and regression. 
The simulated GAI (Fig.  4B) closely matched experimental 
data from emergence until 800 °Cd (GAI = 1.3). Then, the pre-
dicted GAI was slightly above the measured values, from 800 
to 1500 °Cd (i.e. at flowering). Finally, experimental data and 
simulations provided consistent estimates of the GAI at til-
lering cessation: GAIc (~0.6) was reached at ~500 °Cd.

Cross validation on expt 2: predictions of tillering dynamics at a 
wide range of sowing densities

The predicted and observed dynamics of the number of axes 
per m2 for six sowing densities (Fig. 5A–D and F, G), as well 
as the fitted and observed dynamics at 200 plants m−2 (Fig. 5E), 
the density used to calibrate GAIc, PARt and Δprot of WALTer, 
were similar. Predicted dynamics were close to experimental 
data, especially for densities from 50 to 800 plants m−2. The 
duration of the plateau of tillering increased with increasing 
density both in the experiment (from 0 d at density 5 to ~66 d 
at density 800) and in the simulations (from 0 d at density 5 to 
~87 d at density 800). Models and experiments also showed an 
increase in the fraction of regressing tillers from low to inter-
mediate densities.

Simulated responses of the six key variables to plant density 
were nearly identical to the measurements at 50–400 plants m−2 
(Fig. 6). However, at extreme densities, some discrepancies ex-
isted between predicted and observed data. At low densities (5 
and 25 plants m−2) WALTer (1) strongly under-estimated the 
maximum number of axes and the number of ears per plant 
and (2) over-estimated the regression rate. The duration of the 
tillering plateau seemed to be over-estimated by WALTer, al-
though this short plateau (20 °Cd) was not experimentally per-
ceptible because of the precision of the expt 2 dataset. At the 

15

50

40

C
ol

le
r 

he
ig

ht
 (

cm
)

30

20

10

0

Mainstem (1)
Tiller (1, 2)
Tiller (1, 3)

Mainstem (1)
Tiller (1, 2)
Tiller (1, 3)

1 3 5 7 9 11

Phytomer rank

1 3 5 7 9 11

Phytomer rank

10

B
la

de
 m

ax
im

um
 s

ur
fa

ce
 (

cm
2 )

5

0

A B

Fig. 2.  Blade maximum surface (A) and collar height (B), vs. phytomer rank for main stem (black), the first primary tiller (blue) and the second primary tiller 
(green). Dots represent experimental data: of expt 1 (‘Maxwell’) and lines represent simulations of the model after calibration.

http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcy226#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcy226#supplementary-data


Lecarpentier et al. — WALTer: a 3-D wheat model that simulates tillering dynamics 969

very high density (800 plants m−2) the maximum number of 
axes per m2 was under-estimated and the duration of the til-
lering plateau was overestimated. Differences of estimation 
quality were apparent between number of axes per plant and 
numbers of axes per m2: strong over-estimations of number 
of axes per plant at low densities have a moderate impact on 
RMSE of number of axes per m2 and, conversely, over-estima-
tions of number of axes per m2 at high densities were barely 
noticeable when considering number of axes per plant.

DISCUSSION

Tillering regulation and tiller dynamics are an essential as-
pect of plants’ adaptation to their environment and mechan-
istic models able to simulate this behaviour are lacking. The 
main reasons for this are (1) limited knowledge of the mech-
anisms governing tillering cessation and tiller regression, and 
(2) the difficulty of representing these complex mechanisms in 
crop models. Individual-based models provide a natural frame 
for studying the tillering process, as they allow integration of 

morphogenetic rules governing the architecture of individual 
plants, and simulation of the developmental feedback loops 
stemming from plant–plant interactions. However, with a few 
exceptions (Evers et al., 2007b; Cici et al., 2008), these aspects 
of individual-based models have not been exploited until now.

In this work, we designed WALTer, an individual-based 
FSPM wheat model that simulates tiller dynamics based on 
simple hypotheses, and evaluated this approach against experi-
mental datasets. As highlighted by Evers and Vos (2013), mod-
elling branching in cereals can be based on three approaches: 
probabilistic, dose–response curves and mechanistic; only the 
last two allow simulation of tillering plasticity. Mechanistic 
approaches require modelling either carbohydrate, water, ni-
trogen, other nutrient metabolism or hormonal controls; or 
ideally these metabolic and regulatory processes would be in-
tegrated, leading to complex models. We adopted the dose–re-
sponse strategy in order to develop a ‘light’ model of tillering 
plasticity that is able to integrate environmental cues (light 
shading) with a limited number of parameters and reasonable 
simulation time.
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Fig. 3.  Sensitivity indices for final number of ears, maximum number of axes, duration of the tillering plateau, rate of regression, maximum GAI and the date of 
maximum GAI. The upper bar shows the distribution of Msi and Isi while the two lower bars show impacts of model inputs.
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In WALTer, simulating how competition between plants 
impacts the dynamics of tillering was based on the following 
set of encoded assumptions. Tillering was the single degree of 
freedom considered, while the plasticity of the other compo-
nents of plant architecture, such as leaf dimension, plant height 
or the rates of development and senescence, were neglected. 
The only environmental cues considered were temperature and 
light; interactions with water or nitrogen were not accounted 
for. The dynamics of tillering followed three successive phases, 
a phase of tiller emergence, a plateau and a phase of tiller re-
gression. During tiller emergence, each axillary bud carried by 
a short internode was a potential site of tillering, and this phase 
stopped when either all potential tillers emerged or when the 
canopy around the plant reached a threshold value. During tiller 
regression, the youngest tiller of a plant may die at each time 
step depending on the amount of light it intercepted in the last 
100  °Cd, except if another tiller of the plant died in the last 
100 °Cd. The beginning of the phase of tiller regression was 
determined ontogenetically and the duration of this phase was 
undetermined.

Critical Green Area Index (GAIc) and cessation of tillering

To our knowledge, this work represents the first attempt to use 
GAIc to model the cessation of tillering. As shown in Figs 5 and 
6, this hypothesis was highly efficient in simulating the max-
imum number of tillers across sowing densities in expt 2, with 
an excellent fit in the range 50–400 plants m−2. However, our 
simulations underestimated the number of tillers observed in 
Darwinkel’s results at densities of 5 and 25 plants m−2. In these 
cases, cessation of tillering in our simulations did not occur be-
cause the GAIc was reached but because the potential number 
of tillering sites was reached. From known responses to density, 
it seems very likely that plants at these low densities produced 
a higher numbers of leaves and thus of tillering sites (Ljutovac, 
2002), a plasticity response not integrated in WALTer. Even if 
such very low densities are below those usually found in agro-
nomic conditions, improving model behaviour should be helpful 
to better simulate compensation within heterogeneous crops, in 
local areas of low densities. The present model underestimated 
the maximum number of tillers by ~15 % and overestimated the 
duration of the tillering plateau at 800 plants m−2 by ~50 %. We 
observed a lack of 800 °Cd in the sum of temperature of the 
experimental sequence compared to characteristic sequences 
of the location. Therefore, the sequence of temperatures used 
to perform simulations with WALTer (daily mean from 2004 
to 2014 in Lelystad) differed from the experimental sequence 
(decade mean for 1976 in Lelystad). This change, necessary for 
simulating reasonable plants, could explain the slight temporal 
shift observed in the prediction of tillering dynamics and the 
poor prediction of the duration of tillering plateau. Moreover, 
the rapid changes in slope in tiller emergence observed in the 
experiment and the limited number of measures performed 
during this period resulted in a low accuracy for the estimated 
duration of the tillering plateau at very high plant densities. 
Furthermore, we have no explanation for the differences be-
tween observed and predicted maximum number of axes but 
they do not represent a major shortcoming, as differences be-
tween experimentation and simulations remained moderate at 

common plant densities and 800 plants m−2 are not common 
under agronomic conditions. As expected, sensitivity analysis 
underlined the importance of the GAIc in estimation of the 
maximum axis number, while other ecophysiological param-
eters had minor effects. Moreover, GAIc had a major impact on 
the estimation of the duration of the tillering plateau (Δplateau), 
the rate of tiller regression (Sreg) and GAImax. Sensitivity ana-
lysis also indicated that the range of detection of neighbours 
(dGAIp) did not impact tillering dynamics under our conditions, a 
result that needs to be reconsidered when simulating plots with 
genetic heterogeneity, such as cultivar mixtures.

Our estimates of GAIc of ~0.6 for expt 1 and ~0.52 for expt 
2 are very different from the value of ~ 3 reported for the ces-
sation of tillering of ryegrass by Simon and Lemaire (1987). 
Similarly, Zhong et al. (2002) reported a critical GAI of ~3.5 
for rice when N was not limiting, but with a strong decrease of 
GAIc with decreasing N nutrition. The high values of GAIc in 
these studies suggest that PAR availability, rather than R: FR, 
may have triggered the end of tillering in ryegrass and rice. In 
wheat, Evers et  al. (2006) observed the cessation of tillering 
when the fraction of intercepted PAR by the canopy was 0.4 and 
the R: FR ratio was ~0.35, independent of plant density and for 

0

1

2

3

N
um

be
r 

of
 a

ct
iv

e 
ax

es
G

re
en

 a
re

a 
in

de
x

4

A

B

0

1

2

3

4

Thermal time since sowing (°Cd)

0 500 1000 1500 2000

Fig. 4.  Tillering (A) and Green Area Index (B) dynamics vs. thermal time since 
sowing. Lines represent simulations made by the model calibrated on expt 1 
(lines are mean, and dotted lines are standard errors, n = 5); dots are experi-
mental data of expt 1. RMSE values of model verification were 0.2 for number 

of axes per plant and 0.31 for GAI.



Lecarpentier et al. — WALTer: a 3-D wheat model that simulates tillering dynamics 971

a large range of light intensities. Using an extinction coefficient 
of 0.82 for wheat (O’Connell et al., 2004), a GAIc of ~0.65 can 
be estimated for the study of Evers et al. (2006), which is much 
lower than in ryegrass and rice, but is in line with our estimates 
of 0.65. These values support the hypothesis that, in wheat, ces-
sation of tillering is not triggered by a trophic effect of the com-
petition. The differences between experimental and simulated 
values for expt 2 were remarkably small considering the various 
unknowns: organ dimensions and phenology of the ‘Lely’ 

cultivar (set to ‘Maxwell’ reference parameters for the simu-
lations). These results are very promising for using GAIc as a 
proxy for R: FR when modelling. The use of a more mechanistic 
approach, based directly on tillering responses to R: FR, raises 
a number of issues, due to the limits of our knowledge of plant 
responses to light quality, and the difficulty with and high com-
putation time to simulate the spatial distribution of R: FR and 
its dynamics. By contrast, GAI changes slowly with time and is 
easy to calculate from the model and to assess experimentally.
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These results highlight several questions that remain to be in-
vestigated. A first question is the possible dependence of GAIc 
on N and light availability. Even if the low value of GAIc for 
wheat suggests a predominant role of R: FR in the cessation 
of tillering, an interaction with light availability cannot be ex-
cluded. For instance, empirical observations suggest that emer-
gence of the first tiller probably depends on the carbon status 
of the plant (Friend, 1966). Similarly, the strong relationship 
between GAIc and the nitrogen status reported by Zhong et al. 
(2002) in rice invites an investigation of such interactions in 
wheat. A second question is the genotypic variability of GAIc. 
There is a variability of tillering abilities in wheat, part of which 
may be related to a differential sensitivity to the R: FR ratio, 
thus leading to different values of GAIc. This parameter is rea-
sonably easy to estimate from field experiments in which the 

dynamics of GAI are monitored and the maximum number of 
tillers is measured. Such experiments therefore give the oppor-
tunity to use GAIc to quantify one of the components of the 
genotypic ability in tillering.

Intercepted light and the fate of tillers

The core hypothesis to represent tiller regression in the 
present model was that the fate of a tiller depends on the amount 
of light it intercepts per unit green area, but additional rules 
were required to accurately represent tillering behaviour. First, 
the existence of an ontogenetic stage for the beginning of tiller 
regression was proposed by Abichou et al. (2018) based on ana-
lysis of the dynamics of senescence under several experimental 
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conditions. Without this limitation, our model would anticipate 
tiller regression in high-density treatments. The age-hierarchy 
among tillers, which restricts the ‘die or live’ decision to the 
youngest tiller of the plant, is consistent with experiments 
where this behaviour has been repeatedly reported (Porter, 
1985). The age hierarchy, rather than local environmental con-
ditions, actually seems to be a robust emerging property of the 
processes regulating apical dominance (Rameau et al., 2015). 
Finally, the model also assumes that there is a minimal duration 
between the death of two tillers in one plant in order to prevent 
tiller death from occurring too rapidly. Indeed, tiller death starts 
before stems reach a significant extent, i.e. when all tillers are 
subjected to a similar microclimate. Thus, the environmental 
conditions that would trigger the death of a tiller would gen-
erally result in predicting the death of another tiller at the next 
iteration of the model. Remobilization of carbohydrates from 
a senescing tiller probably contributes to the survival of the 
others (Irving, 2015). The rules needed to improve our simula-
tion of tillering dynamics highlighted parameters whose influ-
ences were assessed based on a sensitivity analysis. Sensitivity 
analysis showed that the variance of four major descriptors of 
tillering dynamics (Nmax

axes, Near, Sreg and Δplateau) were governed 
mainly by the variance of sowing density, GAIc and PARt. This 
was consistent with our starting assumptions. The duration of 
protection (Δprot) was required to represent reasonable tillering 
dynamics, although sensitivity analysis highlighted the low im-
pact of this parameter compared to PARt and GAIc in the esti-
mation of the output of interest. Moreover, the light parameter 
had no impact on the different outputs of WALTer. Therefore, 
the realistic range of variation explored for PAR was not large 
enough to influence tiller regression in WALTer.

The detailed measurements available in expt 1 allowed il-
lustration that this simple model could accurately simulate the 
dynamics of tiller senescence. Parameter fitting allowed repro-
duction of the dynamics of tiller regression. The model was also 
able to accurately predict the final number of ears (per plant 
and per m−2) produced at the broad range of sowing densities 
applied in expt 2, with a single parameter set from one calibra-
tion at an agronomically realistic density (200 plants m−2). The 
dynamics of GAI were accurately simulated from sowing until 
800 °Cd and were then slightly overestimated until flowering. 
We have no explanation for this overestimation, as the simula-
tion of tillering and leaf senescence were good. However, there 
may have been some unknown factors affecting the simulation 
of organ size, and field measurement of GAI could have been 
also subject to some error. Experimental data for GAI were 
not available for the post-flowering period but because the dy-
namics of the number of green leaves were realistic, it is likely 
that the model allowed for a reasonable prediction of the GAI 
for this part of the cycle.

Genotypic variations have already been observed and char-
acterized on the phyllochron (He et al., 2012) and organ dimen-
sions (Dornbusch et al., 2011b), but we have not characterized 
genotypic variations of tillering traits due to the plasticity of 
tillering. Thus, WALTer could be used as a phenotyping tool 
to estimate GAIc and PARt of genotypes each sown at mul-
tiple densities (if experimental tillering dynamics are avail-
able). Furthermore, the fitted parameters in expt 1 and expt 2 
could not be considered as purely genotypic characteristics. 

These datasets integrated genotype × environment (G×E) inter-
actions, the tillering characteristics resulting both from wheat 
genotypes and from important environmental factors such as 
the availability of water, light or nitrogen. For example, expt 
1 was characterized by a water stress that has been shown to 
impact crops, especially final ear number (less important than 
usual at this sowing density). However, the good predictive 
ability of WALTer, after the optimization of a few key param-
eters, showed that the model provided a way to characterize and 
compare tillering dynamics of a set of genotypes evaluated in 
the same cropping conditions. The parameterisation was there-
fore able to capture the G×E interactions, allowing WALTer to 
reproduce the dynamics of plant architecture in various condi-
tions. WALTer does not integrate a dependency of tillering to 
nitrogen availability although this has a strong importance on 
tillering dynamics (Alzueta et al., 2012). As a first attempt to 
account for the effect of nitrogen availability on tillering, fur-
ther versions of the model could be implemented with a depend-
ency of GAIc and PARt on plant nitrogen status. In addition, 
WALTer could be coupled with other FSPMs accounting for ni-
trogen acquisition and allocation either by using the concept of 
critical N concentration and empirical relationships with light 
interception (Louarn and Faverjon, 2018, for legumes), or by 
using more mechanistic approaches describing the biological 
processes driving nitrogen and carbon metabolisms (Barillot 
et al., 2016a, b, for wheat at post-anthesis stages). However, 
not considering nitrogen in the tillering process in WALTer did 
not prevent accurate prediction of tillering dynamics at a large 
range of sowing densities.

CONCLUSIONS

Using simple rules, the WALTer model simulated the dynamics 
of tillering in response to plant density, providing a good fit 
with experimental data after fitting a relatively small number 
of parameters, and despite many unknowns in the experimental 
conditions. Indeed, remarkable features were reproduced by 
the model, in particular the tendency, with decreasing sowing 
density, to (1) shorten the duration of the plateau when the 
number of active tillers is maximal, (2) decrease the number 
of tillers regressing per °Cd and (3) decrease the fraction of 
tillers that regress. These results suggest that the small number 
of parameters in our model may be sufficient to represent the 
behaviour of a genotype. Despite its simplicity, the model im-
proved understanding of the factors involved in tillering be-
haviour and identified parameters that can be used to quantify 
the genotypic differences in tillering in wheat. The modelling 
approach was applied to homogeneous canopies, but the con-
struction of the model – an individual-based approach gov-
erned by intercepted light and local GAI – allows more general 
uses. One would be investigation of the consequences of early 
stresses affecting plant density, such as winter mortality. 
Indeed, WALTer could help to understand how the rate of mor-
tality and the stage of plant development interact with tillering 
potential to determine the efficiency of tiller density recovery. 
A  second use could be estimation of parameters for various 
genotypes and thus in performing genetic analyses. A  third 
use could be in studying the behaviour of genetically hetero-
geneous canopies such as cultivar mixtures or intercropping 
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systems involving several species. In these mixtures, compe-
tition for light may strongly modulate the composition of the 
crop (Barillot et al., 2014), with consequences for production 
or for synergistic interactions, such as disease control due to 
diverse resistance genes in the canopy (Vidal et al., 2017; see 
Borg et  al., 2018, for a review). In addition, the benefit ex-
pected from mixed crops/varieties also come from the ability 
of one component to compensate for accidents affecting an-
other component. Despite its simple rules, consideration of an 
explicit 3-D representation of a crop involves a non-negligible 
computational time. However, we have shown that by using an 
appropriate simulation design we can deal with this constraint 
and efficiently explore numerous combinations with a man-
ageable number of simulations. Therefore, the performance of 
the model should make it an appropriate tool for investigat-
ing (1) the efficiency of combinations of architecture or even 
(2) the evolution of traits in populations sown over several 
generations.

SUPPLEMENTARY DATA

Supplementary data are available online at https://academic.
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sition. SI-B: Organ elongation. SI-C: Organ final dimensions. 
SI-D: Organ death. SI-E: Results from expt 1.
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