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SUMMARY Extraintestinal pathogenic Escherichia coli (ExPEC) strains are responsible
for a majority of human extraintestinal infections globally, resulting in enormous di-
rect medical and social costs. ExPEC strains are comprised of many lineages, but
only a subset is responsible for the vast majority of infections. Few systematic sur-
veillance systems exist for ExPEC. To address this gap, we systematically reviewed
and meta-analyzed 217 studies (1995 to 2018) that performed multilocus sequence
typing or whole-genome sequencing to genotype E. coli recovered from extraintesti-
nal infections or the gut. Twenty major ExPEC sequence types (STs) accounted for
85% of E. coli isolates from the included studies. ST131 was the most common ST
from 2000 onwards, covering all geographic regions. Antimicrobial resistance-based
isolate study inclusion criteria likely led to an overestimation and underestimation of
some lineages. European and North American studies showed similar distribu-
tions of ExPEC STs, but Asian and African studies diverged. Epidemiology and
population dynamics of ExPEC are complex; summary proportion for some STs
varied over time (e.g., ST95), while other STs were constant (e.g., ST10). Persis-
tence, adaptation, and predominance in the intestinal reservoir may drive ExPEC
success. Systematic, unbiased tracking of predominant ExPEC lineages will direct
research toward better treatment and prevention strategies for extraintestinal in-
fections.
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INTRODUCTION

Extraintestinal pathogenic Escherichia coli (ExPEC) strains are versatile bacteria that
can cause urinary tract, bloodstream, prostate, and other infections at nonintestinal

sites. They typically occupy a niche in the intestinal microbiota of humans (and other
animals), and it is from this reservoir that they emerge to cause extraintestinal infec-
tions (1). ExPEC strains are responsible for an enormous number of human infections
globally, both in health care-associated and community settings (2, 3), and a limited set
of ExPEC lineages are responsible for most infections (4). ExPEC strains also have the
infamous distinction of being associated with the acquisition of new and troubling
antibiotic resistance genes (5, 6). The clinical and economic impact of these infections
and their optimal management, especially in the face of increasing antibiotic resistance,
are challenging and underappreciated (7, 8).

ExPEC strains have been alternatively defined by the number and constellation of
virulence genes they possess (“special pathogenicity” definition) and by their identifi-
cation as predominant lineages in the gut prior to causing extraintestinal infections by
mass action (“prevalence” definition) (9–11). Unfortunately, neither definition is truly
adequate, nor are the definitions mutually exclusive. Despite the overrepresentation of
many classic ExPEC virulence genes (12) in many lineages causing infection, there is still
uncertainty about what defines or differentiates commensal E. coli and facultative
ExPEC pathogens (13). Important differences among ExPEC strains clearly do exist, as
demonstrated by the emergence of pandemic lineages such as E. coli sequence type
131 (ST131), along with its highly drug-resistant ST131 H30Rx (C2) sublineages (4, 14,
15). Genetic determinants of persistence, predominance, and competitiveness within
the gut microbiota, which are not clear at present, may help explain the success of
some of these lineages (16).

For this review, we define ExPEC based on study identification of E. coli as either the
cause of extraintestinal infection or presence in a diagnostic, screening, or surveillance
specimen in addition to membership in a major ExPEC lineage. An ExPEC ST is defined
as major based on its frequency of detection (in all included studies) and by its
estimated summary proportion. Multilocus sequence typing (MLST) is the most com-
mon method of identifying ExPEC-associated clonal complexes or lineages. However,
whole-genome sequencing (WGS)-based lineage classification is gradually supplanting
the 7-locus MLST-based sequence type (ST) and related classification systems. We
define the major ExPEC lineages using the Achtman MLST classification scheme (17).
Most studies included in this review lack detailed virulence gene characterizations;
therefore, strict classification of ExPEC by virulence is not possible. Results will unavoid-
ably include both commensal E. coli and true ExPEC.

The majority of studies investigating ExPEC linages are constrained by their geo-
graphic locations, time periods, or retrospectively assembled isolate collections and
therefore cannot address questions about the global epidemiology of E. coli causing
extraintestinal human infections. MLST databases can be leveraged to investigate the
epidemiology of ExPEC lineages (18); however, strain information, location, source,
collection time, and other epidemiologic information are often limited or absent. In
order to describe global ExPEC lineages and leverage information from a large number
of ExPEC studies conducted around the world, we performed a systematic review of the
published literature examining ExPEC recovered from humans. Studies of ExPEC from
the fields of molecular microbiology, molecular epidemiology, and clinical microbiology
were identified. We examine the geographic and temporal distribution of major ExPEC
STs. We describe the contribution of major ExPEC STs to extraintestinal infections versus
intestinal colonization. We investigate differences in ExPEC ST distribution by study
isolate selection or inclusion criteria. Many studies include resistance phenotype as a
criterion for isolate selection or inclusion, and inclusion criteria may result in an ST
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distribution bias. The purpose of this investigation is to reflect on and to harness
information from many individual studies conducted to characterize the E. coli strains
that cause human extraintestinal infections, to provide context for different ExPEC STs
(e.g., temporal or geographic differences), and to help prioritize STs for future study.

METHODS
Search Strategy and Selection Criteria

We conducted a systematic review to characterize the contribution of global ExPEC
lineages to human infections. This review is reported in accordance with the PRISMA
statement (20). We searched Medline (including in-process and other nonindexed
citations) and Embase, using Ovid for both, as well as Scopus from 1 January 1995 to
1 January 2018. All search strings were developed with the assistance of a librarian.
Search strings are provided in the supplemental material. Study inclusion criteria were
the following: (i) original investigation of extraintestinal pathogenic E. coli (including
related search terms such as uropathogenic E. coli) but not other E. coli pathotypes (e.g.,
E. coli O157:H7 or EHEC); (ii) investigation of E. coli recovered from humans only or from
humans and other reservoirs, and (iii) characterization of E. coli strains by MLST or WGS.
Genotyping by MLST and/or WGS was required in order to standardize high-resolution
lineage definitions that were comparable across the widest array of studies; image-
based tools such as pulsed-field gel electrophoresis (PFGE) or other PCR-based molec-
ular fingerprinting tools produce data that are not easily portable or comparable and
were excluded. The purpose of the review was to examine the global contribution of
all major ExPEC STs to extraintestinal infection; therefore, for consistency, studies that
implemented full MLST protocols were included. If study results provided a breakdown
of STs or if an alternate MLST method was used but results were mapped back to the
Achtman scheme, they were also included. We placed no restrictions on language, year
of publication, or study type. We excluded studies that included fewer than 20 unique
E. coli isolates (unless they were WGS studies). Reviews, commentaries, or editorials
were also excluded from the analysis. Studies had to include humans but could also
report results for animals or other sources although MLST results only from human
ExPEC isolates are reported in this review. Studies could include E. coli recovered from
stool or E. coli recovered from sites of extraintestinal infections; this allowed us to
compare the ST distributions in ExPEC infections and the intestinal reservoir. Risk of bias
domains was not investigated in this review due to study heterogeneity. Individual
patient data were not available in most studies, so ST distributions were analyzed in
aggregate. Two investigators (H. M. Geum and A. Guo) independently assessed titles
and abstracts for eligible publications. If eligibility could not be determined, the full
article was retrieved, and the article methods were screened. We hand searched review
articles that we identified for additional references. Discrepancies over study inclusion
were adjudicated by consensus.

Data Abstraction

Two reviewers (H. M. Geum and A. Guo) performed data abstraction for included
publications. Data were abstracted using a standardized form. The following study-level
characteristics were abstracted: number of E. coli isolates investigated (the total and the
number characterized by MLST or WGS), geographic region, sample collection dates,
antimicrobial susceptibility testing (if available), outpatient or inpatient population,
genotyping method (MLST or WGS), MLST method (Achtman, Whittam, or Pasteur) (18,
21, 22), and number of isolates by specific ST. Age and sex were not individually
abstracted as age range and sex distribution varied widely by study and were fre-
quently not reported. Some new ST assignments and a small number of rare STs were
excluded from our final review data set. For certain studies, it was not clear whether the
specific ST or ST complex was being reported. Ultimately, 215 specific STs were selected
from the published studies and are reported here. The distribution of STs was investi-
gated by study isolate source, selection criteria, geographic region, and start of sample
collection by year.
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Study isolate source was classified as follows in our data set: (i) colonization (either
isolates from surveillance cultures or isolates from healthy individuals, primarily recov-
ered from stool), (ii) any source (inclusion of ExPEC from multiple infections or sources),
(iii) bloodstream infection or blood source (including true bloodstream infections,
sepsis or bacteremia, or blood source isolate), (iv) urinary tract infection (UTI) (including
cystitis, pyelonephritis, or urine source isolate), (v) respiratory tract infection (including
E. coli from lung or sputum cultures), and (vi) other sources, which included studies of
E. coli recovered from cases of orthopedic infections, cystic fibrosis, inflammatory bowel
disease (IBD), meningitis, and necrotizing enterocolitis.

Many studies included a preselection strategy in their sampling scheme, which was
captured during data abstraction. For example, a study might provide MLST data on
extended-spectrum �-lactamase (ESBL)-producing E. coli isolates only or on sepsis-
associated E. coli only, meaning that the results are representative only of that particular
subset of resistant E. coli, infection type, or source. We investigated the distribution of
STs in studies that selected isolates for inclusion based on ESBL-producing,
carbapenem- or fluoroquinolone-resistant, or multidrug-resistant (MDR) phenotypes
versus studies that included isolates based on isolate availability or source without
regard to resistance phenotype. To augment conclusions from the systematic review,
results from selected WGS studies and larger MLST studies are included in the final part
of the Results section as these studies provide a deeper perspective on ExPEC epide-
miology, evolution, and pathogenesis.

Statistical Analyses

A meta-analysis was performed including all studies identified in the systematic
review. The 20 most common STs, based on frequency of detection and by estimated
overall summary proportion, were defined as major ExPEC STs. Calculation of overall
proportions, 95% confidence limits, and I2 (study heterogeneity) values were estimated
using meta-analysis random-effects models, implemented through the meta package,
version 4.9-2, using the metaprop function in R, version 3.5.2. Summary proportions by
ST are reported by study characteristics, including study isolate selection criteria,
geographic area, source, and isolate collection start date. Estimation of summary
proportion by study characteristic was not performed if fewer than three studies were
available for analysis. The I2 statistic describes the percentage of variation across studies
that is attributable to study heterogeneity rather than random variation. The results for
each model include Cochran’s Q (analogous to a chi-square test), which indicates
heterogeneity in summary proportions for each ST within a subgroup (e.g., geographic
region) analysis. All summary proportions, I2 estimates, confidence limits, and Cochran’s
Q are reported for each model in supplemental files.

RESULTS

The search resulted in the identification of 1,964 nonduplicate published articles.
The titles and abstracts were reviewed, and 1,508 did not meet the inclusion criteria
and were excluded (Fig. 1). Full-text documents were retrieved for 456 articles. After
full-text review, 217 articles were included for data abstraction, including 173 articles
that reported results for MLST only or MLST plus WGS. A further 44 articles were
identified that reported WGS results only. The investigation of ExPEC lineages is based
on these 217 studies.

Summary of Articles

MLST results were reported in 173 articles (21–194). Almost all of the studies
implemented the Achtman MLST scheme. Two studies used the Whittam MLST scheme
and were excluded from the review (109, 157). Six studies implemented the Pasteur
Institute’s MLST scheme (21). The ST results of four (21, 130, 170, 176) of these six
studies were partially, but unambiguously, converted to STs corresponding to the
Achtman scheme (195). Therefore, the distribution of human ExPEC STs was derived
from 169 studies. The full review data set is provided in Table S1 in the supplemental
material. These 169 studies include MLST data for 15,538 isolates and represent a very
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wide range of scientific disciplines and diverse research questions, sampling methods,
study populations, time periods, and regions. Studies including whole-genome se-
quencing of ExPEC isolates are listed in Table S2.

Studies reported E. coli sample sizes of anywhere between 20 and 3,060 isolates.
Multiple studies selected isolates from large national or regional collections of E. coli
based either on specimen source (e.g., urine or stool), infection type (e.g., urinary tract
or bloodstream infection), or resistance screening, so the initial E. coli sample sizes were
larger than the final number of genotyped E. coli isolates. Therefore, we included the
number of E. coli isolates from each study that were eligible for MLST or WGS testing. The
sample sizes of E. coli characterized by MLST ranged from 5 to 2,166 isolates. A summary
of study characteristics is provided in Table 1. Many studies (n � 112, 66%) preselected
ExPEC isolates for study inclusion based on a specific antibiotic resistance phenotype or
genotype. Seventy-two (64%) of these studies restricted their MLST analyses to ESBL-
positive ExPEC. E. coli isolates from a wide range of extraintestinal infections were repre-
sented in the studies, including 35 (21%) studies that investigated UTIs and 26 (15%) studies
that included isolates recovered from bloodstream or meningitis cases. The patient popu-
lation was split between inpatient and outpatients, with many (n � 73, 43%) studies
including isolates from both inpatients and outpatients. Europe was overrepresented, with
82 (49%) studies, followed by Asia (24%) and North America (11%). This review covers the
period since 1995 when MLST was first introduced (196) although the majority of studies
were conducted since 2000. Five studies (3%) included ExPEC recovered from the 1990s, 31
(18%) included isolates from 2000 and 2005, 76 (45%) included isolates from 2006 to 2010,
and 44 (26%) included isolates from 2011 to 2016. Two studies examined ExPEC collections
retrospectively, one examined ExPEC recovered from 1956 to 2000 (45), and another study
examined isolates from 1988 to 2003 (28). Eleven studies did not report the date or year in
which they started collecting specimens or isolates.

ExPEC Sequence Types

A summary of all 215 MLST STs detected in one or more studies is provided in Table
S1. Twenty major ExPEC STs, as defined by the number of positive studies and

FIG 1 PRISMA flow diagram for this systematic review. This diagram shows the selection of studies included in the
systematic review of ExPEC lineages (20).

Global Lineages of ExPEC Clinical Microbiology Reviews

July 2019 Volume 32 Issue 3 e00135-18 cmr.asm.org 5

https://cmr.asm.org


estimated summary proportions, are shown in Table 2. These include ST131, ST69, ST10,
ST405, ST38, ST95, ST648, ST73, ST410, ST393, ST354, ST12, ST127, ST167, ST58, ST617,
ST88, ST23, ST117, and ST1193 (by decreasing study positivity). These top STs ac-
counted for 85% of E. coli isolates for which ST results were reported in all included
studies. Not surprisingly, ST131 was detected in over 90% of studies, while the next
most common STs (ST69 or ST10) were detected in 50% of studies overall. The
maximum number of STs identified in any one study was 84, while some studies
reported information on a few STs. If a study investigated only a single ST, it was
excluded from analysis. As expected, the study heterogeneity estimated by I2, which
assesses heterogeneity beyond random variation, was large and ranged from 0.37 to
0.94 (Table 2). An I2 of over 0.75 is generally considered to indicate that study results
are very heterogeneous.

ExPEC Sequence Types by Isolate Inclusion Criteria

Most studies included ExPEC isolates based on the presence of specific antimicrobial
resistance phenotypes, largely ESBL production (Fig. 2; Table S3). This inclusion criterion
may influence the identification of important STs in a given study. Other studies, those
that did not select based on resistance phenotype, selected isolates based on infection
type or specimen source (e.g., UTI isolates) or were convenience samples of ExPEC

TABLE 1 Characteristics of included ExPEC studies

Study characteristic No. of studies (%)

Total studies 169 (100)

Study ExPEC selected based on resistancea 112 (66)
Extended spectrum �-lactamase 72 (64)
Fluoroquinolone/quinolone 10 (9)
Multidrug resistance 9 (8)
Beta-lactamase 8 (7)
Carbapenem 7 (6)
Fosfomycin 2 (2)
Nitrofurantoin 2 (2)
Colistin 1 (1)
Fully susceptible 1 (1)

ExPEC sourcea

Any infection 72 (43)
Urinary tract infections 49 (29)
Bloodstream infection 26 (15)
Colonization 17 (10)
Orthopedic infection 2 (1)
Cystic fibrosis 1 (0.6)
Irritable bowel disease 1 (0.6)
Necrotizing enterocolitis 1 (0.6)

Patient population
Any inpatients 110 (65)
Any outpatients 103 (61)
Both in- and outpatients 73 (43)
Not reported 28 (17)

Geography
Europe 82 (49)
Asia 41 (24)
North America 18 (11)
Africa 12 (7)
Middle East 5 (3)
South America 3 (2)
Central America 2 (1)
Oceania 2 (1)
Global 3 (2)
Not reported 1 (0.6)

aSome studies selected for more than one type of resistance phenotype or included a combination of
infections or sources.
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isolates available to study investigators. Figure 2 shows the estimated overall propor-
tion for the most common 20 ExPEC STs stratified by whether studies selected isolates
based on a resistance criterion (n � 112) or not (n � 57). Six studies were excluded from
this analysis as they selected for isolates exhibiting resistance to amdinocillin and/or
nitrofurantoin (2 studies), colistin (1 study), or fosfomycin (2 studies).

The primary resistance phenotypes used for isolate selection in these 163 studies
included beta-lactam resistance or ESBL production, quinolone or fluoroquinolone
resistance, and any multidrug resistance. A small number of studies included
carbapenem-resistant ExPEC. Selection based on ESBL production was by far the most
common resistance criterion used, and importantly all of the top 20 STs were detected
in multiple collections of ESBL-positive isolates (Table 1; Table S3). The estimated
overall proportion of ST131 in studies varied by the resistance selection criterion used
in the study design. Estimated summary proportions for MDR, ESBL-producing, and
carbapenem- and fluoroquinolone-resistant ST131 isolates were 0.62 (95% confidence
interval [CI], 0.40, 0.80), 0.29 (95% CI, 0.25, 0.34), 0.18 (95% CI, 0.10, 0.31), and 0.32 (95%
CI, 0.21, 0.45), respectively. In contrast, the ST131 prevalence was only 0.17 (95% CI 0.14,
0.20) in studies without resistance selection (Q test P � 0.001). In general, studies
selecting on resistance phenotype produced higher estimated summary proportions (in
at least one resistance category) than studies that employed no resistance inclusion
criterion. This was true except for ST95 (Q test P � 0.001) and ST73 (Q test P � 0.001)
and, to a lesser extent, ST69 (Q test P � 0.001), ST12 (Q test P � 0.009), and ST127 (Q
test P � 0.003) (Fig. 2; Table S3). Selection for carbapenem-resistant isolates resulted in
higher estimated summary proportions for ST38, ST648, and ST410 isolates. Interest-
ingly, these data suggest that summary proportions for ST10, ST58, ST88, ST617, ST23,
and ST1193 do not differ between studies employing ESBL-positive selection and
studies without resistance selection. In one study of fully susceptible ExPEC isolates,
ST131 was not identified at all. Of the 80 isolates characterized by MLST, 35 (44%)
belonged to the ST69, ST95, ST73, ST12, and ST127 lineages (80). This suggests that the
infection burden of ExPEC lineages such as ST131 (especially MDR ST131) and ST38 may

TABLE 2 Summary proportions for the top 20 ExPEC STs: meta-analysis resultsa

Sequence
type

No. of positive
studies

Summary proportion
(95% CI) I2 (95% CI)

ST131 133 0.24 (0.21, 0.27) 0.94 (0.94, 0.95)
ST69 87 0.05 (0.05, 0.06) 0.68 (0.60, 0.74)
ST10 85 0.05 (0.04, 0.06) 0.81 (0.77, 0.84)
ST405 81 0.04 (0.04, 0.05) 0.74 (0.68, 0.79)
ST38 72 0.06 (0.04, 0.07) 0.83 (0.79, 0.86)
ST95 71 0.07 (0.06, 0.09) 0.87 (0.84, 0.89)
ST648 67 0.04 (0.03, 0.05) 0.71 (0.63, 0.77)
ST73 62 0.08 (0.07, 0.10) 0.86 (0.83, 0.89)
ST410 45 0.03 (0.03, 0.05) 0.69 (0.58, 0.77)
ST393 42 0.03 (0.02, 0.03) 0.75 (0.66, 0.81)
ST354 40 0.02 (0.01, 0.03) 0.63 (0.49, 0.74)
ST12 37 0.04 (0.03, 0.05) 0.56 (0.36, 0.70)
ST127 36 0.03 (0.03, 0.04) 0.46 (0.19, 0.63)
ST167 35 0.03 (0.02, 0.04) 0.69 (0.57, 0.78)
ST58 35 0.02 (0.01, 0.03) 0.73 (0.62, 0.80)
ST88 34 0.03 (0.02, 0.04) 0.84 (0.79, 0.88)
ST617 34 0.02 (0.01, 0.03) 0.53 (0.30, 0.68)
ST23 31 0.03 (0.02, 0.05) 0.87 (0.83, 0.90)
ST117 30 0.02 (0.01, 0.02) 0.37 (0.01, 0.59)
ST1193 28 0.03 (0.02, 0.05) 0.85 (0.79, 0.89)
aSummary proportions (95% CI) and I2 (95% CI) were estimated using meta-analysis random-effects models,
implemented through the meta package, version 4.9-2, using the metaprop function in R, version 3.5.2. The
I2 statistic describes the percentage of variation across studies that is attributable to study heterogeneity
rather than random variation. Summary proportions were calculated across multiple, diverse studies,
including very different study populations, multiple specimen types, and clinical outcomes and should not
be interpreted as population-level estimates of an individual ST’s contribution to the global burden of
infection.
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be overestimated, while that of ST95 and ST73 may be underestimated if selection is
based on antimicrobial resistance phenotype or genotype. These differences in esti-
mates across studies suggest that inferences about the clinical and public health
importance of specific ExPEC STs need to consider study inclusion criteria.

ExPEC Sequence Types by Geographic Area

As expected, the summary proportions for ST131 were elevated for each geographic
region compared to those for other major STs. Summary proportion estimates for ST131
were higher for studies from Asia (0.23; 95% CI, 0.19, 0.28) and Europe (0.25; 95% CI,
0.21, 0.30) and lower in African (0.19; 95% CI, 0.12, 0.28) and North American (0.21; 95%
CI, 0.13, 0.31) studies. However, these summary proportions were not significantly
different (Q test P � 0.57) (Fig. 3; Table S4). ST648 and ST617 were the only other STs
for which sufficient data from African studies were available; the summary proportion
for ST617 (0.10; 95% CI, 0.03, 0.28) (Q test P � 0.004) was considerably higher than for
studies from Asia and Europe. Notably, common STs, including ST95, ST393, and ST354,
were absent from, and the summary proportion for ST73 was especially low in, the
African studies (Table S1). Underrepresentation of these STs might be the result of
isolate selection criteria as a high proportion (83%) of African studies selected isolates
based on resistance phenotype. Summary proportions may also underestimate African

FIG 2 Summary proportions from random-effects models for the most common ExPEC STs by study isolate
inclusion criteria. Six studies were excluded from this analysis as they selected for isolates exhibiting specific drug
resistance phenotypes, including amdinocillin and nitrofurantoin (1 study), nitrofurantoin alone (1 study), colistin
(1 study), and fosfomycin (2 studies), or only for fully susceptible E. coli isolates (1 study). AMR, antimicrobial
resistance.
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ExPEC ST diversity due to MLST reference database limitations or due to the scope or
sampling methods of included studies.

In 41 studies conducted in Asia, 71% selected isolates based on resistance pheno-
type. In addition to ST131, Asian studies yielded the highest summary proportions, by
region, for ST405 (0.07; 95% CI, 0.06, 0.09) (Q test P � 0.001), ST38 (0.07; 95% CI, 0.05,
0.10) (Q test P �0.01), ST1193 (0.04; 95% CI, 0.02, 0.07) (Q test P � 0.024), and possibly
ST648 (0.06; 95% CI, 0.04, 0.08) (Q test P � 0.08), while Asian studies exhibited a lower
overall estimate for ST73 (0.06; 95% CI, 0.04, 0.09) (Q test P � 0.03) (Fig. 3; Table S4).
ST12 and ST88 were identified in fewer than 3 studies of the 41 studies from Asia.

In 82 studies from Europe, 67% selected isolates based on resistance phenotype.
European studies reported the highest overall proportion of ST131 (0.25; 95% CI, 0.21,
0.30) and a higher overall proportion of ST73 (0.25; 95% CI, 0.21, 0.30) (Q test P � 0.03).
The estimated proportions for ST405 (0.03; 95% CI, 0.02, 0.04) and ST648 (0.03; 95% CI,
0.02, 0.04) tended to be lower than point estimates from other regions (Fig. 3; Table S4).

In 18 studies set in North America, 44% selected isolates based on resistance
phenotype. Reports from North America yielded higher overall proportions of ST95
(0.11; 95% CI, 0.08, 0.15) (Q test P � 0.037), ST69 (0.08; 95% CI, 0.06, 0.10) (Q test P �

0.031), and ST127 (0.06, 95% CI, 0.04, 0.07) (Q test P � 0.001). The proportion of ST38
(0.03; 95% CI, 0.02, 0.05) appears to be lower in North America than elsewhere, and
ST354, ST167, ST58, ST88, ST617, ST23, ST117, and ST1193 were identified in fewer than
three North American studies (Fig. 3; Table S4). Detection of these STs may be

FIG 3 Summary proportions from random-effects models for the most common ExPEC STs by geographic region.
Six studies were not included: three included global collections of ExPEC, two studies were from Australia only, and
one study did not report the geographic source of isolates analyzed.
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influenced by the limited number of studies undertaken in North America. Interestingly,
the summary proportions for ST10 were similar for all regions.

Five studies each recovered isolates from the Middle East and from Central or South
America. Studies originating from Central and South America detected ST131, ST69,
ST73, and ST62 most commonly, while studies originating from the Middle East
detected ST131, ST38, ST410, ST10, and ST617 most commonly. As the sample sizes for
these regions are small, they are not included in the data shown in Fig. 3. Two studies
included isolates from Australia only, and one study did not report the geographic
source of isolates analyzed.

ExPEC Sequence Types by Source

Of the 169 included ExPEC studies, only 79 studies included isolates from a single
specimen source or infection type (Table 1). Even though we restricted our analyses to
a single reported source, there will be an unavoidable mixture of ExPEC and non-ExPEC
in these results. In the 90 studies that included isolates from multiple sources, detailed
ST breakdowns by source were not provided in their reports, so these studies could not
be included in the meta-analysis. Only 17 studies focused specifically on colonization or
surveillance isolates.

The presence of specific STs in the studies varied only modestly by E. coli source (Fig.
4; Table S5). All 20 major STs were identified in three or more studies examining UTI (or

FIG 4 Summary proportions from random-effects models for the most common ExPEC STs by source. Only those
studies that examined isolates recovered exclusively from one source category were included. One study of
bloodstream isolates also included isolates from orthopedic infections and was included in the bloodstream/
meningitis group.
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urine specimens) and bloodstream infections (or blood specimens). ST73, ST12, ST127,
ST23, and ST1193 were each detected in fewer than three studies of colonization or
surveillance isolates. ST131 was found at a higher overall proportion in studies that
investigated UTI (or urine) (0.24; 95% CI, 0.18, 0.30) and bloodstream infections (or
blood isolates) (0.25; 95% CI 0.19, 0.33) but was lower in colonization or surveillance
studies (0.19; 95% CI, 0.07, 0.42). These differences were not significant (Q test P � 0.84).
ST69 also exhibited this pattern (Q test P � 0.08). Compared to the levels of all of the
other STs, ST73 was generally found at elevated levels in UTI (or urine) (0.08; 95% CI,
0.06, 0.11) and bloodstream infections (or blood) (0.08; 95% CI, 0.05, 0.12) (Fig. 4). In
contrast, ST10 (0.09; 95% CI 0.06, 0.12) (Q test P � 0.001), ST648 (0.08; 95% CI, 0.04, 0.13)
(Q test P � 0.02), and ST167 (0.13; 95% CI, 0.04, 0.34) appeared to be identified at higher
proportions in studies looking at colonization or surveillance isolates. Most of the other
major STs were identified at similar levels in studies of UTI, bloodstream infections, or
stool. Relatively few studies specifically investigated stool isolates, which may explain
why a number of STs had low detection rates.

ExPEC Sequence Types by Start Date of Study Isolate Collection

To examine timing of ExPEC ST emergence or persistence, we investigated the
distribution of STs by the start date of study isolate collection; time periods were
grouped as follows: pre-2000,2001 to 2005, 2006 to 2010, and 2011 or later (Fig. 5; see

FIG 5 Summary proportions from random-effects models for the most common ExPEC STs by start date of study
isolate collection. Dates were determined based on the reported start date for sample collection for each study. In
some cases, isolate collection ended in a different period, which makes categories overlap for some studies.
Moreover, the number of STs included in databases has grown over time. The absence of some STs might reflect
the fact that these STs had not yet been added to the MLST allele database.
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also Table S6 in the supplemental material). All predominant STs were identified from
the inception of MLST testing around 1995; however, there were only 11 pre-2000
studies that were eligible for inclusion in the systematic review and meta-analysis. Aside
from the pre-2000 period, virtually all 20 major STs were detected in studies that
collected isolates after the year 2000.

The overall estimated proportion of ST131 was low prior to 2000 (0.05; 95% CI, 0.02,
0.18) but increased, and summary proportions were approximately 0.25 in studies from
2000 onwards (Q test P � 0.08) (Table S6). ST73 (Q test P � 0.001), ST95 (Q test P �

0.013), and ST12 (Q test P � 0.1) were all detected more commonly in the pre-2000
period, and the summary proportions gradually declined from 2000 onwards (Fig. 5;
Table S6). This suggests that these STs have been long-standing ExPEC lineages and
may have ceded ground to newly emerging lineages, such as ST131. Summary pro-
portions for some STs appeared to rise and fall over the time periods (ST88, ST127,
ST393, and ST117) although this could just reflect study variability (Fig. 5). There is some
evidence that ST1193 increased from 2006 (Q test P � 0.1) although there was only a
single study that detected ST1193 in sampling prior to 2006. The summary estimates for
ST69, ST58, ST167, ST38, ST405, and ST10 remained remarkably stable over time.
Changes in ST detection over time may be influenced by multiple factors, including the
following: (i) the emergence and recognition of new ST lineages; (ii) dynamic changes
in ST detection due to shifts in ExPEC sources, transmission, or selective pressures; (iii)
an expansion in the number of MLST allele profiles contained in the databases (where
new STs defined later would be underrepresented at earlier time periods); and (iv) the
specific selection of certain STs or lineages in some studies (e.g., ST131).

Whole-Genome Sequencing of ExPEC Lineages

Twenty-eight (16%) of the 173 MLST studies included whole-genome sequencing of
E. coli isolates. Forty-four additional studies employed WGS to study ExPEC but did not
include information on the distribution of STs and so were not summarized in the
systematic review (Table S2). Many of these additional WGS-focused studies examined
a small number of genomes or previously deposited genomes or were draft genome
announcements. Several WGS studies investigated ST131 specifically (14, 197–201) or
examined the evolution, resistance, and virulence gene distributions of ExPEC in
general. To complement and augment the meta-analysis results, we provide a narrative
summary of results from WGS studies focusing on the molecular epidemiology, evo-
lution, and drivers of the emergence of ExPEC lineages, starting with ST131.

Emergence of ST131 and drivers of success. The study by Kallonen et al. (166),
conducted over an 11-year period, noted a single rapid expansion of ST131 beginning
around 1995 in the United Kingdom. Ben Zakour et al. investigated the evolution of 185
previously deposited ST131 genomes, which suggested that the emergence of
fluoroquinolone-resistant fimH30 ST131 (clade C) occurred in the 1980s, followed by
the rapid expansion of the ST131 lineages, probably originating in North America (197).
A split into clades C1 (H30R; fluoroquinolone resistant) and C2 (H30Rx; fluoroquinolone
resistance in combination with CTX-M-15 ESBL production) then occurred around 1990.
This is generally consistent with other studies that have investigated ST131 genomes
and the acquisition of resistance genes and plasmids by the H30R and H30Rx lineages
(14, 166, 201).

McNally et al. compared core and accessory ST131 genomes and found that the
phylogenetic clustering of ST131 is driven to a large extent by accessory genome content.
This provides support for the theory that ST131 has benefited from compensatory muta-
tions that make carriage of multidrug resistance and virulence plasmids possible without a
fitness cost. Furthermore, comparison of human and nonhuman source isolates suggests
that ST131 has a wide host range (198). Alqasim et al. took a different approach and
investigated capsular variation within the ST131 H30Rx C2 clade (13). They show evidence
for multiple recombination events at capsular loci in ST131 genomes over time. Capsular
variation did not appear to be related to virulence in in vitro testing but may still contribute
to the widespread dissemination of this ST131 sublineage (13).
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Comparative genome analysis of ST131 versus other ExPEC STs was performed by
Kallonen et al. to identify potential drivers of ST131 success in causing a large fraction
of total infections. They showed that the SPATE (serine protease autotransporters of
Enterobacteriaceae) virulence gene (espC) was strongly associated with ST131, which
has been linked to other E. coli pathotypes. This observation was echoed in the study
by Shaik et al. that compared ST131 E. coli to other ESBL-producing E. coli lineages
(ST38, ST405, and ST648) and found that SPATE was identified exclusively in ST131
isolates (199). In contrast, Clark et al. conducted a WGS-based virulence gene analysis
and did not find any genome regions that explained ST131 increased fitness compared
to that of non-ST131 ExPEC genomes (202). Kallonen et al. also argue that antimicrobial
resistance does not appear to be a major driver in the success of resistant ST131 or
other drug-susceptible ExPEC lineages, such as ST73, as these groups were equally
maintained in the population over time; this was also shown in the study by Ben Zakour
(166, 197). These analyses suggest that the success of ST131 and other major ExPEC
lineages may be linked to selection and expansion in E. coli reservoirs, primarily the
intestinal tract (166).

Emergence of other major ExPEC STs and drivers of success. Relatively few studies
investigated the genomic basis for non-ST131 ExPEC success. ST73 phylogenies from
the Kallonen et al. study exhibited multiple divergent clades, suggesting that ST73 is an
older lineage (166). Alhashash et al. investigated 22 isolates of MDR ST73 and also
found considerable genome heterogeneity, suggesting a longer period of evolution.
The authors reported similar levels of virulence gene carriage and a diverse pool of
plasmids containing resistance genes that did not differ between isolates recovered
from UTI and bacteremia cases. The authors concluded that the increase in ST73
resistance was not due to the spread of one or more specific clones. So, unlike the
highly clonal ST131, ST73 is also highly successful but for reasons that are still unclear
(152). A few small studies investigated ST95 (203) and ST69 (166) by WGS but provided
few details on the emergence of these STs. Shaik et al. examined ST38, ST405, and
ST648 and contrasted these with ST131. ST131 possessed a greater total number of
virulence genes, while the non-ST131 isolates shared similar, albeit lower, numbers of
virulence genes, but the composition of genes varied (199). Salipante et al. showed no
real differences in virulence factors between urine and blood source STs (75). Despite
the significant role these major STs have in global infections, we still know fairly little
about the apparent differences in performance by the different lineages at different
extraintestinal sites and in the gut.

Genomic epidemiology of major ExPEC STs. Several genomic epidemiology studies
were identified that assessed potential ExPEC transmission routes and identified clus-
ters of closely related ExPEC isolates in diverse clinical settings. Salipante et al. inves-
tigated the genomic epidemiology of ExPEC recovered from urine and blood at a single
health care institution. They observed genetically identical urine and blood source
isolates, differing by 0 to 1 single nucleotide polymorphisms (SNPs), collected over
short periods. Another pair of isolates exhibiting indistinguishable genomes occurred
more than a year apart, without any evidence of an epidemiological link (75). ExPEC
genome clusters were also observed in Brodrick et al., where related ESBL-positive E.
coli ST131 genomes were identified in 17 patients (112). Clark et al. identified geneti-
cally monomorphic ST131 isolates from 10 subjects (202). Finally, Roer et al. studied 552
cephalosporin-resistant ExPEC isolates recovered from bloodstream infections between
2014 and 2015 in Denmark and found evidence of 15 national outbreaks (defined as
fewer than 10 SNPs) comprised of seven ST131 outbreaks, with three due to ST12, two
due to ST410, and one each due to ST3666, ST58, and ST69 (72).

ExPEC has been associated with many different environmental reservoirs and po-
tential foodborne and other transmission routes (204). Sexual and household transmis-
sion has been demonstrated previously using non-WGS molecular methods, but house-
hold clustering of ST131 ExPEC has recently been confirmed using WGS (161). Berg et
al. identified ST38 human and retail chicken isolates that differed by fewer than 15 SNPs
(91). ESBL-positive ST410 isolates from a study by Falgenhauer et al. recovered from
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human, companion animal, livestock, and farm sources differed by fewer than 70 SNPs
(138). Clusters of ESBL-producing E. coli, including ST131, ST2003, ST354, ST38, ST405,
and ST410, from clinical and water sources in Thailand also differed by only 3 to 23 SNPs
(74). E. coli ST131 has also been shown to have a potentially large host range and has
been identified in wild birds, food, and companion animals (198). However, in one
study by de Been et al. which examined human and poultry isolates that were
considered to be indistinguishable by less discriminatory genotyping methods, ge-
nome sequences were more divergent than expected (205). Musicha et al. investigated
ExPEC isolates associated with bacteremia and meningitis infections in Malawi and
found E. coli to be more diverse than in other regions (34), reinforcing the results from
this systematic review. The extent of global differences in ExPEC molecular epidemiol-
ogy is still not well understood.

A few studies investigated the link between the human intestinal reservoir for ExPEC
and development of infection in the same host. This relationship has been known for
a long time, but WGS has confirmed the link (41, 121, 161). A study by Nielsen et al.
examined fecal and UTI isolates by WGS (41). Multiple E. coli isolates per fecal specimen
were investigated, providing information on the predominance of ExPEC ST carriage in
the stool. ST95 was associated with fecal predominance in multiple subjects, whereas
ST131 was predominant in the gut in only two cases. The authors found no differences
in phylogenies of E. coli isolates recovered from feces and those from UTI cases. ST73
and ST12 were overrepresented among the UTI cases; however, no closely related
genomes were discovered. The main difference between the fecal and UTI isolates was
in their accessory genomes. Moreover, healthy women who had never had a UTI carried
fecal E. coli isolates in their gut that were similar to the fecal E. coli isolates recovered
from women who went on to develop UTI (41). Intriguingly, one study with detailed
assessments of urine and fecal isolates confirmed shared clones between the gut and
the urinary tract and showed that the metabolic properties of ExPEC are crucial to
fitness in both environments. In fact, isolates that exhibited greater fitness at both sites
were most successful (121). These data begin to suggest that the dichotomy between
the special pathogenicity and prevalence explanations for ExPEC success be revisited.
Identification of genes that contribute to persistence and predominance in the intes-
tinal reservoir, and possibly to host specificity and environmental dissemination, should
be the focus of future investigations.

DISCUSSION

In the absence of systematic, large-scale, public health reporting or surveillance
systems for ExPEC, reviews of the literature can help capture information on important
ExPEC lineages. Leveraging data from a systematic review can depict a more complete
picture of the type, evolution, distribution, and characteristics of ExPEC. As expected,
ST131 was the undisputed winner. ST131 was detected in 91% of all reviewed studies
and exhibited the highest summary proportions, regardless of study isolate selection
criteria, geographic region, source, or time period. The other major STs were ST69, ST10,
ST405, ST38, ST95, ST648, ST73, ST410, ST393, ST354, ST12, ST127, ST167, ST58, ST617,
ST88, ST23, ST117, and ST1193 (in decreasing study positivity) across all 169 studies
(Table 2). Other narrative reviews of ExPEC point to a largely overlapping list of
important STs (4).

The results of this systematic review are heavily influenced by the selection criteria
employed by study authors. The role of certain ExPEC lineages in the global spread of
antimicrobial resistance is undisputed; however, the overall contribution of ExPEC to
antimicrobial-susceptible extraintestinal infections is also enormous. A large fraction of
studies (66%) sampled isolates based on antibiotic resistance phenotype, especially
ESBL production. This inclusion criterion influenced the distribution of STs detected and
most likely overestimated the importance of certain lineages associated with multidrug
resistance and ESBLs, such as ST131, ST405, ST38, ST648, ST410, and ST354, whereas
ExPEC lineages exhibiting lower multidrug resistance levels, such as ST95, ST73, ST12,
and ST127, may have been underreported.
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It is likely that the high estimated proportions of certain MDR lineages globally are
due to the large number of studies that included only resistant isolates. Two large
retrospective studies that included all isolates irrespective of their susceptibility profiles,
conducted in the United Kingdom and Ireland from 2001 until 2010/2011, showed that
ST73 was the most common cause of bloodstream infections due to ExPEC (132, 166).
This was reinforced in studies from Germany (84) and Canada (187). In contrast, studies
that included only MDR isolates (primarily ESBL producers) described ST131 as the most
prevalent ST among ExPEC responsible for bloodstream infections (72, 154, 193).

Certain longstanding or “classic” ExPEC STs, such as ST73 and ST95, are successful
extraintestinal pathogens but are also persistent intestinal colonizers (4). Interestingly,
most of the other major STs were identified at similar proportions in studies of UTI,
bloodstream infections, and stool. Such classic STs are often responsible for higher
proportions of extraintestinal infections than the MDR lineages, as illustrated in the
large studies from the United Kingdom and Ireland (132, 166). The introduction of
highly resistant lineages, such as ST131, does not necessarily displace these classic
lineages (166). However, constant selection pressures created by antimicrobials can
drive the selection and emergence of MDR ExPEC lineages, as noted with ST131. All
major STs have now been linked to multidrug resistance gene carriage or ESBL
production, and an increasing number of the major STs have been associated with
carbapenemase production.

The largest number of ExPEC genomic studies were conducted in Europe and North
America and showed similar distributions of ExPEC lineages; however, data from Asia
and Africa suggest that different STs may be associated with infections in these regions.
This could have resulted from the influence of selection criteria used in these studies
or could represent real differences due to distinct selection pressures in these regions.
In 2014, a report from the World Health Organization (WHO) showed that when
antimicrobial resistance surveillance data are available, appropriate treatment regimens
can be selected, resistance trends can be understood, priority areas for interventions
can be identified, and the impact of interventions to reduce resistance can be moni-
tored (206). The report revealed the lack of adequate surveillance programs in many
parts of the world. This systematic review supports the WHO report conclusions and
specifically points to the lack of systematic and unbiased information about ExPEC
lineage incidence, especially the absence of this information for many regions of the
world, including Africa, Central and South America, the Middle East, and Oceania.
Understanding these underrepresented regions will be vital to detecting the emer-
gence of newly successful lineages, especially those harboring extensive drug resis-
tance plasmids.

This review highlights that the epidemiology and population dynamics of ExPEC are
complex and variable. Recently, investigators have identified blooms of specific STs
over multiple years (207, 208) and have reported an increase in the prominence of
other STs, such as MDR ST1193 (209). Other STs appeared to decrease over time (e.g.,
ST95). This may be due to actual increases in different lineages or could be the result
of a heightened focus on MDR ExPEC lineages. Other STs exhibited nearly identical
proportions over all periods (e.g., ST10), suggesting that some lineages may be less
influenced by selection pressures on ExPEC population dynamics. This is a significant
concern for public health, infection prevention, antimicrobial stewardship, and vacci-
nation programs. We need continuous, large-scale global genomic studies that include
ExPEC isolates, irrespective of their susceptibility profiles, to fully elucidate the popu-
lation structure of these successful groups of pathogens.

The results of this review question the absolute distinction between commensal
fecal isolates and ExPEC isolates as two separate E. coli pathotypes as isolates from
colonization and infection studies share substantial parts of their genetic cores, which
for some lineages cannot be distinguished in SNP-based phylogeny. Nielsen et al. make
the case that ExPEC bacteria exist equally in the intestinal reservoir and urinary tract, as
there were few differences in the core genomes between these pathotypes, except
possibly in the accessory genome (41). This has also been supported by data from other
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non-WGS studies (210, 211). This reinforces the idea that the E. coli in the intestinal
reservoir serves as the primary source of the E. coli that gives rise to extraintestinal
infections and that there may be no clear distinction between commensal E. coli and
ExPEC. Kallonen et al. point to the importance of competition, persistence, and pre-
dominance in the intestinal reservoir to the dominance of ST131 and ST73 ExPEC
lineages as the cause of infections (166). However, currently there is limited evidence
of this distinction in other lineages as most WGS-based studies have focused primarily
on ST131. Despite the lack of differences in virulence gene profiles between infection
and intestine source isolates, phylogenetic group, as a marker of evolution, clearly
distinguishes lineages that contribute most to extraintestinal infections (166). It is also
possible that disturbances to the microbiota, as the result of travel or antibiotic use,
contribute to transient intestinal acquisition of and colonization with successful ExPEC
lineages. This could explain why it could be challenging to differentiate commensal E.
coli and ExPEC strains around the time of infection; however, this hypothesis requires
testing. The research community still does not fully understand the role of different
adaptations in ExPEC that contribute to fitness in the intestinal reservoir and at
extraintestinal infection sites.

ExPEC bacteria are transmitted via fecal-oral, household, sexual, and foodborne
routes. Local clusters of closely related ExPEC isolates, as shown by WGS, have been
detected in multiple settings. Almost all major ExPEC STs have been identified in at
least one nonhuman host or environmental source. Understanding the transmission
mechanisms for these common and successful STs could go a long way in reducing
ExPEC carriage and infection. Multiple factors, from both the host and the environment,
shape the genomics of ExPEC. Therefore, the need for a “one-health” (i.e., spanning
ExPEC isolates among humans, animals, and their environments) strategy for surveil-
lance and containment across the different sectors will clarify ExPEC transmission
routes.

There are multiple limitations to this systematic review. Study populations were very
different. The studies included E. coli isolates from a range of sources, including
surveillance specimens, UTIs, and bloodstream infections, and from both community-
based and health care settings. The values of I2 in the supplemental tables show that
study heterogeneity was substantial. Different definitions of “ExPEC” were used in the
various studies. In many cases, the patient or isolate sampling procedures and denom-
inators were incompletely described or were not listed. Given the breadth of the
literature and the multiple disciplines contributing to ExPEC research, we likely missed
some relevant reports and manuscripts. The review adhered to a modified Cochrane
review strategy; however, variation in the indexing of studies in publication databases
may have influenced our ability to identify relevant studies. It can be a common
practice to include the same isolates in more than one study so that different research
questions can be addressed. We did our best to exclude studies that used the same or
part of the same collection of E. coli isolates although some isolates may have been
counted twice in this review. We also acknowledge that there were rare STs that were
detected in some of studies but were not captured and abstracted into our review data
set. However, we feel confident that the 215 STs included represent the STs contrib-
uting most to the burden of human extraintestinal infections around the world. Given
the large number of studies that selected their study isolates by resistance phenotype,
the ExPEC lineages associated with multidrug resistance (e.g., ST131) will be signifi-
cantly overrepresented, while lineages not associated with resistance are likely to be
underrepresented.

A discrete set of ExPEC lineages contributes to the enormous burden of human
extraintestinal infections. Despite the limited number, these STs are highly diverse in
genetic background, virulence, and resistance gene carriage. There is mounting evi-
dence that ExPEC success as a pathogen of extraintestinal sites may be mediated by its
persistence, adaptation, and predominance or function in the intestinal reservoir. The
emphasis on MDR ExPEC ST131 has unfortunately created a gap in our knowledge
about other important ExPEC lineages, such as ST73 and ST95. Additional whole-
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genome sequencing-based studies, using a one-health approach, are urgently needed
to understand the phylogeny, function, population dynamics, and molecular epidemi-
ology of these 20 major ExPEC STs. This gap will gradually be filled as genome
sequencing becomes part of routine research and public health practice. ExPEC con-
tributes to an enormous infectious disease burden around the world and serves as a
reservoir for the development and mobilization of new resistance genes or novel
combinations of resistance genes in the gut and at infected extraintestinal body sites.
Interventions to tackle the most common ExPEC lineages would go a long way in
reducing the burden of disease caused globally by these E. coli strains.
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