
 

Open Peer Review

F1000 Faculty Reviews are written by members of
the prestigious  . They areF1000 Faculty
commissioned and peer reviewed before publication
to ensure that the final, published version is
comprehensive and accessible. The reviewers who
approved the final version are listed with their names
and affiliations.

Any comments on the article can be found at the
end of the article.

REVIEW

A renewed tool kit to explore  pathogenesis: fromChlamydia
 molecular genetics to new infection models [version 1; peer

review: 3 approved]
Lee Dolat, Raphael H Valdivia
Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA

Abstract
 is the most prevalent sexually transmitted bacterialChlamydia trachomatis

pathogen and the leading cause of preventable blindness in the developing
world.   invades the epithelium of the conjunctiva and genitalC. trachomatis
tract and replicates within an intracellular membrane-bound compartment
termed the inclusion. To invade and replicate in mammalian cells, 

 remodels epithelial surfaces by reorganizing the cytoskeletonChlamydia
and cell–cell adhesions, reprograms membrane trafficking, and modulates
cell signaling to dampen innate immune responses. If the infection ascends
to the upper female genital tract, it can result in pelvic inflammatory disease
and tissue scarring.   infections are associated with infertility,C. trachomatis
ectopic pregnancies, the fibrotic disorder endometriosis, and potentially
cancers of the cervix and uterus. Unfortunately, the molecular mechanisms
by which this clinically important human pathogen subverts host cellular
functions and causes disease have remained relatively poorly understood
because of the dearth of molecular genetic tools to study   andChlamydiae
limitations of both   and   infection models. In this review, wein vivo in vitro
discuss recent advances in the experimental molecular tool kit available to
dissect   infections with a special focus on C. trachomatis Chlamydia
-induced epithelial barrier disruption by regulating the structure, function,
and dynamics of epithelial cell–cell junctions.
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Introduction
The order Chlamydiae are obligate intracellular pathogens of 
eukaryotic cells. These bacteria have reduced genomes and 
display biphasic developmental stages that alternate between  
distinct extracellular and intracellular forms1,2. Eleven patho-
genic Chlamydia species infect vertebrate animals and display 
tissue-specific tropism3. The elementary body (EB) is the  
environmentally stable form of the pathogen that binds and  
invades target cells. The EB then transitions into the larger  
intracellular reticulate body (RB) form. RBs replicate and  
secrete proteins across the parasitophorous membrane-bound  
vacuole (“inclusion”) to modulate multiple host cellular functions 
that benefit the bacterium4.

All Chlamydiae encode a type III secretion (T3S) system to  
deliver a defined cohort of bacterial proteins (“T3S effectors”) 
directly into the host cell5. The Chlamydia trachomatis EB 
T3S effectors modify the cytoskeleton and stimulate bacterial  
uptake into a membrane-bound vacuole that is rapidly segre-
gated from degradative trafficking pathways (Figure 1A)6,7. 

A subset of T3S effectors are inserted into the inclusion mem-
brane. These inclusion membrane proteins (Incs), which are 
secreted throughout the infectious life cycle, are diverse (~5% of 
the total coding potential of C. trachomatis) and their molecu-
lar function is just beginning to be understood8. For instance, 
Incs co-opt the microtubule motor protein dynein to transport  
nascent inclusions along microtubules toward the centrosome  
(Figure 1A)9. Along the way, the inclusion membrane is  
modified by lipid kinases, which may be important for evasion 
of endolysosomal compartments10. Some Incs contain SNARE  
(soluble N-ethylmaleimide–sensitive factor attachment protein 
receptor)-like domains that coordinate fusion between inclu-
sions and other membrane vesicles11, whereas others promote 
the recruitment of the endoplasmic reticulum and Golgi complex 
to the vicinity of the inclusion, possibly to intercept lipid-rich  
vesicles to support Chlamydia replication (Figure 1A)12–14. As 
the inclusion matures, it is increasingly encased by a network  
of F-actin, microtubules, intermediate filaments, and septins, 
which help confine the bacteria within the inclusion and limit  
recognition of bacterial products by innate immune sensors15–17.

Figure 1. Recent advances in the molecular tool kit and infection models to explore Chlamydia infection. (a) The Chlamydia trachomatis 
infection cycle. The elementary body (EB) form of the bacteria remodels actin filaments (red) during entry and traffics along microtubules 
(green) to the perinuclear region. Inclusion membrane proteins (Incs) recruit the Golgi complex (yellow) and endoplasmic reticulum (blue). 
At the end of the intracellular cycle, the inclusion exits via actin-dependent extrusion or cell lysis. (b) Anatomy of the female genital tract 
and epithelial cell organization in the lower and upper tract. (c) New epithelial model systems (left) and schematic of polarized columnar 
epithelial cell–cell junctions (right). Tight junction (TJ) and adherens junction (AJ) complexes recruit adaptor proteins that connect to the 
actin cytoskeleton (red); desmosomes interact with intermediate filaments (yellow). (d) New genetic tools for C. trachomatis include chemical 
mutagenesis and whole-genome sequencing to identify mutations and plasmid transformation to generate fluorescent reporter strains, tagged 
effectors, and targeted gene disruption via allelic replacement. (e) New proteomic-based strategies to identify host proteins that interact with 
Chlamydia Incs. Incs tagged with the enzyme ascorbate peroxidase (APEX) (left) can ligate biotin-phenol on host proteins in close proximity. 
Purified inclusions (middle) and Strep-tagged Incs (right) were used to identify host proteins recruited to the inclusion and Inc–host protein 
interactions, respectively. (f) Summary of advanced microscopy approaches to visualize Chlamydia effector localization using the Split-green 
fluorescent protein (Split-GFP) system (left), the structure of the T3S apparatus in contact with the plasma membrane (middle), and reticulate 
body (RB)-to-EB conversion (right). ZO-1, zona occludens 1.
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Mid-stage through the infectious cycle, RBs transition back 
to EBs such that at the end of the cycle the infectious bacteria 
are released either by an actin-dependent extrusion process  
whereby the intact inclusion is exocytosed from the cell or by 
lysis of the host cell which requires the cleavage of cytoskeletal  
elements and nuclear rupture18,19.

Much of our understanding of the cell biology of how  
Chlamydia interacts with target cells and the molecular  
mechanisms it uses to manipulate cellular processes is based 
on observations made in infected cancer cell lines, which in  
addition to being metabolically and genetically adapted for  
proliferation, lack positional cues that are available only in the  
context of tissues. For example, polarized columnar epithe-
lial cells, the in vivo target of C. trachomatis, display a spatial  
organization of organelles and cell signaling pathways that 
intimately intertwine stable cell–cell junctions to epithelial  
function and proliferation (Figure 1B, C). Such structures and 
signaling networks are not present—or properly wired—in  
common cell lines used in Chlamydia research. Fortunately,  
more sophisticated infection models, coupled with the increas-
ing ability to genetically manipulate Chlamydia, now provide 
a renewed tool kit to better understand how these pathogens  
interact with their intact animal hosts.

An expansion of the molecular tool kits available for 
Chlamydia research
The greatest single advance in Chlamydia biology over the  
past decade has been the development of methods to perform 
genetic analysis of C. trachomatis mutants and increasingly 
robust molecular genetic tools to transform Chlamydia with  
recombinant DNA (Figure 1D)20–22. As a result, it is now  
possible to perform targeted gene inactivation and plasmid- 
based complementation of chromosomal mutations22–25. The  
ability to express exogenous proteins, epitope tags, and  
fluorescent and other reporter proteins in Chlamydia has also  
expanded the repertoire of possible technologies that can be  
applied to study the Chlamydia–host interface26,27. For instance, 
Incs fused to enzymes that enable the biotinylation of proteins  
identified host factors that are in proximity to the inclusion  
membrane by affinity capture of biotinylated proteins coupled  
with tandem mass spectrometry (Figure 1E)28,29.

Two recent studies using quantitative proteomics identified 
host proteins that interact with Incs and host proteins that are  
preferentially recruited to the inclusion (Figure 1E). In one  
study, intact inclusions were isolated and all associ-
ated host proteins were identified and quantified by stable  
isotope labeling by/with amino acids in cell culture (SILAC)- 
based mass spectrometry30. In parallel, a large-scale study  
identified previously unknown host-binding partners for nearly 
two thirds of the predicted Incs. Using affinity purification of  
Strep-tagged Incs coupled to quantitative mass spectroscopy, a 
second study provided a blueprint for Inc–host interactions31.  
The different but complementary approaches presented new  
clues as to the potential mechanisms used by Chlamydia to subvert 
various aspects of host cell biology.

The advances in genetic and biochemical approaches have 
been further complemented with high-resolution microscopy  
(Figure 1F). The localization and dynamics of Chlamydia T3S 
effectors can now be visualized live by using the split-green  
fluorescent protein (split-GFP) system32, an approach that relies 
on fusing the effector with the 16–amino acid GFP-11 β-strand  
and infecting cells expressing the GFP1-10 β-strands. Upon  
secretion and complementation, the GFP β-barrel properly  
folds and fluoresces (Figure 1F)33. Furthermore, the application 
of cryo-electron microscopy revealed with unprecedented  
resolution that the Chlamydia T3S apparatus changes shape and 
polarizes toward host cell membrane34. Similarly, applied serial 
block-face scanning electron microscopy temporally character-
ized the process of RB-to-EB conversion during the infection  
cycle (Figure 1F)35.

Recent advances in cell culture infection models
Urogenital serovars of C. trachomatis target the mucosal  
epithelium. In the female genital tract, the infection typically 
begins in the endocervix before ascending to the endometrium 
and fallopian tubes36. These tissues are comprised largely 
of polarized columnar epithelial cells with a rich diversity 
in form and function which is not readily recapitulated in  
two-dimensional culture settings37. Thus, new in vitro models  
that more accurately reconstruct the organization and  
complexity of the genital tract are essential to better under-
stand the full impact of Chlamydia infection on the epithelial  
physiology.

Wyrick and colleagues first described key differences in  
Chlamydia growth in polarized epithelial cells38. Human  
endometrial epithelial cancer cells polarized on collagen- 
coated microcarrier beads significantly enhanced the growth 
of C. trachomatis serovar E, independent of EB attachment  
efficiency, compared with non-polarized cells38. Infections in 
polarized enterocytes show that the inclusion preferentially  
captures lipid-rich exocytic vesicles that are specifically traf-
ficked toward the basolateral membrane, suggesting that  
Chlamydia has adapted to grow in a polarized environment39.  
More recently, a human endocervical epithelial cell line (A2EN 
cells) derived from a healthy patient sample has been shown to 
polarize, secrete mucin, and express pro-inflammatory cytokines 
during infection40,41.

Meyer and colleagues pioneered the use of ex vivo organo-
typic cultures and a novel fallopian tube organoid (FTO) model 
to investigate C. trachomatis infection in primary human  
epithelia42,43. Partially dissected tissue from the ectocervix 
and fallopian tube—representing the lower and upper genital 
tracts, respectively—has been cultured ex vivo and infected with  
Chlamydia42,43. These models were recently simplified by  
culturing isolated tubal epithelial cells in a three-dimensional 
matrix, generating self-renewing FTOs (Figure 1C)44. FTOs con-
sist of secretory and ciliated epithelia, the two most common  
epithelial cell types in the fallopian tube, and more accurately  
recapitulate fallopian tube epithelial architecture. Acute  
infection in FTOs produced a strong inflammatory response  
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while long-term and chronic infection increased epithelial  
stemness and proliferation and altered the methylation status 
of genes associated with aging. The latter results provide new  
insights into the long-term effects of Chlamydia infection 
on epithelial tissue homeostasis and the correlation between  
infection and cell proliferation45.

The epithelium of the female genital tract
Ultrastructural analysis of the lower female genital tract shows 
squamous ectocervical epithelia and columnar endocervical  
epithelia, which display differential organization of cell–cell  
junctions37. The endometrium resembles columnar epithelia of 
the endocervix with increased epithelial diversity that includes  
ciliated and secretory cells and hormonally responsive and  
crypt-like glandular epithelia (Figure 1B)46.

Ultimately, the protective function of the epithelium is accom-
plished through the formation of intercellular junctions,  
molecular complexes that link up with the cytoskeleton to  
reinforce epithelial integrity. However, unlike other epithelial 
tissues, the endometrium exhibits remarkable changes during  
hormonal cycles and pregnancy, directly altering the expression 
profile of cell–cell junction proteins, their organization, dynam-
ics, and barrier function46,47. In columnar epithelia, the three  
main classes of intercellular junctions are the tight junctions 
(TJs), adherens junctions (AJs), and desmosomes (Figure 1C)48.  
Although their function as molecular linkages has long been 
appreciated, newer studies have uncovered critical roles in  
transducing cell signaling pathways during tissue damage, repair, 
and pathogenic infection49.

At the apex of the lateral cell membrane, TJs maintain a fence 
that physically separates the apical and basolateral membranes 
while gating the flux of ions and solutes through the paracel-
lular space50. Three families of transmembrane proteins— 
claudins, occludins, and junctional adhesion molecules  
(JAMs)—form homotypic interactions between adjacent cells. 
Adaptor proteins—that is, zona occludens 1–3 (ZO-1–3)—bind 
to their cytoplasmic tails and scaffold the recruitment of the  
polarity complex, which specifies apical membrane identity, 
and actin and microtubules to regulate TJ dynamics and  
stability50.

AJs along the basolateral membrane are formed by homotypic  
interaction between cadherins, calcium-dependent transmem-
brane proteins51. The adaptor proteins α- and β-catenin bind to  
cadherins and the actin cytoskeleton to reinforce AJ stability52. 
AJ components, including β-catenin and others such as  
YES-associated protein (YAP), also function as transcription  
factors but are excluded from the nucleus through their  
association with stable AJs53. AJ assembly is initially mediated 
by nectins, calcium-independent adhesion molecules, that also  
bind to AJ and TJ adaptor proteins54,55. The related but  
structurally distinct desmosomes are composed of a second class 
of cadherins—desmogleins and desmocollins—that connect 
to intermediate filaments, such as keratins, rigid cytoskeletal  
elements that provide additional structural support. Indeed,  
these strong junctions are thought to resist mechanical 
stress and are essential for the maintenance of epithelial  
integrity56.

Many pathogenic viruses and bacteria have evolved diverse 
strategies to subvert cell–cell adhesions to gain entry into host  
cells or penetrate further into the underlying tissue57. For  
example, Listeria monocytogenes surface protein InlA binds to  
E-cadherin and the hepatitis C virus binds to claudin-1 to pro-
mote their internalization58,59. The enteropathogenic Escherichia  
coli T3S effector EspF disrupts TJs and leads to a loss of  
epithelial barrier function60. Importantly, these perturbations to 
cell–cell junctions can elicit an immune response as lumenal  
bacteria and toxins leak into the underlying tissue61.

Chlamydia interactions with the epithelial surface
Initial observations in tumor cell lines indicated that  
C. trachomatis infection can impact cell–cell junctions. 
Chlamydia infections disrupt N-cadherin–based AJs in HeLa 
cells. Gaps were observed between Chlamydia-infected cells 
and β-catenin relocalized to inclusions based on indirect  
immunofluorescence62. These basic observations in two- 
dimensional cell culture were detailed further in an ex vivo  
fallopian tube infection model. Infection with a C. trachomatis 
lymphogranuloma venereum (LGV) biovar disrupted epithelial  
polarity and cell–cell junction organization through a Wnt-
driven paracrine signaling pathway42. The Wnt pathway consists 
of secreted glycoproteins that bind to the Frizzled and LRP5/6  
receptors, activating downstream signals to regulate tissue  
organization through cell fate determination, polarity formation, 
and cell growth63. Activation of the canonical pathway disrupts  
the “destruction complex”, stabilizing the Wnt effector β-catenin 
and allowing its translocation to the nucleus, where it activates 
target genes63. In fallopian tube epithelia, β-catenin translocates  
to the inclusion and a component of the destruction complex,  
adenomatous polyposis coli (APC), shows more diffuse  
cytoplasmic localization. Notably, the localization of these Wnt 
effectors also changed in neighboring uninfected cells but was 
rescued upon the addition of Wnt inhibitors, suggesting that  
infection can alter tissue-level Wnt signaling programs42. 
More recently, pharmacological inhibition of Wnt signaling in  
endometrial epithelial cells resulted in smaller and aberrant  
inclusions and significantly reduced the production of EBs64.

Chlamydia pneumoniae, the human respiratory pathogen and 
causative agent of roughly 4 to 6% of community-acquired  
pneumonia65, also targets effectors of the Wnt pathway. The  
C. pneumoniae Inc Cpn1027 interacts with and may recruit the  
Wnt effectors Caprin2 and glycogen synthesis kinase 3 (GSK3) 
to the inclusion66. The C. trachomatis T3S effector TepP  
regulates GSK3β recruitment to nascent inclusions in 
endocervical epithelial cells10, but it is unclear whether these  
effectors regulate Wnt in the appropriate tissue context. In 
endothelial cells, C. pneumoniae infection also promotes vas-
cular endothelial (VE)-cadherin phosphorylation on Y65867, a 
residue that can control AJ organization and barrier function68. 
The actin-binding protein EPS8, which is recruited to nas-
cent inclusions during invasion and interacts with phosphor-
ylated peptides derived from the T3S effector Tarp, also binds 
to VE-cadherin, alpha-catenin, and TJ components to control  
junction organization69–72. These results suggest that Chlamydia 
may secrete effectors that can target components of cell–cell  
junctions and cell signaling pathways that regulate junction  
organization.
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Chlamydia muridarum, a mouse-adapted Chlamydia, also alters 
the composition of TJ proteins in mouse oviduct epithelial  
cells73. Infection with C. muridarum decreases the expression of 
ZO-1, claudin-1/2, occludin, and JAM-1 while upregulating the 
expression of claudin-3 and claudin-4. Accordingly, C. muridarum 
infection alters transepithelial electrical resistance, indicating  
that the barrier function of TJs is compromised. These  
phenotypes were exacerbated by the absence of the Toll-like 
receptor 3 (TLR3), which initiates double-strand RNA (dsRNA)-
dependent type I interferon responses74. How TLR3 signaling 
is linked to TJ remodeling is unclear, but type III interferons  
were recently reported to strengthen epithelial barrier function  
during Salmonella infection75.

Mechanistically, it remains to be determined whether repro-
gramming of cell signaling pathways or the removal of adhesion  
components and recruitment to the inclusion or both underlie 
the disruption of cell–cell junctions. Nevertheless, Chlamydia  
targeting of cell–cell junctions may drive certain aspects of 
its pathogenesis, including infertility and ectopic pregnancies.  
During estrus, the endometrium undergoes extensive paracrine-
driven remodeling of cell–cell junctions to permit blastocyst 
adherence and invasion into the epithelial tissue46. Thus, infec-
tion-mediated disruption of epithelial cell–cell junctions may 
impede implantation. Alternatively, Chlamydia infection is asso-
ciated with elevated expression of the prokineticins receptor 
2 (PROKR2), a G protein–coupled receptor that modulates TJ 
organization and paracellular permeability, which may prime  
tubal epithelia for implantation in fallopian tubes of patients with 
ectopic pregnancies76,77.

Chlamydia activates epithelial-to-mesenchymal 
transitions
The remodeling of epithelial cell–cell junctions is a hallmark 
of both inflammation and cellular proliferation78. New studies  
indicate that multiple Chlamydia biovars can induce the trans-
formation of epithelial cells to a more mesenchymal-like state 
by activating the epithelial-to-mesenchymal transition (EMT)  
program. EMT is essential for organogenesis and tissue repair  
during which epithelial cells adopt features of cells in the 
mesenchyme like fibroblasts, altering their polarity and the  
organization of the actin cytoskeleton and cell–cell adhesions79. 
Driven by growth factors (for example, transforming growth  
factor beta [TGF-β], hepatocyte growth factor, and epidermal 
growth factor) and hormones (estrogen), EMT can be aberrantly 
activated during tumorigenesis and inflammation-associated  
fibrosis78,80. Most notably, EMT is often coupled to the down-
regulation of E-cadherin, upregulation of cell–extracellular 
matrix (cell–ECM) adhesions, deposition of ECM proteins, and  
enhanced cell motility. This transition is thought to enable tumor 
cells to disseminate toward the lymph nodes and vasculature79. 
Alternatively, inflammation-associated EMT is necessary for  
tissue repair and ceases at the end of the inflammatory response.  
However, inflammation during chronic infections can lead to  
sustained EMT, tissue damage, and organ fibrosis81,82.

Chlamydia infection can promote EMT in different epithelial 
subtypes and through multiple pathways. Oviduct epithelial 
cells infected with C. trachomatis serovar D increase the  
expression of microRNAs (miRNAs) that promote EMT83. 

By immunofluorescence microscopy, infection downregulates the 
expression of E-cadherin while upregulating the EMT markers 
smooth muscle actin (SMA), the matrix-degrading enzyme matrix 
metalloproteinase-9 (MMP9), fibronectin, and the transcription 
factors SNAIL1/2 and ZEB183,84. Similar results were observed 
in conjunctival epithelial cells infected with C. trachomatis 
serovar B. Infection increases TGF-β expression which sig-
nals through SNAIL/ZEB2 and drives the downregulation of 
E-cadherin and upregulation of fibronectin and SMA. These 
changes may also involve epigenetic modifications as methylation 
of E-cadherin, fibronectin, and SMA genes were observed85.

More recently, a global phosphoproteomic and transcriptomic 
analysis in ectocervical epithelial explants infected with  
C. trachomatis serovar L2 indicated that infection activates cell 
signaling pathways to promote an EMT-like signature43. The  
infection initiates at the top of the stratified epithelia and 
progresses toward the basal layer, suggesting that altering cell–
cell junctions during EMT may provide access for  subsequent 
rounds of infection. Indeed, downstream of the  MAPK path-
way, the transcriptional factors ETS1 and ERF promote EMT in 
infected cells, leading to the downregulation of E-cadherin and 
increased cell motility and invasion43. Collectively, these obser-
vations suggest that Chlamydia can promote the transforma-
tion of epithelial cells, which may contribute to cancers of the 
cervix and uterus. However, these results must be confirmed 
in vivo and in the proper tissue context.

Chlamydia infection in new in vivo models
Extending these observations to a robust animal model of  
infection has remained challenging. Although the mouse-adapted 
C. muridarum is used extensively to study the host immune  
response in mice, this Chlamydia species is less genetically  
tractable than C. trachomatis. On the other hand, intravaginal 
inoculations of C57BL/6 mice with C. trachomatis often fail to  
induce significant pathology because the bacteria do not effi-
ciently ascend to the upper genital tract86. However, transcervical 
inoculations87 that bypass the vaginal vault and the use of more 
permissive mouse strains (for example, C3H/HeJ) have improved 
the ability to monitor the infections in the mouse upper geni-
tal tract and ensuing pathology and infertility88. C. trachomatis  
serovar L2 ascends to the upper genital tract in C3H/HeJ mice 
when inoculated intravaginally, stimulating a robust immune  
response and altering epithelial cell height89. Future studies  
combining these new infection models and techniques with 
both host and bacterial genetics will promote better molecular  
dissection of Chlamydia pathogenesis in live animals.

Future directions
The recent advances in the Chlamydia experimental tool kit have 
brought about a new era in Chlamydia research. With the ability 
to specifically disrupt genes and express genes in trans, new  
mechanisms by which Chlamydia subverts its host will be  
identified. Applying these molecular tools in model systems  
that better mimic the in vivo physiology will significantly  
accelerate our understanding of the infection process, especially 
as these tools are applied to other C. trachomatis serovars with 
distinct tissue tropisms. For example, using more sophisticated  
infection models and defined C. trachomatis mutants, we now 
test how specific virulence factors promote infection and affect  
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epithelial cell growth, function, organization, and potentially 
transformation. However, more work is necessary to decode the  
genetics of the urogenital and ocular biovars and generate 
the relevant in vivo models of infection that best recapitulate  
the host responses observed in humans. Collectively, these 
new tools and models can be prioritized for the identification  
of new therapeutic targets or harnessed for the rational design of 
vaccines for this clinically important pathogen.
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