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SUMMARY Invasive fungal diseases carry high morbidity and mortality in patients un-
dergoing chemotherapy for hematological malignancies or allogeneic hematopoietic
stem cell transplantation. In order to prevent these life-threatening infections, antifungal
chemoprophylaxis plays an important role in daily clinical practice. Broad-spectrum anti-
fungal triazoles are widely used but exhibit disadvantages such as relevant drug-drug in-
teractions. Therefore, amphotericin B products or echinocandins can be an alternative in
selected patient populations. As these compounds are available as intravenous formula-
tions only, there is growing interest in extended dosing regimens. Although not ap-
proved for these agents, this strategy is a rational option, as these compounds have
properties suitable for this strategy, including dose-proportional pharmacokinetics, pro-
longed elimination half-life, and a large therapeutic window. As the use of extended
dosing regimens in antifungal prophylaxis is expanding in clinical practice, we reviewed
the pharmacokinetic and pharmacodynamic rationale for this strategy, animal model
data, dose escalation studies, and clinical trials supporting this concept.
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INTRODUCTION

Invasive fungal diseases (IFD) have high morbidity and mortality in children and adults
with acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML) or who are

undergoing hematopoietic stem cell transplantation (HSCT), as well as in solid organ
transplant recipients and patients with primary immunodeficiencies like chronic gran-
ulomatous disease. As early diagnosis of IFD is difficult and early treatment is associated
with better outcome, antifungal chemoprophylaxis, empirical antifungal therapy, and
preemptive treatment are widely used strategies and play an important role in daily
clinical practice (Fig. 1) (1–6).

Regarding prevention of IFD, the majority of clinical trials on antifungal prophylaxis
investigated the use of triazoles, such as fluconazole, itraconazole, voriconazole, or
posaconazole. All these agents are available as oral and intravenous formulations and
are approved for the prophylactic setting. Unfortunately, antifungal triazoles exhibit
numerous drug-drug interactions, and the concurrent use of several chemotherapeutic
drugs, including but not limited to vincristine, a cornerstone in the treatment of
patients with ALL, is contraindicated. In addition, due to considerable variability in
gastrointestinal absorption and drug metabolism, plasma concentrations of itracona-
zole and voriconazole are unpredictable, which may impair clinical efficacy or increase
the risk for toxicity. Therefore, therapeutic drug monitoring (TDM) is strongly recom-
mended, which may also detect a low blood level in a patient with poor compliance
with medication regimens (7). Unfortunately, TDM of antifungal drugs is not available
in many clinical centers. Further issues associated with azole prophylaxis include
long-term safety, the threat of resistance (8, 9), and limited treatment options in the
case of breakthrough infections.

In contrast to antifungal triazoles, amphotericin B formulations and the class of
echinocandins are available as intravenous formulation only and are administered on a
once-daily (QD) basis. The daily intravenous administration may be of advantage for
patients not tolerating or being unable to adhere to oral medication but, at the same
time, is inconvenient and consumes resources. Extended dosing regimens of antifungal
prophylaxis are not approved for amphotericin B formulations and echinocandins but
are a rational option, as some of these compounds have properties suitable for
extended dosing intervals. These properties include dose-proportional pharmacoki-
netics, exposure-dependent pharmacokinetic/pharmacodynamic relationships, a pro-
longed elimination half-life, and a large therapeutic window (Fig. 2) (10, 11). In contrast,
a number of reasons speak against the use of oral or intravenous extended dosing
regimens of azoles. For example, for compounds available for oral administration that
have a long half-life, display linear pharmacokinetics, and are dosed once daily, such as
fluconazole, there is no true advantage to using extended dosing intervals. Indeed,
extending the dosing interval to 48 or 72 h may negatively impact upon patient
compliance, as drug adherence is more difficult with extended dosing intervals than it
is with a fixed daily dosing regimen. As it concerns the intravenous route, some of the
antifungal azoles do not have stable linear pharmacokinetics, and there is a major
concern of dose-dependent hepatic toxicity that is a class effect of the azoles and that
is well documented, at least for itraconazole and voriconazole. In addition, TDM is
recommended for most of the azoles, which further complicates administration at
extended dosing intervals.

Since there is increasing interest in the concept of extended dosing regimens in
antifungal prophylaxis and an expanding use of this strategy in daily practice, we aimed
to review the pharmacokinetic properties of antifungal agents used for this approach,
as well as the available preclinical and clinical data.
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PHARMACOKINETIC AND PHARMACODYNAMIC CONSIDERATIONS
Amphotericin B Products

The currently licensed amphotericin B formulations (amphotericin B deoxycholate
[generic; AmB-D], amphotericin B lipid complex [Abelcet], and the liposomal formula-
tion of amphotericin B [LAMB; AmBisome]) are available as intravenous formulation
only and exhibit activity against an extended spectrum of fungi. They are approved for
first- or second-line treatment of IFD and, limited to AmB-D and LAMB, empirical
antifungal therapy in persistently neutropenic children and adults. However, since the
label has never been pursued by the respective manufacturers, they are not approved
for the prophylactic setting.

Amphotericin B, as a compound, displays concentration-dependent fungicidal ac-
tivity against susceptible Candida and Aspergillus spp. and prolonged postantifungal
effects of up to 12 h duration in Candida albicans (12–16). In neutropenic mice with
experimental disseminated candidiasis or pulmonary aspergillosis receiving amphoter-

FIG 1 Antifungal strategies in immunocompromised patients at high risk for invasive fungal infection.

FIG 2 Principal requirements for agents suitable for extended dosing regimens.
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icin B by the intraperitoneal route, the ratio of peak plasma concentration (Cmax)/MIC
of the infecting isolate was the parameter that provided the best correlation with
outcome, which was assessed by the residual fungal tissue burden in target organs (17,
18). Notably, the different amphotericin B formulations display different physicochem-
ical and pharmacokinetic characteristics and demonstrate important differences in
antifungal efficacy which depend on the agent, the dose, and the type and site of
infection (16, 19, 20). However, only LAMB fulfills the criteria of dose-proportional,
prolonged exposure with potentially therapeutic concentrations in plasma coupled
with a large therapeutic window that allow for the administration of larger doses (Table
1) (16). Apart from a prolonged residence time in plasma, LAMB distributes into and
remains up to weeks in various tissues in a dose-dependent manner at drug concen-
trations above the MIC for many fungi. The observation that antifungal efficacy in
animals seems to correlate with drug tissue concentration and the long-term retention
of bioactive LAMB in plasma and different tissues provides support for the concept that
extended dosing intervals may be efficacious in the prophylaxis of invasive fungal
infections (21, 22).

Echinocandin Lipopeptides

The echinocandins are a newer class of systemic antifungal agents with broad-
spectrum activity against Candida and Aspergillus. The compounds are available as
intravenous formulation, display linear pharmacokinetics over a large dosage range,
have a long half-life that allows for once-daily dosing, and are generally very well
tolerated (Table 1). Among the currently licensed echinocandins anidulafungin, caspo-
fungin, and micafungin, only the latter is licensed for prophylaxis against invasive
infections by Candida spp. in the setting of prolonged neutropenia (23), but it is not
licensed for prophylaxis against invasive mold infection. Interestingly, a retrospective
observational study identified echinocandin prophylaxis as an independent risk factor
for invasive fungal infection in patients receiving remission induction chemotherapy for
AML (24), and the higher risk for breakthrough infection was seen for both yeast and
molds. The reason for this observation is unclear, but the results have to be confirmed
in future analyses before reconsidering the use of echinocandins in the prophylactic
setting. It is also important to note that preclinical studies suggested that echinocan-
dins are effective against Pneumocystis jirovecii, but the clinical relevance regarding the
prophylactic setting is unclear to date (25).

In vitro studies demonstrated that the echinocandins are able to kill most Candida
species. In contrast, when echinocandins are coincubated with Aspergillus fumigatus,
microscopy shows concentration-dependent damage to the fungus, which is, however,
able to recover in the absence of the antifungal compound (16, 20). For all three
echinocandins, fungicidal activity for Candida spp. was mainly dependent on concen-
tration and time; in addition, studies showed postantifungal effects for up to 12 h at
concentrations above the MIC (26, 27).

In a model using persistently neutropenic rabbits which were inoculated with
Candida spp., anidulafungin demonstrated highly predictable concentration-effect re-
lationships which were not seen for an experimental pulmonary aspergillosis model
(27). Murine kidney target models of disseminated candidiasis demonstrated that the
area under the concentration-time curve (AUC)/MIC ratio is the pharmacodynamic
parameter that predicts efficacy of all current echinocandins (11, 26, 28), whereas in
mice with invasive pulmonary aspergillosis, the Cmax/minimal effective concentration
(MEC) ratio was the parameter which was closely associated with efficacy (26, 29). Using
large data sets from two phase III trials of micafungin for invasive candidiasis, a
significant relationship between the AUC/MIC ratio of micafungin and mycological
response was found by population pharmacokinetics and regression analysis. Monte
Carlo simulations revealed a lower AUC/MIC target for C. parapsilosis than for other
Candida spp., which supported the concept of species-specific echinocandin suscepti-
bility breakpoints (11, 26, 28).
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Rezafungin (CD101) is a novel intravenous echinocandin which is structurally related
to anidulafungin. Compared to other echinocandins, the compound has increased
chemical stability and a long elimination half-life in plasma that provides the oppor-
tunity for extended dosing regimens (30, 31). Similar to other echinocandins, the
compound has broad-spectrum fungicidal activity against Candida and inhibitory
activity against Aspergillus in vitro (31–33), as well as potent dose-dependent antifungal
efficacy in neutropenic animal models of invasive aspergillosis and candidiasis (34).
Rezafungin showed dose-proportional plasma exposures, minor accumulation (30% to
55%), low clearance (�0.28 liter/h), long half-life (�80 h), and minimal renal excretion,
enabling once-weekly dosing (31, 35, 36). Rezafungin has undergone phase I/II clinical
trials, and the compound might be a candidate for prophylaxis of invasive Candida and
Aspergillus infections.

ANIMAL STUDIES EXPLORING EXTENDED DOSING REGIMENS
Liposomal Amphotericin B

The prophylactic administration of LAMB at dosages of up to 90 mg/kg of body
weight given daily or in an extended dosing regimen was investigated in a murine
model (Table 2). Mice were inoculated with Candida glabrata at 1 to 7 days or with C.
albicans at 3 or 6 weeks after the last administration of LAMB. Compared to the results
for untreated controls, significantly lower or no fungal burden was detected in target
tissues of the animals which had received LAMB prophylaxis (37). Similar results were
observed when LAMB was given at a single prophylactic dose of up to 20 mg/kg in
neutropenic mice challenged with A. fumigatus (38) or in immunocompetent and
immunocompromised mice challenged with Histoplasma capsulatum or C. albicans,
respectively (39). Notably, in a murine model, the highest concentrations of LAMB given
at cumulative doses of up to 225 mg/kg were measured in spleen and liver. The
concentrations of LAMB remained above the MIC for many fungal pathogens for up to
6 weeks in kidneys and spleen and for 1 week in lungs (37).

In addition to extended dosing regimens investigated for prophylaxis, extended
dosing intervals of LAMB were successfully evaluated as a therapeutic option in IFD. For
example, it has been demonstrated that extended dosing regimens using a maximum
dose of 20 mg/kg LAMB administered three times a week were successful in treating
neutropenic mice suffering from invasive C. albicans infection (40). Similar results were
observed in preclinical studies assessing therapy with LAMB given in extended dosing
intervals for coccidiomycosis, cryptococcosis, and histoplasmosis (21, 41–44).

Micafungin

One study in neutropenic mice demonstrated the potential utility of large doses of
micafungin administered at infrequent intervals for prophylaxis against pulmonary
aspergillosis. In this study, single intraperitoneal doses of micafungin at 5, 10, or
20 mg/kg administered 24 h prior to inoculation improved survival and suppressed the
lung fungal burden relative to the burden in untreated controls (38).

In the therapeutic setting, the effect of micafungin dose scheduling was investi-
gated in transiently neutropenic mice with disseminated C. glabrata infection. Dose-
ranging studies demonstrated that single doses of �50 mg/kg resulted in maximal
fungal decline without regrowth at day 7. The dose associated with 50% of maximal kill
(50% effective dose [ED50]) was then administered as a single dose at day 0, two equal
doses at days 0 and 3.5, or 7 equal doses given daily, which all had equivalent day 7
effects. Pharmacokinetic/pharmacodynamic modeling using human pharmacokinetic
data demonstrated that a single dose of micafungin of 1,400 mg would achieve
maximal fungal decline in humans, which corresponds to a single dose of 100 mg/kg in
the mouse model (45). The pharmacokinetics, efficacy, and safety of alternate dosing
regimens of micafungin were further investigated in a subacute neutropenic dissemi-
nated C. albicans infection model in rabbits. Micafungin was given over 12 days at 1, 2,
or 3 mg/kg every 24, 48, or 72 h, respectively. The pharmacokinetics of micafungin on
day 7 were linear, and all treatment groups showed significantly higher clearance of C.
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albicans from target tissues than was observed in untreated controls, indicating that
less-fractionated regimens of micafungin were as effective as once-daily treatment (46).

Taken together, these studies in neutropenic animals demonstrated that extended
dosing intervals have both preventive effects in invasive pulmonary aspergillosis and
therapeutic effects in disseminated candidiasis. While these experimental data may be
transferable to the other currently licensed echinocandins, no animal data on extended
dosing regimens exist to date for anidulafungin and caspofungin, respectively.

Rezafungin

Whereas data on extended dosing intervals for the prophylactic administration of
rezafungin are lacking to date, one preclinical study evaluated a single dose of
rezafungin in mice infected with select C. albicans, C. glabrata, and Candida parapsilosis
strains with a range of MICs. Assessing the residual fungal burden in kidneys after
7 days, dose-dependent activity was seen for each pathogen; the AUC/MIC ratio
correlated well with efficacy and was numerically lower for all three species than were
those of other echinocandins (47). In different pharmacokinetic/pharmacodynamic
models of invasive C. glabrata infection, target attainment over 4 weeks of therapy was
very likely after administration of a single-dose regimen at the MIC90 of 0.06 mg/liter
(48). These data suggest that rezafungin has great potential for treatment and prophy-
laxis of invasive Candida and Aspergillus infections with extended dosing regimens and
in preventing emergence of resistance through enhanced potency.

CLINICAL PHARMACOKINETICS AND SAFETY OF ESCALATED DOSAGES

Data on the clinical pharmacokinetics and safety of escalated dosages of antifungal
compounds are important in order to study these drugs given prophylactically in an
extended dosing regimen. Notably, many of the available data were retrieved from
studies performed in patients requiring empirical, preemptive, or targeted antifungal
therapy, whereas there is much less information from studies evaluating escalated
doses of antifungal compounds given as prophylaxis.

Liposomal Amphotericin B

Whereas there are no published data on the safety and pharmacokinetics of
escalated doses of LAMB given as prophylaxis, LAMB as empirical antifungal therapy
has been investigated in an open-label, sequential-dose-escalation, multidose pharma-
cokinetic study in persistently febrile neutropenic adults (Table 3). Daily doses of up to
7.5 mg/kg were well tolerated and followed dose-dependent pharmacokinetics with
increases of the mean AUC on the first day of treatment, consistent with reticuloen-
dothelial uptake and redistribution (49). In a subsequent phase I/II study, the maximum
tolerated dosage (MTD) of the compound was investigated at escalating dosages of up
to 15 mg/kg/day, concluding the MTD of LAMB to be at least 15 mg/kg/day. There was
an increase of serum creatinine of two times above baseline in one-third of the patients,
but this increase was not related to the dose. The mean AUC at 24 h revealed
dose-related, nonlinear, saturation-like pharmacokinetics with maximum plasma expo-
sure following administration of 10 mg/kg/day and decline in plasma exposure at 12.5
and 15 mg/kg/day (50).

In a similar study format, the safety and pharmacokinetics of LAMB was evaluated
at daily dosages of up to 10 mg/kg in neutropenic children requiring empirical or
targeted antifungal therapy. Infusion-related side effects occurred in 11% of 565
infusions, and serum creatinine levels increased significantly in cohorts receiving 5 and
10 mg/kg/day. Pharmacokinetic analyses revealed dose-dependent pharmacokinetics
similar to observations in adults and support pediatric dosages similar to those in adults
(51, 52).

Whereas the approved dosage range of LAMB is 3 to a maximum of 6 mg/kg/day,
and current guidelines recommend 3 mg/kg/day for empirical therapy and for treat-
ment of invasive candidiasis and aspergillosis (5, 6, 53, 54), these systematic phase II
dose-escalation trials demonstrate dose-dependent exposure and safety of single daily
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dosages of up to 10 mg/kg in both children and adults and the feasibility of adminis-
tration of larger dosages within this dosage range in extended intervals. Of note, a
population pharmacokinetic study of conventional (3 mg/kg/day) and intermittent
(10 mg/kg on day 1 and 5 mg/kg on days 3 and 6) dosages of LAMB in adults revealed
linear pharmacokinetics for both regimens, with body weight as a significant parameter
of impact on clearance (10).

Anidulafungin

Whereas published formal dose-escalation or MTD studies are lacking, the principal
feasibility of the administration of higher doses in an intermittent fashion has been
shown in patients receiving anidulafungin prophylactically at 200 or 300 mg every 48
or 72 h, respectively, which demonstrated an AUC over a 6-day period comparable to
that of the licensed regimen (55). Dosages explored in children resulted in exposure
equivalent to that obtained with approved standard doses in adults (56). However, data
on escalated dosages are lacking, and anidulafungin is not yet approved in the
pediatric population.

Caspofungin

Several trials in adults suffering from invasive candidiasis or from invasive aspergil-
losis evaluated the safety and pharmacokinetics of escalated dosages of caspofungin
(57–59). The data from these clinical trials demonstrate that caspofungin at dosages of
up to 200 mg/day is well tolerated and displays linear pharmacokinetics without
dose-limiting toxicity.

Administration of a dosage of 70 mg/m2/day to 12 children in the initial dose-
finding pharmacokinetic study and comparison to an adult dose of 70 mg/day showed
that the pharmacokinetic parameters (AUC0�24; Cmax and Cmin) at these higher doses
were similar to the results from comparisons at the approved lower dose (pediatric

TABLE 3 Overview of clinical trials exploring dose escalation of agents investigated for extended dosing regimensa

Authors, yr (reference) Compound, dose range, and patients Most relevant observations

Walsh et al., 1998 (49) LAMB at 1, 2.5, 5, or 7.5 mg/kg QD in 36 adults
with fever and neutropenia

Dose-dependent pharmacokinetics with slightly more
than dose-proportional increases in AUC; MTD
criteria not reached

Walsh et al., 2001 (50) LAMB at 7.5, 10, 12.5, or 15 mg/kg QD in 44
adults with possible, probable, or proven IFD

Dose-related nonlinear saturation-like
pharmacokinetics with maximal exposure following
administration of 10 mg/kg; MTD criteria not
reached

Lestner et al., 2016 (52); Seibel et al.,
2017 (51)

LAMB at 2.5, 5, 7.5, or 10 mg/kg QD in 35
pediatric patients requiring empirical or
targeted therapy

Dose-dependent pharmacokinetics with slightly more
than dose-proportional increases in AUC; MTD
criteria not reached

Brüggemann et al., 2015 (55) Anidulafungin as prophylaxis at 200 mg q48h
or 300 mg q72h in 20 adult HSCT recipients

Similar exposures of both regimens relative to the
100-mg QD standard regimen as measured by the
AUC0–144; no safety issues at the higher dose

Cornely et al., 2011 (58); Würthwein
et al., 2013 (59)

Caspofungin at 70, 100, 150, or 200 mg QD in
46 adults with probable/proven invasive
aspergillosis

Linear pharmacokinetics with dose-proportional
increases in AUC; MTD criteria not reached

Betts et al., 2009 (57) Caspofungin at 50 mg QD vs 150 mg QD in
204 adults with invasive candidiasis

Not investigated; no safety issues at the higher dose

Hiemenz et al., 2005 (62) Micafungin as prophylaxis at 12.5, 25, 50, 75,
100, 150, or 200 mg QD in 74 adult HSCT
recipients

Linear pharmacokinetics with dose-proportional
increases in AUC; MTD criteria not reached

Sirohi et al., 2006 (63) Micafungin as prophylaxis at 3, 4, 6, or 8 mg/
kg QD in 36 adult HSCT recipients

Linear pharmacokinetics with dose proportional
increases in AUC; MTD criteria not reached

Muilwijk et al., 2018 (64) Micafungin as prophylaxis at 100 mg QD vs
300 mg twice wkly in 20 adults with
hematological malignancies

Similar exposures of both regimens as measured by
the AUC0–168; no safety issues at the higher dose

Sandison 2017 (35) Rezafungin at 50, 100, 200, or 400 mg in single
dose/multiple once-wkly doses (maximum of
3) in 56 healthy adults

Linear pharmacokinetics with dose-proportional
increases in AUC; no safety issues

aLAMB liposomal amphotericin B; QD, once daily; AUC, area under the concentration-time curve; IFD, invasive fungal disease; MTD, maximum tolerated dose; q48h,
every 48 h; AUC0 –144, area under the concentration-time curve from 0 to 144 h; HSCT, hematopoietic stem cell transplantation.
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dose, 50 mg/m2/day; adult dose, 50 mg/day) (60). These data and physiology-based
pharmacokinetic modeling of caspofungin suggest that, in the absence of different
safety target sensitivities, no fundamental differences are to be expected between
children and adolescents upon dose escalation (61).

Micafungin

In an early dose-escalation study, adult HSCT recipients received fluconazole
(400 mg/day) and either saline or micafungin (12.5 to 200 mg/day) prophylactically for
up to 4 weeks. The MTD of micafungin was not reached, and drug-related toxicities
were rare (62). In a formal dose-escalation study in HSCT recipients requiring antifungal
prophylaxis, participants received up to 8 mg/kg/day micafungin for a median of
18 days. The relationship of AUC to the micafungin dose was linear. Adverse events
(AEs) were not different from those expected for this setting, and there was no evidence
of dose-related toxicity. No patient had a grade 3/4 AE, and criteria for MTD of
micafungin were not met (63). Finally, a recent study compared the pharmacokinetics
of prophylactic micafungin at 300 mg given twice weekly versus 100 mg given daily.
The exposure as measured by the AUC from 0 to 168 h (AUC0 –168) was similar in both
treatment arms, and Monte Carlo simulations also projected similar exposures for a
weekly dose of 700 mg (64).

Collectively, the results of these studies imply that micafungin has linear pharma-
cokinetics at dosages of up to 8 mg/kg and that the MTD is 8 mg/kg/day or higher.
Micafungin has linear pharmacokinetics in children and adolescents at dosages of up to
4 mg/kg (65). While the dosage approved for prophylaxis is 1 mg/kg/day, the approved
dosage range in the treatment setting is 2 to 4 mg/kg/day, providing room for
intermittent administration of larger dosages for prophylaxis. Moreover, supporting the
overall safety of the compound in the pediatric population, dosages of up to 15 mg/kg
QD have been safely administered to neonates, and a dosage of 10 mg/kg QD is within
the label specifications of the European Medicines Agency for treatment of invasive
candidiasis in neonates (66, 67).

Rezafungin

The pharmacokinetics and safety of rezafungin have been investigated in two
randomized, double-blind, placebo-controlled, dose-escalation studies in healthy nor-
mal volunteers, who received dosages of up to 400 mg in single or multiple once-
weekly doses. There were no serious or severe AEs, or no individual was withdrawn
from the study due to an AE (35). However, further pharmacokinetic and pharmaco-
dynamic evaluations and demonstration of efficacy and safety in patients with the
target infections are required to develop the potential of this promising investigational
antifungal agent.

CLINICAL STUDIES OF EXTENDED DOSING REGIMENS IN FUNGAL PROPHYLAXIS
Retrospective Data

Liposomal amphotericin B. A retrospective study analyzed the prophylactic use of
LAMB (3 mg/kg once weekly) in 16 adult allogeneic HSCT recipients with graft-versus-
host disease (GvHD) and receiving at least 20 mg prednisone per day (Table 4) (68). The
incidence of IFD did not differ between patients with intermittent LAMB prophylaxis in
which 73 and 12 patients received antifungal prophylaxis with triazoles or an echino-
candin, respectively. In none of the patients was LAMB prophylaxis prematurely dis-
continued due to an AE.

Micafungin. Extended dosing intervals of micafungin prophylaxis in adults were
analyzed in a single-center, observational, 5-year study including 83 adult allogeneic
HSCT recipients who received the compound as antifungal prophylaxis and 21 adult
patients in whom micafungin was given as an antifungal treatment (69). All patients
received at least five doses of micafungin at a dosage of 300 mg or higher twice or
three times weekly. Breakthrough IFD occurred in five patients (6.0%) receiving mica-
fungin prophylactically. None of the patients experienced an infusion-related reaction,
and renal and liver function were not impaired by the antifungal compound.
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Prospective Studies without Controls
Liposomal amphotericin B. Three clinical trials prospectively evaluated extended

dosing intervals of antifungal prophylaxis with LAMB. One study included 48 adults
receiving induction chemotherapy for AML (70). LAMB was given at a dosage of
15 mg/kg once and was repeated in 5 patients after 15 days of persistent neutropenia.
Proven IFD was diagnosed in 4 (8.3%) patients. The drug was prematurely discontinued
in one patient due to infusion-related toxicity.

Prophylactic LAMB was given once weekly at a dosage of 10 mg/kg to adults with
acute leukemia (n � 21) or receiving allogeneic HSCT (n � 8) (71). Proven/probable IFD
occurred in 3 leukemia patients and in 1 HSCT recipient, respectively. Whereas no AE
related to LAMB led to premature discontinuation in leukemia patients, antifungal
prophylaxis was discontinued in 6 of the 8 HSCT patients due to AEs which were
considered to be related to the study drug, such as lung and renal problems or
anaphylactic shock. Due to the high frequency of grade 3/4 AEs, the study was
prematurely stopped in the HSCT group.

Another trial used once-weekly LAMB at a dosage of 7.5 mg/kg as antifungal
prophylaxis in 21 adult patients receiving more than 2 mg/kg/day of prednisone for
acute GvHD therapy after allogeneic HSCT (72). In one patient, invasive aspergillosis
occurred 2 months after discontinuation of the study drug. Seven patients discontinued
LAMB prophylaxis due to study drug-related AEs, including hypotension, chest pain,
arrhythmia, and elevated serum creatinine.

Randomized Trials
Liposomal amphotericin B. Three clinical trials investigated extended dosing inter-

vals in LAMB prophylaxis in a prospective randomized fashion (1, 73, 74). An early
double-blind and placebo-controlled study evaluated prophylactic LAMB given three
times weekly at a dosage of 2 mg/kg to patients receiving chemotherapy (n � 74) or
undergoing HSCT (n � 87) (73). Prophylaxis started on day 1 of chemotherapy and was
given until neutrophil recovery or until an infection was suspected. As the overall
incidence of proven IFD was low (no IFD in patients receiving LAMB and three IFD in
controls), no statistically significant difference between the two arms was detected.
However, fungal colonization of at least one body site, which was one of the endpoints,
was seen in significantly more patients in the placebo arm (15 versus 35 patients). The
two study arms did not differ significantly regarding clinically significant AEs and
laboratory values.

In an open-label study, 132 patients with hematological malignancies and pro-
longed neutropenia were randomized to receive either LAMB (50 mg every other day)
or placebo (74). When looking at the first neutropenic episode of each patient or at all
219 neutropenic episodes, the incidence of proven/probable IFD was significantly lower
in patients receiving LAMB prophylaxis (5 versus 20, P � 0.001, and 5 versus 22,
P � 0.01, respectively). The results are clearly limited by the possibility of multiple
patient reentries. Due to toxicity, LAMB was prematurely stopped in three patients.

A double-blind placebo-controlled trial enrolled adult patients receiving remission
induction chemotherapy for newly diagnosed ALL in order to evaluate the efficacy of
prophylactic LAMB given twice weekly at a dosage of 5 mg/kg (1). Eight of 288 patients
(7.9%) receiving LAMB experienced a proven/probable IFD compared to 13 of 111
patients of the placebo group (11.7%), which was statistically not significant. The most
common drug-related AEs were hypokalemia in 10.5% and increased creatinine in 3.5%
of the patients receiving LAMB.

ABLC. In a prospective randomized study, prophylactic intravenous amphotericin B
lipid complex (ABLC) at a dosage of 7.5 mg/kg once weekly was compared to posacona-
zole administered orally at a dosage of 200 mg three times a day in allogeneic HSCT
recipients (75). A total of 19 and 21 adult HSCT recipients received ABLC or posacona-
zole, respectively, for up to 6 weeks. Definitive IFD occurred in one patient from the
ABLC group and in none of the posaconazole group. Significantly more patients
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doubled their serum creatinine levels to abnormal ranges in the ABLC arm, and
therefore, the study was prematurely stopped after an interim analysis.

Pediatric Data
Liposomal amphotericin B. In a prospective study, LAMB was given as antifungal

prophylaxis two times per week at a dosage of 2.5 mg/kg to 46 pediatric patients at
high risk for IFD (76). In contrast to 7 children and adolescents of a historical control
group who developed proven/probable IFD, no breakthrough IFD occurred in 46 study
patients. Acute allergic reactions were seen in four patients, leading to early discon-
tinuation of LAMB prophylaxis. Hypokalemia was observed in 25 of the 187 episodes
(13.5%) in which LAMB prophylaxis was administered, whereas there were no signifi-
cant changes between the baseline and end-of-treatment values of creatinine and liver
enzymes.

Only one study investigated secondary antifungal prophylaxis in 7 children who
received further immunosuppressive therapy after a diagnosis of deep organ IFD (six of
them with possible pulmonary fungal infection) (77). LAMB was administered at a
dosage of 10 mg/kg once weekly. Prophylaxis failed in 2 patients, and hypokalemia
occurred in 3 patients. The study was prematurely stopped because of low patient
accrual.

A randomized, placebo-controlled pediatric study on extended dosing intervals in
antifungal prophylaxis outside the cancer setting investigated LAMB given once weekly
at a dosage of 5 mg/kg to very low birth weight neonates (n � 40) (78). Enrolled were
neonates �32 weeks of gestational age, younger than 7 days old, and with a birth
weight of less than 1,500 g. Antifungal therapy was applied until 6 weeks after birth or
until the discontinuation of high-risk treatments and invasive devices, whichever
occurred first. Analysis was reported in a descriptive way without statistical analysis.
Colonization defined as Candida spp. in any surface culture (primary endpoint) was
detected in 1 (5%) and 3 (15%) patients in the LAMB and placebo group, respectively.
No patient receiving LAMB developed invasive candidiasis, which occurred in 1 patient
of the placebo group. No differences between groups were observed regarding the
incidence of grade III/IV intraventricular hemorrhage, necrotizing enterocolitis, hypo-
kalemia, and nephrotoxicity.

Micafungin. Two pediatric centers administered micafungin to 21 children and
adolescents at a dosage between 3 and 4 mg/kg twice per week, because these
patients did not tolerate or had contraindications to polyenes and triazoles (79). The
analysis demonstrated that none of the children and adolescents suffered from proven
or probable breakthrough IFD, and in none of the patients were significant clinical AEs
observed. The authors assessed plasma trough concentrations in 11 randomly selected
patients, 9 of whom had values above 150 ng/ml, a concentration which is thought to
be effective for the prophylactic setting.

SUMMARY AND FUTURE DIRECTIONS

There is increasing interest in the strategy of extended dosing regimens in antifun-
gal prophylaxis, in particular in patients undergoing therapy for a hematological
malignancy or undergoing allogeneic HSCT. In contrast, intermittent antifungal pro-
phylaxis seems to be less attractive for solid organ transplant recipients or patients with
primary immunodeficiencies, as these patients are able to tolerate oral antifungal
compounds and usually do not receive medication which is contraindicated with the
concurrent use of azoles. Data from both pharmacokinetic/pharmacodynamic analyses
and animal studies clearly support this approach, and extended dosing intervals in
antifungal prophylaxis using LAMB or micafungin have already been investigated in
patients at risk to develop IFD. However, the results of the 15 clinical studies published
to date are difficult to interpret, as the compounds were evaluated in various patient
populations and at different dosages and schedules, and the few randomized studies
had major limitations, such as few IFD in the control arm or the possibility of multiple
patient reentries. Therefore, based on data derived by pharmacokinetic/pharmacody-
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namic modeling, experts should agree on specific doses and dosing schedules, which
may then be investigated in sufficiently powered and financed studies. Future research
in this area should also evaluate novel and promising compounds (80). Solid clinical
data derived by rationally designed pharmacokinetic/pharmacodynamic analyses will
help to optimize extended dosing intervals in antifungal prophylaxis, as this strategy
might have important implications, in particular in the outpatient setting. For example,
this strategy could potentially decrease costs and resource utilization and improve the
quality of life of the patient.
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