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Abstract
The	integrated	responses	of	biological	systems	to	genetic	and	environmental	varia-
tion	result	in	substantial	covariance	in	multiple	phenotypes.	The	resultant	pleiotropy,	
environmental	effects,	and	genotype-	by-	environmental	interactions	(GxE)	are	foun-
dational	to	our	understanding	of	biology	and	genetics.	Yet,	the	treatment	of	corre-
lated	characters,	and	the	identification	of	the	genes	encoding	functions	that	generate	
this	covariance,	has	lagged.	As	a	test	case	for	analyzing	the	genetic	basis	underlying	
multiple	correlated	traits,	we	analyzed	maize	kernel	ionomes	from	Intermated	B73	x	
Mo17	(IBM)	recombinant	inbred	populations	grown	in	10	environments.	Plants	ob-
tain	elements	from	the	soil	through	genetic	and	biochemical	pathways	responsive	to	
physiological	 state	 and	environment.	Most	perturbations	 affect	multiple	 elements	
which	leads	the	ionome,	the	full	complement	of	mineral	nutrients	in	an	organism,	to	
vary	as	an	integrated	network	rather	than	a	set	of	distinct	single	elements.	We	com-
pared	quantitative	trait	loci	(QTL)	determining	single-	element	variation	to	QTL	that	
predict	 variation	 in	 principal	 components	 (PCs)	 of	 multiple-	element	 covariance.	
Single-	element	 and	multivariate	 approaches	detected	partially	 overlapping	 sets	 of	
loci.	QTL	influencing	trait	covariation	were	detected	at	loci	that	were	not	found	by	
mapping	single-	element	traits.	Moreover,	 this	approach	permitted	testing	environ-
mental	components	of	trait	covariance,	and	identified	multi-	element	traits	that	were	
determined	 by	 both	 genetic	 and	 environmental	 factors	 as	 well	 as	 genotype-	by-	
environment	 interactions.	Growth	environment	had	a	profound	effect	on	 the	ele-
mental	 profiles	 and	 multi-	element	 phenotypes	 were	 significantly	 correlated	 with	
specific	environmental	variables.	
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1  | INTRODUC TION

Elements	are	distinct	chemical	species,	and	studies	of	element	ac-
cumulation	frequently	investigate	each	element	separately.	There	
is	overwhelming	evidence,	however,	 that	element	accumulations	
covary	due	to	physical,	physiological,	genetic,	and	environmental	
factors.	 In	 a	 dramatic	 example	 in	Arabidopsis thaliana,	 a	 suite	 of	
elements	 responds	 to	Fe	deficiency	 in	 such	a	 concerted	manner	
that	 they	can	be	used	to	predict	 the	deficiency	or	sufficiency	of	
Fe	for	the	plant	more	accurately	than	the	measured	level	of	Fe	in	
plant	tissues	(Baxter	et	al.,	2008).	The	basis	of	this	covariation	can	
be	as	simple	as	co-	transport	of	multiple	elements.	IRT1	is	a	metal	
transporter	 capable	 of	 transporting	 Fe,	 Zn,	 and	Mn.	 IRT1	 is	 up-
regulated	in	low	Fe	conditions	resulting	in	an	environmentally	de-
pendent	link	between	Fe	and	other	ions	(Korshunova,	Eide,	Clark,	
Guerinot,	&	Pakrasi,	1999).	Other	pairs	of	co-	regulated	elements,	
such	as	Ca	and	Mg	which	share	homeostatic	pathways	in	Brassica 
oleracea	(Broadley	et	al.,	2008),	should	be	affected	predictably	by	
genetic	variation.	When	A. thaliana	recombinant	inbred	line	popu-
lations	were	grown	in	multiple	environments,	genetic	correlations	
among	 Li-	Na,	Mg-	Ca,	 and	 Cu-	Zn	were	 observed	 across	 all	 envi-
ronments	while	Ca-	Fe	and	Mg-	Fe	were	only	correlated	in	a	subset	
of	environments	(Buescher	et	al.,	2010).	Shared	genetic	regulation	
of	 ion	 transport	 without	 substantial	 environmental	 responsive-
ness	should	result	 in	 the	former	pattern,	along	with	significantly	
less	 capacity	 for	 homeostasis	 across	 environmental	 concentra-
tions	 and	 availabilities	 of	 elements.	 Environmentally	 responsive	
molecular	 mechanisms,	 reminiscent	 of	 IRT1	 upregulation,	 could	
result	in	environmentally	variable	patterns	of	correlations.	Baxter,	
Gustin,	 Settles,	 and	Hoekenga	 (2013)	 previously	 tested	 element	
seed	concentrations	for	correlations	in	the	maize	Intermated	B73	
x	Mo17	(IBM)	recombinant	inbred	population,	finding	several	cor-
related	element	pairs,	the	strongest	of	which	was	between	Fe	and	
Zn.	Yet,	 few	QTL	 impacting	more	 than	one	element	were	 found,	
possibly	due	to	QTL	with	small	effects	on	multiple	elements	fail-
ing	 to	 exceed	 the	 threshold	 of	 observation	 when	 mapping	 on	
single-	element	 traits	 with	 limited	 numbers	 of	 lines.	 Thus,	 while	
understanding	 the	 factors	 driving	 individual	 element	 accumula-
tion	 is	 important,	we	must	consider	 the	 ionome	as	a	network	of	
co-	regulated	 and	 interacting	 traits	 (Baxter,	 2009).	 We	 propose	
that	formally	considering	this	coordination	between	elements	can	
provide	deeper	insight	than	focusing	on	each	element	in	isolation	
and	that	this	will	be	a	general	feature	of	massively	parallel	pheno-
typing	data	and	homeostatic	systems.

Multivariate	 analysis	 techniques,	 such	 as	 principal	 compo-
nents	 analysis	 (PCA),	 can	 reduce	data	dimension	 and	 summarize	
covariance	 of	 multiple	 traits	 as	 vectors	 of	 values	 by	 minimizing	
the	variances	of	 input	 factors	 to	new	components.	When	multi-
ple	phenotypes	covary,	as	occurs	for	the	elements	in	the	ionome,	
this	approach	may	complement	single-	element	approaches	by	de-
scribing	trait	relationships.	In	studies	on	crops	such	as	maize,	PCA	
has	been	used	as	a	strategy	to	consolidate	variables	that	may	be	
redundant	or	reflective	of	a	common	state	 (Bouchet	et	al.,	2017;	

Buescher,	Moon,	Runkel,	Hake,	&	Dilkes,	2014;	Burton	et	al.,	2015;	
Frey,	 Presterl,	 Lecoq,	Orlik,	&	Stich,	 2016;	 Shakoor	 et	al.,	 2016).	
PCA	 has	 proved	 useful	 in	 previous	 QTL	 mapping	 efforts,	 facili-
tating	detection	of	new	PC	QTL	not	found	using	univariate	traits	
in	analyses	of	root	system	architecture	 in	rice	(Topp	et	al.,	2013)	
and	 kernel	 attributes,	 leaf	 development,	 ear	 architecture,	 and	
enzyme	activities	in	maize	(Choe	&	Rocheford,	2012;	Liu,	Garcia,	
McMullen,	&	Flint-	Garcia,	2016;	Zhang	et	al.,	2010).	In	the	current	
study,	we	expect	that	elemental	variables	are	functionally	related	
and	therefore	need	new	traits	to	describe	elemental	covariation.	
Since	we	do	not	know	the	exact	nature	of	these	relationships,	and	
the	 ionome	 varies	 depending	 on	 environment,	 PCA	 is	 useful	 in	
that	it	does	not	require	a	priori	definition	of	relationships	between	
variables.	If	the	PCA	approach	leads	to	novel	loci	and	insights	into	
how	the	ionome	is	functioning,	it	will	be	a	valuable	addition	to	the	
study	of	mineral	nutrient	regulation.

Here	we	show	that	developing	multivariate	traits	reveals	envi-
ronmental	and	genetic	effects	 that	are	not	detected	using	single	
elements	as	 traits.	We	performed	PCA	on	element	profiles	 from	
the	maize	IBM	population	(Lee	et	al.,	2002)	grown	in	10	different	
environments.	 Different	 relationships	 between	 elements	 were	
identified	 that	 depended	 on	 environment.	 QTL	 mapping	 using	
multi-	element	PCs	as	 traits	was	carried	out	within	each	environ-
ment	 separately.	 Comparing	 these	multivariate	QTL	mapping	 re-
sults	 to	 previous	 single-	element	QTL	 analyses	 of	 the	 same	 data	
(Asaro	 et	al.,	 2016)	 and	 demonstrates	 that	 a	 multivariate	 ap-
proach	 uncovers	 unique	 loci	 affecting	multi-	element	 covariance.	
Additionally,	experiment-	wide	PCA	performed	on	combined	data	
from	all	environments	produced	components	capable	of	separating	
lines	by	environment	based	on	their	whole-	ionome	profile.	These	
experiment-	wide	 factors,	 while	 representative	 of	 environmental	
variation,	 also	 exhibited	 a	 genetic	 component,	 as	 loci	 affecting	
these	traits	were	detected	through	QTL	mapping.	This	shared	in-
volvement	in	element	covariation	is	the	expectation	of	genetic	and	
environmental	variation	resulting	in	adjustments	to	the	physiolog-
ical	mechanisms	underlying	adaptation.

2  | METHODS

2.1 | Field growth and data collection

2.1.1 | Field growth and elemental profile analysis

Lines	belonging	to	the	Intermated	B73	x	Mo17	recombinant	inbred	
(IBM)	population	 (Lee	et	al.,	2002)	were	grown	 in	10	different	en-
vironments:	Homestead,	Florida	in	2005	(220	lines)	and	2006	(118	
lines),	West	 Lafayette,	 Indiana	 in	 2009	 (193	 lines)	 and	 2010	 (168	
lines),	 Clayton,	 North	 Carolina	 in	 2006	 (197	 lines),	 Poplar	 Ridge,	
New	York	in	2005	(256	lines),	2006	(82	lines),	and	2012	(168	lines),	
Columbia,	Missouri	 in	2006	(97	lines),	and	Ukilima,	South	Africa	 in	
2010	(87	lines).	Elemental	analysis	was	carried	out	in	a	standardized	
inductively	 coupled	 plasma	 mass	 spectrometry	 (ICP-	MS)	 pipeline	
previously	described	in	detail	(Asaro	et	al.,	2016).	Analytical	outlier	
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removal	 and	 weight	 normalization	 was	 performed	 following	 data	
collection	as	described	in	our	previous	analysis	of	these	data.

2.2 | Computational analysis

2.2.1 | Element correlation analysis

Within	environments,	190	Pearson	correlation	coefficients	were	cal-
culated,	one	for	each	pair	of	the	20	measured	elements.	To	control	
for	multiple	 tests,	we	 applied	 a	 Bonferroni	 correction	 at	 an	 alpha	
level	of	0.05.	Given	190	possible	combinations,	correlations	with	a	
p-	value	below	0.05/190	=	0.00026	were	regarded	as	significant.

2.2.2 | Principal components analysis of ionome 
variation within environments

Elements	prone	to	analytical	error	(B,	Na,	Al,	As)	were	removed	be-
fore	to	PC	analysis,	leaving	16	elements:	Mg,	P,	S,	K,	Ca,	Mn,	Fe,	Co,	
Ni,	Cu,	Zn,	Se,	Rb,	Sr,	Mo,	and	Cd.	B,	Na,	Al,	and	As	have	a	fairly	low	
signal	 to	noise	ratio;	because	all	elements	are	scaled	together	 in	a	
PCA,	including	these	elements	would	increase	the	amount	of	noise	
variation	going	into	the	PCA.	In	an	attempt	to	summarize	the	effects	
of	genotype	on	covariance	of	ionomic	components,	a	PCA	was	done	
using	 elemental	 data	 for	 each	 of	 the	 10	 environments	 separately.	
The prcomp	 function	 in	R	with	scale	=	TRUE	was	used	for	PCA	on	
elemental	data	to	perform	PCA	on	the	line	average	element	values	in	
an	environment.	This	function	performs	singular	value	decomposi-
tion	on	a	scaled	and	centered	version	of	the	input	data	matrix,	com-
puting	 variances	with	 the	 divisor	N-	1.	 Sixteen	 PCs	were	 returned	
from	each	environment.	The	IBM	population	is	a	 large	and	diverse	
population	and	we	observe	extensive	variation	across	the	elements,	
so	even	a	small	proportion	of	variation	could	explain	a	substantial	
amount	of	actual	variation.	We	used	a	PCA	scree	plot	to	guide	our	
choice	of	a	2%	cutoff	(Figure	S1).	After	removal	of	PCs	accounting	
for	 less	 than	2%	of	 the	variance,	 the	10	sets	of	PCs	were	used	as	
traits	in	QTL	analysis.	Variance	proportions	and	trait	loadings	for	all	
PCs	calculated	across	10	environments	are	provided	in	Table	S3.

2.2.3 | QTL mapping: principal components

Quantitative	 trait	 loci	mapping	was	done	using	stepwise	 forward–
backward	regression	in	R/qtl	(Broman	&	Speed,	2002)	as	described	
previously	for	element	phenotypes	(Asaro	et	al.,	2016).	The	mapping	
procedure	was	done	for	each	environment	separately,	with	PC	line	
means	for	RILs	in	the	given	environment	as	phenotypes	and	RIL	gen-
otypes	as	input.	The	stepwiseqtl	function	was	used	to	produce	an	ad-
ditive	QTL	model	for	each	PC,	with	the	max	number	of	QTL	allowed	
for	each	trait	set	at	10.	The	95th	percentile	LOD	score	from	1,000	
scanone	permutations	was	used	as	the	penalty	for	addition	of	QTL.	
One	thousand	permutations	were	done	for	every	trait–environment	
combination.	The	QTL	model	was	optimized	using	refineqtl	for	maxi-
mum	likelihood	estimation	of	QTL	positions.	The	locations	of	the	PC	
QTL	 detected	 in	 this	 study	were	 compared	 to	 the	 single-	element	

QTL	from	our	previous	study.	Loci	were	considered	distinct	if	they	
were	at	least	25	cm	away	from	any	single-	element	QTL	detected	in	
the	environment	in	which	the	PC	QTL	was	detected.	This	serves	as	
a	conservative	control	in	order	to	minimize	the	mistaken	assessment	
of	novelty	for	QTL	with	small	changes	in	peak	position.

2.2.4 | QTL by environment analysis: PCA across 
environments

The	16	most	precisely	measured	elements	were	used	 for	an	addi-
tional	principal	components	analysis.	Again,	the	prcomp	function	in	
R	with	scale	=	TRUE	was	used	for	PCA	on	elemental	data;	however,	
all	16	element	measurement	values	in	all	lines	in	all	of	the	10	envi-
ronments	were	combined	into	one	PCA.	These	PCs	are	referred	to	
as	across-	environment	PCs	(aPCs).	Element	loadings	were	recorded	
and	plotted	along	with	lines	colored	by	environment	for	aPCs	1	and	
2	(Figure	S4).	The	first	seven	aPCs	explained	93%	of	the	total	covari-
ation	of	these	traits.	A	linear	model	was	used	to	test	the	relationship	
of	environmental	parameters	on	 these	aPCs.	All	 seven	aPCs	were	
also	used	for	stepwise	QTL	mapping	by	the	same	method	described	
above,	with	1,000	permutations	for	every	trait–environment	combi-
nation	used	to	set	95th	percentile	significance	thresholds.

2.2.5 | QTL by environment analysis: projection- 
PCA across environments

The	 sets	of	 lines	grown	 in	each	our	10	environments	were	drawn	
from	 the	 same	 population	 (Lee	 et	al.,	 2002)	 but	 different	 subsets	
were	 grown	 and	 harvested	 in	 different	 environments.	 To	 achieve	
common	multivariate	summaries	for	all	lines	and	growouts,	we	per-
formed	an	alternative	PCA	using	a	smaller	set	of	common	lines.	We	
then	projected	the	loadings	from	this	PCA	onto	the	full	dataset,	as	
follows.	First,	a	PCA	was	conducted	on	16	lines	common	to	six	of	the	
10	environments	(FL05,	FL06,	IN09,	IN10,	NY05,	NY12).	The	load-
ings	for	each	PC	from	this	PCA	were	then	used	to	calculate	values	
from	full	set	of	lines	across	10	environments	to	generate	PCA	pro-
jections	 (PJs).	 These	 derived	 values	 based	 on	 a	 common-	line	 PCA	
were	compared	 to	previously	described	aPC	values	 from	 the	PCA	
done	on	all	lines	at	once.	Correlations	between	PJs	and	aPCs	were	
computed	to	compare	the	outcomes	of	the	two	methods.

2.2.6 | Weather and soil data collection and analysis

Weather	data	for	FL05,	FL06,	IN09,	IN10,	NC06,	NY05,	NY06,	and	
NY12	were	downloaded	from	Climate	Data	Online	(CDO),	an	archive	
provided	by	the	National	Climatic	Data	Center	(NCDC)	through	the	
National	 Oceanic	 and	 Atmospheric	 Administration	 (http://www.
ncdc.noaa.gov/cdo-web/).	 Data	 were	 not	 available	 for	 the	 South	
Africa	 growout.	 Daily	 summary	 data	 for	 each	 day	 of	 the	 growing	
season	were	tabulated	from	the	weather	station	nearest	to	the	field	
location.	Weather	stations	used	to	obtain	data	for	each	location	are	
indicated	in	Table	S4.	Minimum	temperature	(in	degrees	Celsius)	and	
maximum	 temperature	 (in	 degrees	 Celsius)	were	 available	 in	 each	

http://www.ncdc.noaa.gov/cdo-web/
http://www.ncdc.noaa.gov/cdo-web/
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location.	With	these	variables,	average	minimum	temperature,	and	
maximum	temperature	were	calculated	across	the	120-	day	growing	
season	as	well	as	for	30	day	quarters.	Growing	degree	days	(GDD)	
were	 calculated	 for	 the	entire	 season	and	quarterly	using	 the	 for-
mula	 GDD	=	((Tmax + Tmin)/2)	−	10.	 No	max	 or	min	 thresholds	were	
used	in	the	GDD	calculation.

Data	 describing	 soils	 from	 each	 location	 were	 obtained	 from	
the	 Web	 Soil	 Survey	 provided	 by	 the	 USDA	 Natural	 Resources	
Conservation	Service	 (http://webso	ilsur	vey.sc.egov.usda.gov/App/
HomeP	age.htm).	A	representative	area	of	 interest	was	selected	at	
the	si te	of	plant	growth	using	 longi tude	and	 latitude	coordinates.	

When	an	area	contained	more	than	one	soil	type,	a	weighted		average	
of	measurements	from	all	soil	types	was	used.	The	data	we	down-
loaded	from	the	Web	Soil	Survey	were:	pH,	electrical	conductivity	
(EC)	 (decisiemens	per	meter	 at	25	degrees	C),	 available	water	 ca-
pacity	(AWC)	(centimeters	of	water	per	centimeter	of	soil),	available	
water	supply	(AWS)	(centimeters),	and	calc ium	carbonate	(CaCO3)	
content	(percent	of	carbonates,	by	weight).	Layer	options	were	set	
to	compute	a	weighted	average	of	all	soil	layers.

The	relationships	between	the	seven	experiment	wide	aPCs	and	
the	weather	and	soil	variables	were	estimated	by	calculating	Pearson	
correlation	coefficients	for	the	pairwise	relationships.	Correlations	

F IGURE  1 Element	correlations	diagrams	for	locations	with	repeated	measurements.	Pairwise	correlations	of	20	kernel	elements	in	
varying	environments,	shown	for	the	experiments	within	locations	having	data	from	multiple	years	(FL,	IN,	and	NY).	Correlations	were	
calculated	as	the	Pearson	correlation	coefficient	(rp)	between	concentration	values	for	each	element	pair.	Significance	was	evaluated	using	a	
Bonferroni	correction	for	multiple	tests	within	each	environment	and	set	at	a	corrected	p	value	of	0.05.	Lines	between	elements	represent	
significant	pairwise	correlations,	weighted	by	strength	of	correlation.	Positive	and	negative	correlations	are	represented	as	solid	and	dashed	
lines,	respectively.	Red	lines	indicate	correlations	present	in	at	least	5	of	the	6	environments	shown

http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm


     |  5FIKAS et Al.

were	also	calculated	between	average	element	values	and	soil	and	
weather	variables	in	each	environment.

3  | RESULTS

3.1 | Summary of data collection and previous 
analysis of single- element traits

We	previously	acquired	data	on	20	elements	measured	in	the	seeds	
from	Zea mays	L.	 Intermated	B73	x	Mo17	recombinant	 inbred	 line	
(IBM)	populations	(Lee	et	al.,	2002)	grown	in	10	different	location/
year	settings	 (Asaro	et	al.,	2016) .	This 	work	 is	briefly	 summarized	
here	as	it	serves	as	the	basis	of	our	comparison.	The	kernels	came	
from	RILs	of	the	IBM	population	cultivated	across	six	locations	and	
5	years.	Quantification	of	the	accumulation	of	20	elements	in	ker-
nels	was	done	using	inductively	coupled	plasma	mass	spectrometry	
(ICP- 	MS).	Weight-	adjusted	 element	measur ements	were	 used	 for	
a	QTL	analysis	to	detect	 loci	contributing	to	variation	 in	seed	ele-
ment	contents	(Asaro	et	al.,	2016).	The	current	study	is	motivated	
by	previous	demonstrations	of	elemental	correlations	and	mutant	
phenotype	analyses	which	indicate	extensive	relationships	between	
elements	(Baxter	et	al.,	2008;	Buescher	et	al.,	2010).	To	explore	this	
formal ly,	we	 further	analyzed	 these	data	 f rom	a	multiple-	element	
perspective.

3.2 | Element to element correlations

Sever al	 elements	 were	 highly	 correlated	 across	 the	 dataset,	 ex-
hibiting	pairwise	relationships	among	 lines	 in	a	given	environment	
that	passed	a	conservative	Bonferroni	correction	for	multiple	tests.	
Many	of	these	correlations	reflected	results	previously	obtained	by	
Baxter	et	al.	(2013),	such	as	the	strong	correlation	between	Fe	and	
Zn.	We	detected	209	pairs	of	elements	 that	were	genetically	cor-
related	out	of	1,900	possible	correlations	across	environments	(190	
pairs	per	environment).	We	expect	robust	genetic	influence	to	pro-
duce	repeated	observation	of	trait	correlations	in	multiple	environ-
ments.	Of	the	six	locations	included	in	this	experiment,	we	obtained	
data	from	three	locations	(FL,	IN,	and	NY)	from	plant	material	grown	

in	two	different	years.	Seven	element-	pairs	were	correlated	in	five	
or	more	of	these	six	environments:	Mn	and	Mg,	Mg	and	S,	Mg	and	P,	
S	and	P,	P	and	K,	Ca	and	Sr,	and	Fe	and	Zn	(Figure	1).	Other	element-	
pair	correlations	were	driven	by	the	genetic	variation	between	IBM	
RIL	in	fewer	environments.	For	example,	Mn	and	P	were	correlated	
in	FL05,	NY05,	and	NY12	(rp	=	0.50,	0.48,	0.51)	but	were	not	signifi-
cantly	correlated	in	FL06,	IN09,	or	IN10	(rp	=	0.31,	0.20,	0.18).	Thus,	
while	 some	 correlations	 exist	 in	multiple	 years	 and	multiple	 loca-
tions,	element	correlations	were	affected	by	both	location	and	year.

In	our	previous	single-	element	QTL	analysis	of	these	data,	loci	
comprising	QTL	for	two	or	more	different	elements	were	detected	
(Table	 1).	 This	 mutual	 genetic	 regulation	 of	 multiple	 elements	
was	 readily	 apparent	 in	 the	 trait	 correlations	 calculated	 within	
environments,	 as	 five	of	 the	nine	 shared-	element	QTL	exhibited	
corresponding	 element-	pair	 correlations	 within	 the	 given	 envi-
ronment.	 For	 example,	 phosphorous,	 which	was	 in	 three	 of	 the	
seven	most	reproducible	element-	pair	correlations,	exhibited	the	
highest	 incidence	of	 shared	QTL	with	other	 elements.	 These	 in-
cluded	common	QTL	between	P	accumulation	and	all	three	of	the	
reproducibly	P-	correlated	elements:	S	and	the	cations	K	and	Mg.	
In	addition,	P	was	affected	by	the	only	QTL	shared	between	more	
than	two	elements,	which	affected	P,	S,	Fe,	Mn,	and	Zn	accumula-
tion	in	NY05	(Figure	2).	Consistent	with	the	possibility	of	variation	
in	 transport	 processes	 affecting	 element	 accumulation	 correla-
tions,	overlapping	QTL	were	frequently	found	between	elements	
with	similar	structure,	charge,	and/or	type,	such	as	Ca	and	Sr	or	Fe	
and	Zn.	These	element	correlations	and	post	hoc	comparisons	of	
shared	QTL	localizations	suggest	a	genetic	basis	for	covariance	of	
the	ionome	in	the	RIL	population.

3.3 | Principal components analysis of covariance 
for elements in the ionome

To	better	describe	multi-	element	correlations	and	thereby	detect	loci	
controlling	accumulation	of	two	or	more	elements,	we	derived	sum-
mary	values	 representing	 the	 covariation	of	 several	 elements.	We	
implemented	 an	undirected	multivariate	 technique,	 principal	 com-
ponents	 analysis	 (PCA),	 for	 this	 purpose.	PCA	 reduced	 co-	varying	

Environment Chr Pos (cM)a El 1 El 2 El 3 El 4 El 5

NY05 1 400 Mn Ni — — —

NY05 3 323 Sr Ca — — —

NY05 5 201 Mn Zn P S Fe

NY06 1 532 Mn Mg — — —

IN09 4 306 Fe K — — —

IN10 2 213 Mo Cd — — —

NY12 5 203 Zn Fe — — —

FL05 1 230 B Mn — — —

FL05 4 159 Fe Zn — — —

aAverage	position.	

TABLE  1 Loci	affecting	variation	for	
multiple	elements	in	the	same	
environment
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elements	into	principal	components	(PCs),	orthogonal	variables	that	
account	for	variation	in	the	original	dataset,	each	having	an	associ-
ated	set	of	 rotations	 (also	known	as	 loadings)	 from	the	 input	vari-
ables.	 After	 removing	 elements	 prone	 to	 analytical	 artifacts,	 PCA	
was	conducted	using	 the	 remaining	16	elements	 from	each	of	 the	
10	environments	separately.	This	produced	16	principal	components	
in	 each	 environment	 (Figure	 S1)	 of	which	we	 retained	 for	 further	
analysis	only	PCs	representing	more	than	2%	of	the	total	variation.	
This	resulted	in	as	few	as	11	and	as	many	as	15	PCs	depending	on	
environment.

Remarkably,	there	is	substantial	overlap	in	the	loadings	of	many	
elements	 in	 the	 first	 and	 second	 PCs	 across	 some	 environments,	
suggesting	a	 reproducible	effect	of	genetic	 variation	on	 the	cova-
riance	of	elemental	accumulation	in	these	environments	(Figure	3).	
Additionally,	 the	 loadings	of	elements	are	consistent	with	 the	pair	
wise	relationships	observed	in	the	element-	by-	element	correlations.	
For	example,	the	chemical	analogs	Ca	and	Sr	frequently	load	PCs	in	
a	similar	direction.	The	PC	loadings	derive	from	inputs	of	several	ele-
ments	to	a	single	PC	variable.	All	retained	PCs	in	all	10	environments	
have	a	loading	contribution	of	at	least	0.25	in	magnitude	from	two	or	
more	elements.	While	some	patterns	existed	across	environments,	
many	PC	loadings	differed	in	both	magnitude	and	direction	accord-
ing	to	environment.	This	suggests	instability	of	element-	pair	correla-
tions	across	the	environments.	We	used	correlation	tests	of	element	
loadings	to	detect	PCs	stemming	from	shared	biological	processes	in	
each	environment.	This	identified	PCs	from	each	environment	were	
constructed	 from	 similar	 relationships.	 Because	 loading	 direction	
is	 arbitrary,	 both	 strong	 positive	 and	 strong	 negative	 correlations	

were	examined.	Fifty-	two	pairs	of	PCs	exhibited	 loadings	 correla-
tions	with	a	Pearson	correlation	coefficient	greater	than	0.75	or	less	
than	−0.75	(Figure	S2).	Thus,	the	PC	analyses	of	data	across	different	
locations	described	similar	patterns	of	elemental	covariation,	while	
not	necessarily	recovered	in	the	same	rank	order.

3.4 | QTL mapping of ionomic 
covariance components

The	PCs	from	each	environment	were	used	as	traits	for	QTL	detec-
tion.	 Stepwise	QTL	mapping	 using	 these	 derived	 traits	 yielded	93	
QTL	that	exceeded	an	statistical	threshold	of	α	=	0.05	estimated	by	
1,000	permutations	performed	for	each	trait–environment	combina-
tion	(Figure	4c).	QTL	were	found	for	PC	traits	explaining	both	large	
and	smaller	proportions	of	variation	(Table	S1).	Fifty-	six	of	these	QTL	
affecting	multiple-	element	covariance	components	overlapped	with	
previously	 detected	 single-	element	QTL	 in	 the	 same	 environment	
(Asaro	et	al.,	2016)	(Figure	4a).	In	some	cases,	two	or	more	PC	traits	
within	 an	 environment	 resolved	 to	 one	 single-	element	 QTL.	 This	
was	observed	particularly	for	elements	with	strong	effect	QTL,	such	
as	Mo,	Cd,	and	Ni.	For	example,	in	IN10,	PC2,	and	PC10	both	have	
QTL	that	co-	localize	with	the	Cd	QTL	on	chromosome	2.	Likewise,	
in	NY05,	 PC3,	 PC5,	 PC6,	 and	 PC9	 all	 detect	QTL	 coinciding	with	
the	 large-	effect	Ni	QTL	on	chromosome	9.	Each	of	 these	PCs	are	
comprised	 of	 varying	 loadings	 of	 Ni,	 along	 with	 other	 elements.	
This	demonstrates	that,	although	the	relationship	among	elements	
described	by	each	PC	is	distinct,	a	locus	affecting	a	single-	element	
can	be	detected	due	to	loading	of	that	element	into	more	than	one	
PC.	This	repeated	detection	of	the	same	locations	contributes	to	the	
higher	number	and	proportion	of	detected	PC	QTL	that	were	shared	
with	element	QTL	(56/93)	than	element	QTL	that	were	shared	with	
PC	QTL	(18/79),	although	the	same	genomic	locations	underlie	this	
overlap.

Quantitative	trait	loci	mapping	on	single	elements	may	not	have	
the	 power	 to	 detect	 loci	with	 small	 coordinate	 effects	 on	 several	
elements.	PC	traits	can	reveal	new	QTL	and	enhance	detection	of	
common	 genetic	 factors	 modulating	 elements.	 Thirty	 seven	 PC	
QTL	were	detected	at	loci	not	seen	using	single-	element	traits.	For	
instance,	 two	 PC5	QTL	 from	 the	NY06	 growout	were	 located	 on	
chromosome	 1	 at	 positions	 distinct	 from	 any	 single-	element	 QTL	
(Figure	4b).	 So	 as	 to	 not	 inflate	PC-	specific	QTL,	 they	 are	defined	
here	as	QTL	greater	than	25	cm	away	from	any	elemental	QTL	in	the	
same	environment.	Top	elemental	 loadings	of	PCs	and	the	overlap	
with	elemental	QTL	is	summarized	in	Table	S2.

Principal	component	QTL	analysis	captured	previously	observed	
single-	element	 QTL	 shared	 between	 elements	 within	 a	 particular	
environment.	Of	 the	 nine	 loci	 affecting	 variation	 for	multiple	 ele-
ments	 in	 the	 same	environment	 (Table	1),	 four	 loci	were	detected	
for	a	PC	trait	in	that	environment	(Table	2).	For	example,	in	NY05,	a	
QTL	was	identified	for	PC1	that	overlaps	QTL	that	were	detected	in	
the	single-	element	analyses	of	P,	S,	Fe,	Mn,	and	Zn	on	chromosome	
5	 (Figure	2).	The	 log	of	odds	score	 for	 this	NY05	PC1	QTL	was	as	
strong	 as	 the	 association	 between	 the	 locus	 and	Fe	 accumulation	

F IGURE  2 Multiple-	element	QTL.	Stepwise	QTL	mapping	
output	from	the	NY05	population	for	P,	S,	Fe,	Mn,	Zn,	and	PC1.	
Position	in	cM	on	chromosome	5	is	plotted	on	the	x-	axis	and	LOD	
score	is	shown	on	the	y-	axis.	Ninety-	fifth	percentile	of	highest	LOD	
score	from	1,000	random	permutations	is	indicated	as	horizontal	
line
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and	more	significant	than	the	P,	S,	Mn,	and	Zn	elemental	QTL.	Thus,	
the	QTL	 for	 a	multi-	element	PC	was	 as	 strong	 as	 the	best	 single-	
element	approach	for	this	previously	detected	multi-	element	locus.	
This	is	the	prediction	for	traits	that	will	affect	variation	in	multiple	el-
ements,	such	as	root	structure	or	homeostatic	processes.	For	these	
traits,	the	PC	approach	may	be	preferable	to	single	elements,	partic-
ularly	in	cases	where	single-	element	changes	are	of	small	effect	or	
below	detection	limits	while	concerted	changes	to	multiple	elements	
display	a	larger	effect.

Comparing	 PCs	 from	 different	 environments	 identified	 52	 PC	
pairs	with	similar	loadings.	Of	these,	37	had	no	QTL	for	one	or	both	
of	the	PCs,	consistent	with	a	common	environmental	factor	variable	
in	 those	 fields	 as	 the	 basis	 of	 that	 variation.	Of	 the	 remaining	 15	
pairs,	for	which	at	least	one	QTL	was	detected	for	each	member	of	
the	pair,	five	pairs	had	QTL	that	co-	localized.	In	all	five	cases,	the	QTL	
overlapping	between	these	pairs	of	PCs	correspond	to	a	large-	effect	

single-	element	QTL.	Six	PC	traits	belonging	to	three	correlated	pairs,	
PC4	 in	NY05	and	PC6	 in	 IN09	(rp	=	0.81),	PC4	 in	FL05	and	PC3	 in	
NY05	(rp	=	−0.84),	and	PC3	in	IN10	and	PC2	in	NC06	(rp	=	0.89),	de-
tected	a	QTL	coinciding	with	a	Mo	QTL,	a	locus	on	chromosome	1	
encoding	the	ortholog	of	the	A. thaliana	MOT1	molybdenum	trans-
porter.	The	same	scenario	exists	for	PC2	in	IN09	and	PC2	in	NY05	
(rp	=	−0.78),	 both	 affected	by	 the	QTL	on	 chromosome	2	 that	had	
a	 strong	 effect	 on	Cd	 in	 our	 single-	element	QTL	mapping	 experi-
ments.	Finally,	PC8	in	NC06	and	PC5	in	NY05	(rp	=	0.76)	both	map	
to	a	large-	effect	Ni	QTL.	Despite	the	resolution	to	QTL	detected	in	
a	single-	element	analysis,	in	all	of	these	cases,	correlations	between	
loadings	were	not	driven	by	a	single	element,	but	rather	by	similar	
loadings	 for	most	 elements	 (Figure	 S2).	 In	 addition	 to	 overlaps	 at	
these	strong-	effect	single-	element	QTL,	six	other	pairs	of	correlated	
PCs	have	QTL	that	do	not	overlap.	Correlated	PCs	with	QTL	at	dif-
ferent	 chromosomal	 positions	 in	 different	 environments	 could	 be	

F IGURE  3 PCA	plots	in	multiple	
environments.	PCA	plots	showing	PC1	
and	PC2	loadings	in	different	years	in	
three	locations	(FL,	IN,	and	NY).	PC1	and	
PC2	values	for	each	line	are	plotted	as	
points	and	PC1	and	PC2	loadings	of	each	
element	are	indicated	by	blue	arrows.	The	
data	for	different	years	for	each	of	three	
locations,	FL,	IN,	and	NY	are	plotted.	
The	percent	of	total	variation	explained	
by	each	PC	is	labeled	on	the	axes.	PC	
negative	and	positive	values	are	arbitrary,	
so	the	Indiana	x-	axes	are	switched	in	
direction	to	aid	visual	comparisons
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due	to	states,	such	as	 iron	deficiency,	 that	may	arise	 from	distinct	
processes	in	each	environment	(e.g.,	soil	pH	or	low	Fe	content)	yet	
will	generate	a	consistent	physiological	response.	In	these	cases,	the	
ionome	displays	similar	trait	covariance	but	different	genetic	archi-
tecture	consistent	with	genotype	by	environment	interactions.

The	PC	approach	also	detected	a	QTL	that	was	found	for	different	
single	elements	depending	on	environment.	The	same	region	on	chro-
mosome	7	was	identified	as	a	QTL	for	three	different	elements	in	vary-
ing	environments:	K	 in	 IN09	and	 IN10	 (Figure	5a),	Cu	 in	 IN09,	 IN10,	
NY05,	and	NY12	(Figure	5b),	and	Rb	in	NC06	(Figure	5c).	In	the	map-
ping	of	QTL	affecting	the	PC	traits,	we	detected	QTL	at	this	position	
in	some	of	the	same	environments	as	the	single-	element	QTL,	NC06,	
and	NY05,	as	well	as	in	new	environments,	NY06	and	SA10	(Figure	5d).	
In	SA10,	no	QTL	were	mapped	for	Cu,	Rb,	or	K	alone.	Yet,	this	locus	
was	detected	as	significantly	affecting	variation	in	PC9	calculated	from	
SA10,	the	loadings	of	which	show	a	strong	contribution	from	Cu	and	
Rb.	Likewise,	in	NY06,	no	QTL	were	mapped	for	Cu,	Rb,	or	K,	however,	
this	locus	was	detected	using	PC6	in	NY06	which	has	a	strong	loading	
contribution	from	K.	No	PC	QTL	were	detected	at	the	locus	in	NY12,	
IN09,	or	IN10.	Thus,	using	PC	traits	in	addition	to	single-	element	traits	
can	provide	an	improved	estimate	across	different	environments	for	
the	genetic	effect	on	phenotypic	variance	for	multi-	element	loci.

The	identification	of	both	unique	and	previously	observed	QTL	
through	this	multivariate	approach	demonstrates	the	complemen-
tary	nature	of	working	with	 trait	 covariance	as	well	 as	 the	com-
ponent	traits	and	supports	previous	work	showing	that	elemental	
traits	are	mechanistically	interrelated.	The	repeated	finding	of	re-
sults	consistent	with	GxE	led	us	to	investigate	this	formally.

F IGURE  4 Principal	component	QTL	from	10	environments.	PCs	were	derived	from	elemental	data	separately	in	each	of	10	
environments	and	used	as	traits	for	QTL	mapping.	(a)	One	hundred	and	seventy-	two	total	element	and	PC	QTL	were	mapped.	The	two	boxes	
represent	the	79	and	93	elemental	and	PC	QTL,	respectively.	Eighteen	element	QTL	overlap	with	PC	QTL	from	the	same	environment.	
Fifty-	six	PC	QTL	overlap	with	element	QTL	from	the	same	environment.	Sets	of	non-	unique	QTL	are	shown	in	the	center	box.	QTL	unique	
to	elements,	61,	and	to	PCs,	37,	are	shown	outside	of	the	shared	box.	(b)	QTL	mapping	output	for	PC5	from	the	NY06	population.	Position	
on	chromosome	1	is	shown	on	the	x-	axis,	LOD	score	is	on	the	y-	axis.	All	significant	NY06	element	QTL	on	chromosome	1	are	shown	in	grey	
(α	=	0.05).	Two	PC5	QTL,	at	169.7	and	271.2	cM,	are	unique	to	PC5	and	do	not	overlap	with	any	elemental	QTL.	A	PC5	QTL	at	379.7	cM	
is	shared	with	a	molybdenum	QTL.	(c)	Significant	PC	QTL	(α	=	0.05)	for	PCs	in	10	environments.	QTL	location	is	shown	across	the	10	
chromosomes	on	the	x-	axis.	Environment	in	which	QTL	was	found	is	designated	by	color.	QTL	are	represented	as	dashes	of	uniform	size	for	
visibility.	Four	regions	highlighted	in	grey	represent	the	four	loci	found	for	multiple	PC	traits	in	multiple	environments	(>2)

TABLE  2 Loci	associated	with	multiple	elements	and	PC(s)	in	the	
same	environment

Environment Chr Pos (cM)a Elements PC(s)

NY05 1 400 Mn,	Ni PC11

NY05 3 323 Sr,	Ca —

NY05 5 201 Mn,	Zn,	P,	S,	Fe PC1

NY06 1 532 Mn,	Mg —

IN09 4 306 Fe,	K —

IN10 2 213 Mo,	Cd PC2,	PC4

NY12 5 203 Zn,	Fe PC7

FL05 1 230 B,	Mn —

FL05 4 159 Fe,	Zn —

aAverage	position	of	all	element	QTL,	PC	QTL	are	within	5	cM.	
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3.5 | QTL by environment interactions

Our	prior	analyses	found	QTL	by	environment	interactions	contrib-
uting	to	accumulation	of	single	elements	(Asaro	et	al.,	2016).	Given	
element	correlations	and	partially	overlapping	sets	of	element	and	
PC	QTL,	we	expect	to	detect	QTL	by	environment	interactions	that	
impact	multi-	element	traits.	To	 look	at	 the	effects	of	environment	
on	genetic	 regulation	of	multi-	element	phenotypes,	we	conducted	
another	PCA,	this	time	on	element	concentrations	of	lines	from	all	
environments	combined.	If	the	genetic	and	environmental	variances	
do	not	interact,	we	expect	some	PCs	will	reflect	environmental	vari-
ance	and	others	will	reflect	genetic	variance.	However,	if	the	ionome	
is	reporting	on	a	summation	of	physiological	status	that	results	from	
genetic	and	environmental	influences,	some	PCs	calculated	from	io-
nomic	traits	should	be	both	correlated	with	environmental	 factors	
and	result	in	detectable	QTL.

3.5.1 | PCA across environments

The	covariance	between	element	accumulation	data	across	all	en-
vironments	 was	 summarized	 using	 principal	 components	 analysis.	
Elements	prone	to	analytical	artifacts	(B,	Na,	Al,	As)	were	removed	
prior	to	analysis.	Sixteen	across-	environment	PCs	(aPCs)	describing	
the	covariation	of	the	ionome	were	calculated	for	every	RIL	in	every	
environment.

Out	of	a	concern	that	the	different	 lines	present	 in	each	grow-
out	unduly	influenced	the	construction	of	PCs	specific	to	each	envi-
ronment,	we	performed	the	following	tests.	First,	we	looked	at	only	
those	 locations	where	 two	or	more	 growouts	were	 performed,	 so	
that	 location	replication	might	be	considered.	Second,	to	identify	a	
balanced	sample	set	present	 in	all	environments,	we	 identified	the	
lines	that	were	grown	in	all	of	these	six	growouts.	PCA	of	the	16	ele-
ment	measurements	was	conducted	across	environments	(Figure	S3)	
and	the	loadings	of	each	element	into	each	PC	were	recorded.	Thus,	
the	 loadings	 of	 the	 16	 elements	 in	 the	 PCA	were	 calculated	 from	
a	set	of	common	genotypic	checks	distributed	within	each	environ-
ment.	We	used	these	loadings	to	calculate	PCA	projections	(PJs)	from	
all	lines	in	all	environments.	In	this	way	we	made	comparisons	of	the	
same	calculated	values	in	each	environment.	We	found	that	the	PJs	
and	aPCs	were	strongly	correlated;	PJ1	and	aPC1	were	nearly	identi-
cal	(rp	=	0.998)	and	PJs	2–5	correlated	with	at	least	one	of	aPCs	2–5	at	
rp	>	0.66.	The	correlations	between	the	loadings	from	PJs	and	aPCs	
reflected	these	same	patterns.	To	reduce	the	incidence	of	artifacts	
or	overfitting,	aPCs	accounting	for	less	than	2%	of	the	total	variation	
were	eliminated	for	further	analyses,	leaving	seven	aPCs.

F IGURE  5 Chromosome	7	locus	detection	varies	by	location	
and	trait.	LOD	score	traces	for	QTL	detected	within	a	window	on	
chromosome	7.	Traces	are	colored	by	environment.	(a)	QTL	for	K	
in	IN09	and	IN10.	(b)	QTL	for	Cu	in	IN09,	IN10,	NY05,	and	NY12.	
(c)	QTL	for	Rb	in	NC06.	(d)	QTL	for	PCs	in	NC06,	NY05,	NY06,	and	
SA10
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Growth	 environment	 had	 a	 significant	 effect	 on	 all	 aPCs	
(p	<	0.001).	 The	 first	 two	 aPCs	 were	 highly	 responsive	 to	 the	
environment	 (Figure	6).	 The	 lines	 from	 each	 environment	 clus-
ter	 together	 when	 plotting	 aPC1	 vs	 aPC2	 values,	 with	 distinct	
separation	 between	 environments	 and	 years.	 In	 order	 to	 iden-
tify	 environmental	 factors	 responsible	 for	 ionome	 covariance,	
weather	station	and	soil	data	from	all	environments	except	SA06	
were	 recovered	 from	 databases	 (see	 Section	 2).	 Correlations	
were	 calculated	 between	 season-	long	 or	 quarter-	length	 sum-
maries	of	temperature	and	the	aPC	values	for	the	nine	environ-
ments.	 The	weather	 variables,	 all	 temperature-	based,	 were	 not	
correlated	 with	 aPCs	 in	 many	 cases,	 although	 correlations	 ex-
ceeding	rp	=	0.50	were	observed	for	aPCs	2,4,	and	5	(Figure	7a).	
The	 strongest	 correlation	 observed	 for	 aPC1	was	with	 average	
maximum	temperature	in	the	fourth	quarter	of	the	growing	sea-
son	 (rp	=	0.35)	 (Figure	7b)	 while	 the	 highest	 observed	 for	 aPC2	
was	 for	average	maximum	temperature	during	 the	 third	quarter	
(rp	=	0.58)	 (Figure	7c).	 The	 relatively	 small	 number	 of	 environ-
ments,	 substantial	 non-	independence	 of	 the	weather	 variables,	
and	likely	contribution	of	factors	other	than	temperature	limit	the	
descriptive	power	of	these	correlations.

The	 lack	 of	 particularly	 strong	 correlations	 between	 the	 first	
two	aPCs	and	temperature	variables	suggests	that	other	variables,	
possibly	 field-	to-	field	 variation	 in	 soil	 composition,	 fertilizer	 appli-
cation,	humidity,	or	abiotic	 factors,	are	 likely	 to	have	an	 influence.	
Correlations	were	also	calculated	between	environment	averages	of	
the	PCs	and	soil	 variables	 (Figure	7d).	While	 the	majority	of	 these	
features	were	not	found	to	be	highly	correlated	with	aPCs,	we	did	
observe	 a	 strong	 negative	 correlation	 between	 aPC2	 and	 soil	 pH	
(rp	=	−0.78)	(Figure	7e).

In	order	to	determine	genetic	effects	on	these	components,	the	
calculated	values	 for	aPC1	 through	aPC7	were	used	as	 traits	 for	
QTL	 analysis	 in	 each	 of	 the	 10	 environments.	 Unlike	 the	 earlier	
described	PCAs	done	in	environments	separately,	these	aPCs	are	
calculated	across	all	environments	and	are	 therefore	comparable	
between	 environments.	QTL	mapping	detected	 at	 least	 four	 loci	
controlling	each	aPC	and	a	total	of	38	QTL.	Nine	of	these	QTL	were	
found	in	common	across	multiple	environments	and	29	were	only	
detected	 in	a	single	environment	 (Figure	8).	Of	the	aPC	QTL,	the	
highest	LOD	score	QTL	were	present	in	multiple	environments	and	
corresponded	to	the	locations	of	the	two	strongest	single-	element	
QTL	previously	detected	from	the	same	data	(Mo	on	chromosome	
1	and	Cd	on	chromosome	2).	The	detection	of	QTL,	together	with	
the	 strong	 environmental	 determination	 of	 aPCs	 1–7,	 demon-
strates	that	 ionomic	covariation	results	 from	coordinate	environ-
mental	and	genetic	variation.

Based	on	the	stochastic	detection	of	QTL	in	only	a	subset	of	
growth	environments,	substantial	interaction	between	the	envi-
ronment	aPC	QTL	is	expected.	A	QTL	of	particular	interest	is	the	
aPC2	QTL	detected	 for	Mo	at	 the	ortholog	of	 the	MOT1	 locus.	
Previous	 studies	have	demonstrated	a	 connection	between	pH	
and	molybdenum,	with	Mo	availability	in	soil	being	increased	by	
high	pH.	 It	was	found	that	 the	MOT1	 locus	 in	A. thaliana	deter-
mines	response	to	pH	changes	and	resultant	changes	in	Mo	avail-
ability	 in	 an	allele-	specific	manner,	 suggesting	an	adaptive	 role	
for	 variation	 in	MOT1	with	 respect	 to	 soil	 pH	 (Poormohammad	
Kiani	 et	al.,	 2012).	 The	 correlation	 between	 aPC2	 and	 pH	was	
significant	and	aPC2	identified	a	QTL	coinciding	with	a	Mo	QTL	
suggesting	 genetic	 variation	 in	 pH-	dependent	 changes	 to	 Mo	
availability	across	environments.	The	loading	magnitude	for	Mo	

F IGURE  6 PCA	Separates	Lines	by	Environment.	PC1	and	PC2	separate	lines	by	environment.	Points	correspond	to	lines,	colored	by	
their	environment.	(a)	Across-	environment	PC1	versus	PC2	values	for	each	line,	colored	by	environment.	Percentage	of	total	variance	
accounted	for	by	each	PC	indicated	on	the	axes.	(b)	Average	across-	environment	PC1	versus	PC2	values	for	all	lines	in	each	environment
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into	aPC2	is	0.21	but	Co,	Ni,	Rb,	and	Cd	contribute	even	more,	
with	 loading	magnitudes	 of	 0.24,	 0.46,	 0.55,	 and	 0.41,	 respec-
tively.	QTL	for	aPC2	also	overlap	with	QTL	for	Cd	and	Ni.	With	
aPC2	representing	several	elements,	the	correlation	with	soil	pH	
and	overlap	with	single-	element	QTL	may	reflect	a	multi-	element	
phenotype	responding	to	changes	in	pH.	Further	investigation	is	
needed	 to	molecularly	 identify	 the	 genes	 underlying	 aPC	QTL,	
their	biological	roles,	and	their	interaction	with	specific	environ-
mental	variables.

4  | DISCUSSION

In	 this	 study,	 we	 demonstrate	 that	 multi-	trait	 analysis	 is	 a	 valu-
able	approach	for	understanding	the	 ionome.	The	 ionome	 is	a	ho-
meostatic	 system,	 and	 effects	 on	 one	 element	 can	 affect	 other	
elements	 (Baxter	et	al.,	 2008).	Many	biological	processes	 in	maize	
have	 the	potential	 to	 impact	 several	 elements.	 Indirect	 effects	on	
a	 suite	of	 elements	 have	been	demonstrated	 for	 numerous	physi-
ological	 states.	 Radial	 transport	 of	 nutrients	 is	 influenced	 in	 part	

F IGURE  7 aPC	and	Weather	Variable	Correlations.	(a)	Heatmap	showing	Pearson	correlation	coefficients	(rp)	between	averaged	aPC	1–7	
values	across	environments	and	averages	for	maximum	temperature,	minimum	temperature,	and	GDD	across	the	growth	season	and	for	
each	quarter	of	the	season.	Red	and	blue	intensities	indicate	strength	of	positive	and	negative	correlations,	respectively.	(b)	Average	aPC1	
values	for	nine	environments	versus	average	maximum	temperature	for	each	environment	over	the	fourth	quarter	of	the	growing	season.	
Points	colored	by	environment.	Pearson	correlation	coefficient	is	shown	within	the	graph.	(c)	Average	aPC2	values	for	nine	environments	
versus	average	maximum	temperature	for	each	environment	over	the	third	quarter	of	the	growing	season.	(d)	Heatmap	showing	correlations	
between	aPCs	1–7	and	soil	attributes:	pH,	electrical	conductivity	(EC),	available	water	capacity	(AWC),	available	water	storage	(AWS),	and	
calcium	carbonate	(CaCO3).	(e)	Average	aPC2	values	versus	pH
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by	endodermal	suberin,	the	structure	and	deposition	of	which	can	
adapt	in	a	highly	plastic	manner	in	response	to	deficiencies	in	K,	S,	
Na,	 Fe,	 Zn,	 and	Mn,	 potentially	modifying	 transport	 of	 additional	
elements	 (Barberon	 et	al.,	 2016).	 Other	 examples	 of	 indirect	 ef-
fects	 can	 be	 found	 in	 Arabidopsis	 TSC10A	 mutants	 with	 reduced	
3-	ketodihydrosphinganine	 (3-	KDS)	 reductase	 activity.	 Because	 3-	
KDS	reductase	is	needed	for	synthesis	of	the	sphingolipids	that	reg-
ulate	ion	transport	through	root	membranes,	these	mutants	exhibit	
a	 completely	 root-	dependent	 leaf	 ionome	phenotype	of	 increased	
Na,	K,	and	Rb,	and	decreased	Mg,	Ca,	Fe,	and	Mo	(Chao	et	al.,	2011).

In	line	with	the	abundance	of	concerted	element	changes	seen	in	
ionome	mutants,	we	detected	elemental	correlations	and	QTL	that	
were	present	 for	more	 than	one	element.	Covariance	observed	 in	
elements	with	similar	orbital	configurations,	such	as	Ca	and	Sr	or	K	
and	Rb,	is	expected	due	to	related	bonding	properties	and	functions	
in	redox	reactions.	The	alkali	metals	K	and	Rb	have	been	shown	to	
display	nearly	identical	absorption	and	distribution	patterns	(Lauchli	
&	Epstein,	1970).	Other	elements	are	 linked	through	co-	regulation	
or	common	biological	pathways.	Phosphorous	is	a	central	nutrient	in	
plant	development	and	regulates	other	elements,	complexing	with	
cations	in	the	form	of	phytic	acid	in	maize	seeds	(Lopez-	Arredondo,	
Leyva-	González,	 González-	Morales,	 López-	Bucio,	 &	 Herrera-	
Estrella,	 2014).	 Phosphorous	 exhibited	 the	 greatest	 number	 of	
QTL	overlap	with	other	elements,	 including	the	cations	K	and	Mg.	

Additional	co-	localized	QTL	included	those	between	Zn	and	Fe,	Mo,	
and	Mn,	 and	 the	 chemical	 analogs	Ca	 and	Sr.	 Zn	 and	Fe	 can	bind	
to	the	same	metal	transporters	and	metal-	binding	proteins	and	are	
thus	reciprocally	influenced	in	states	of	excess	or	deficiency	(Baxter,	
2009;	Lin	et	al.,	2009).	Three	out	of	three	of	the	Zn	QTL	that	overlap	
with	other	elements	involved	overlap	with	Fe,	demonstrating	the	ge-
netic	covariance	of	these	elements.	Mo	and	Mn	have	common	roles	
in	protein	assimilation	and	nitrogen	fixation	(Mulder,	1948;	Mulder	
&	Gerretsen,	 1952)	 and	 exhibit	 a	 regulatory	 relationship	 (Millikan,	
1948)	 which	 may	 explain	 their	 overlapping	 genetic	 features.	 The	
shared	 QTL	 detected	 in	 this	 study	 likely	 reflect	 genetic	 polymor-
phisms	affecting	 the	activity	of	multi-	element	 regulatory	genes	or	
genetic	changes	targeted	to	a	single	element	with	pleiotropic	effects	
on	other	elements	due	to	homeostatic	mechanisms	or	through	con-
current	multi-	element	behavior.

The	37	PC-	specific	loci	identify	loci	in	maize	with	the	potential	to	
expand	our	understanding	of	the	genetic	basis	of	ionome	variation.	
The	 small	 population	 sizes	 used	 here	 limit	 our	 ability	 to	 interpret	
QTL-	effect	sizes,	as	overestimation	of	QTL	effect,	i.e.,	Beavis	effect,	
is	expected.	Still,	the	large-	effect	QTL	detected	in	our	previous	anal-
ysis	(Asaro	et	al.,	2016)	reappear	as	PC	QTL.	There	is	no	reason	to	
think	 that	 effect-	size	estimation	will	 be	 any	more	accurate	 for	PC	
than	for	single	elements	but	careful	simulations	of	correlated	traits	
would	 be	 needed	 to	 demonstrate	 this.	 Regardless,	 it	 seems	 likely	

F IGURE  8 Across-	environment	PCA	
QTL	in	10	environments.	QTL	identified	
for	across-	environment	PCA	traits	(aPCs	
1–7).	(a)	Total	number	of	QTL	detected	
for	each	aPC,	colored	by	environment.	
(b)	Significant	QTL	(α	=	0.05)	for	aPCs	
1–7.	QTL	location	is	shown	across	10	
chromosomes	(in	cM)	on	the	x-	axis.	
Dashes	indicate	QTL,	with	environment	
in	which	QTL	was	found	designated	by	
color.	All	dashes	are	the	same	length	for	
visibility
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that	 the	 loading	of	elements	 into	PC	will	make	 these	 traits	 just	as	
subject	to	effect	size	overestimation	and	may	not	provide	additional	
support	for	the	large	size.

However,	in	the	previous	single-	element	QTL	analysis	with	this	
same	dataset,	we	tested	for	overestimation	using	a	more	stringent	
permutation	threshold	and	retained	31	of	63	location-	specific	QTL	
using	a	99th	percentile	threshold.	Biological	mechanisms	 involving	
multi-	element	processes	or	synchronized	element	adjustments	may	
drive	the	detection	of	unique	PC	QTL.	For	example,	the	ionome	has	
been	 shown	 to	 exhibit	 tissue-	dependent,	 multi-	element	 changes	
in	 response	 to	nitrogen	availability	 (Chu	et	al.,	2016).	A	unique	PC	
QTL	could	be	detected	at	a	nitrogen	metabolism	gene	if	variation	at	
that	gene	confers	additive	effects	on	multiple	elements.	Variation	in	
genes	involved	in	adaptive	responses	to	drought	stress,	soil	nutrient	
deficiencies,	or	toxic	micronutrient	 levels,	can	result	 in	covariation	
among	 several	 elements	 without	 particularly	 strong	 effects	 on	 a	
single	element	 (Baxter,	2009;	Baxter	&	Dilkes,	2012;	Baxter	et	al.,	
2008),	making	 such	 genes	 only	 identifiable	 as	QTL	when	working	
with	multivariate	traits.

The	 majority	 of	 molecularly	 identified	 ionomic	 mutants	 have	
multi-	element	 effects.	 In	 particular,	 mutants	 in	 genes	 involved	 in	
Casparian	strip	function	and	associated	root-	based	element	flow,	in-
cluding	MYB36	(Kamiya	et	al.,	2015),	ESB1	(Baxter	et	al.,	2009),	and	
LOTR1	(Li	et	al.,	2017),	all	display	pleiotropic	effects	on	multiple	ele-
ment	accumulation	in	the	leaves.	In	some	cases,	QTL	affecting	these	
traits	might	 be	 detected	using	 both	 single-		 and	multi-	element	 ap-
proaches,	as	was	the	case	with	the	chromosome	5	QTL	we	mapped	
for	P,	S,	Fe,	Mn,	and	Zn,	as	well	as	for	PC1.	However,	if	the	changes	
to	a	 suite	of	 elements	 are	 small	 for	 individual	 elements	or	uncon-
trolled	 environmental	 conditions	 inflate	 the	magnitude	 of	 error	 in	
measuring	the	genetic	effects,	a	multi-	ionomic	trait	may	be	a	better	
fit	for	QTL	detection.	The	fact	that	we	detect	both	overlapping	and	
unique	sets	of	element	and	PC	QTL	suggests	that	single	and	multi-
variate	approaches	should	be	used	 in	concert	 to	avoid	gaps	 in	our	
understanding	of	element	regulatory	networks.	The	evidence	sug-
gests	that	some	of	the	most	interesting	ionome	homeostasis	genes,	
including	 genes	 that	 are	 involved	 in	 environmental	 adaptation	 ex-
tending	 beyond	 the	 ionome,	 will	 be	 those	 best	 detected	 through	
multivariate	methods.

In	 addition	 to	 being	 a	 tool	 for	 understanding	 the	 genetics	 of	
multi-	element	 regulation,	 principal	 components	 also	 reflected	 en-
vironmental	variation.	An	across-	environment	PCA	of	all	 lines	was	
used	to	find	variables	that	describe	variation	between	lines	among	
all	10	environments.	The	first	two	across-	environment	PCs	capture	
most	of	 the	variation	 in	 the	 ionome	across	10	different	growouts,	
much	of	which	 is	environmental.	This	can	be	seen	 in	the	ability	of	
aPC1	and	aPC2	to	separate	growouts	by	location	and,	in	some	cases,	
different	 years	 within	 a	 location.	 Thus,	 components	 from	 a	 PCA	
done	across	environments	can	capture	the	 impact	of	environment	
on	the	ionome	as	a	whole.

In	our	across-	environment	analysis,	to	account	for	different	sets	
of	 IBM	 lines	within	 environments,	we	 tested	 an	 approach	 of	 pro-
jecting	 loadings	 from	a	PCA	on	a	smaller	 set	of	 lines	onto	 the	 full	

data	set.	The	similarity	of	the	PJs	and	aPCs	led	us	to	conclude	that	
the	sampling	effects	of	having	different	subsets	of	lines	in	each	en-
vironment	had	 little	effect	on	the	trait	covariance	estimation.	This	
approach	to	validate	aPCs	may	be	useful	in	other	studies	that	seek	
to	connect	data	from	disparate	experiments	and	federate	data	col-
lected	by	multiple	laboratories.	The	method	of	deriving	traits	across	
environments	 using	 a	 small	 set	 of	 genotypic	 checks	 opens	 up	 the	
possibility	 of	 using	multi-	trait	 correlations	 across	 environments	 to	
permit	very	large	scale	GxE	mapping	experiments	on	data	sets	not	
initially	intended	for	this	purpose.	Retrospective	analysis	of	data,	or	
further	data	generation	from	preexisting	biological	material	present	
in	both	public	and	private	spheres,	is	enabled	by	this	approach.	For	
example,	multiple	association	panels	have	been	constructed	for	trait	
mapping	 in	maize.	 Typically,	 comparison	 of	multi-	trait	 correlations	
across	 different	 populations	 is	 inhibited	by	 our	 inability	 to	 ensure	
the	1:1	correspondence	of	traits.	By	using	the	subset	of	lines	com-
mon	to	all	mapping	populations	to	create	a	projection,	comparable	
traits	could	be	reflected	onto	to	full	datasets	for	comprehensive	ge-
netic	evaluation	and	the	loci	detected	in	each	panel	could	then	be	
compared,	as	we	have	done	here.

Principal	component	analysis	on	all	environments	is	a	way	to	find	
variation	resulting	from	environmental	factors	that	impacts	multiple	
elements,	for	example	weather	or	soil	variables.	The	weather	data	
available	to	us	for	this	study	were	limited	to	maximum	and	minimum	
temperature.	Temperature	can	alter	element	accumulation	by	influ-
encing	transpiration	rate	which	in	turn	modulates	elemental	move-
ment	 (Barber,	Mackay,	 Kuchenbuch,	 &	 Barraclough,	 1988;	 Baxter	
et	al.,	2009;	Mozafar,	Schreiber,	&	Oertli,	1993).	We	observed	 the	
strongest	correlations	for	aPC1	and	aPC2	during	the	third	and	fourth	
quarters	of	 the	growing	season.	Because	seed	filling	occurs	 in	 the	
latter	part	of	 the	season,	 temperature	during	 this	 time	could	have	
a	pronounced	effect	on	seed	elemental	composition.	However,	the	
lack	 of	 striking	 correlations	 between	 environmental	 components	
and	the	projections	and	aPCs	suggests	environmental	factors	other	
than	temperature	must	be	the	strongest	factors.	Information	on	soil	
properties	 provided	 insight	 into	 a	 potential	 driver	 of	 the	 environ-
mental	variability	captured	by	aPC2,	with	a	strong	negative	correla-
tion	between	aPC2	and	soil	pH.	Soil	pH	alters	element	availability	in	
soil,	and	pH	differences	between	locations	should	result	in	different	
kernel	ionomes.	Although	soil	element	content	measurements	were	
not	available	for	this	dataset,	differences	in	soil	element	concentra-
tion	could	also	impact	element	covariation.

Quantitative	 trait	 loci	 were	mapped	 to	 the	 aPCs	 that	 describe	
whole-	ionome	variation	across	environments.	These	loci	may	encom-
pass	genes	that	pleiotropically	affect	the	ionome	in	an	environmen-
tally	responsive	manner.	The	correlation	between	aPC2	with	pH	as	
well	as	the	finding	of	an	aPC2	QTL	for	Mo	exemplifies	the	possibility	
of	using	across-	environment	PCA	to	detect	element	homeostasis	loci	
that	respond	to	a	particular	environmental	or	soil	variable	and	pro-
duce	a	multi-	element	phenotype.	To	the	extent	that	these	differences	
are	adaptive,	these	alleles	can	contribute	to	local	adaptation	to	soil	
environment	and	nutrient	availability.	The	identification	of	aPC	QTL	
indicates	that	the	variation	captured	by	aPCs	has	both	environmental	
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and	 genetic	 components.	Our	 previous	 study	 using	 single-	element	
traits	found	extensive	GxE	in	this	dataset	through	formal	tests,	so	it	
is	not	surprising	that	we	see	a	large	environmental	component	as	well	
as	genetic	factors	contributing	to	variation	in	the	across-	environment	
PCs.	 Experiments	 with	 more	 extensive	 weather	 and	 soil	 data,	 or	
carefully	manipulated	environmental	contrasts,	are	needed	to	create	
models	with	 additional	 covariates	 and	precisely	 represent	 environ-
mental	impacts.	Considering	location	and	geographical	information,	
such	 as	 proximity	 to	 industrial	 sites	 or	 distance	 from	 the	 ocean,	
might	add	to	the	predictive	ability	of	such	models.	This	multivariate	
approach	could	be	especially	powerful	in	studies	with	extensive	and	
consistent	environmental	variable	recording,	such	as	the	“Genomes	
to	Fields”	Initiative,	where	specific	environmental	variables	could	be	
included	in	QTL	models	of	multi-	element	GxE.

5  | CONCLUSIONS

Here	we	have	shown	that	treating	the	ionome	as	an	interrelated	set	
of	traits	using	PCA	within	environments	can	identify	novel	loci.	PCA	
across	environments	allowed	us	to	derive	traits	that	described	both	
environmental	and	genetic	variation	in	the	ionome.
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