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Abstract

Background: Genetic variants currently known to affect coronary artery disease (CAD) risk 

explain less than a quarter of disease heritability. The heritability contribution of regulatory gene 

networks (RGNs) in CAD, which are modulated by both genetic and environmental factors, is 

unknown.

Objective: To determine the heritability contributions of single nucleotide polymorphisms 

affecting gene expression (eSNPs) in RGNs causally linked to CAD.

Methods: Seven vascular and metabolic tissues collected in two independent genetics-of-gene 

expression studies of patients with CAD were used to identify eSNPs and to infer co-expression 

networks. To construct RGNs with causal relations to CAD, the prior information of eSNPs in the 

co-expression networks was used in a Bayesian algorithm. Narrow-sense CAD heritability 

conferred by the RGNs was calculated from individual-level genotype data from nine European 

genome-wide association studies (GWAS, 13,612 cases, 13,758 controls).

Results: We identified and replicated 28 independent RGNs active in CAD. The genetic variation 

in these networks contributed to 10.0% of CAD heritability beyond the 22% attributable to risk 

loci identified by GWAS. RGNs in the atherosclerotic arterial wall (n=7) and subcutaneous or 

visceral abdominal fat (n=9) were most strongly implicated, jointly explaining 8.2 % of CAD 

heritability. In all, these 28 RGNs (each contributing to >0.2% of CAD heritability) comprised 24 

to 841 genes, whereof 1 to 28 genes had strong regulatory effects (key disease drivers) and 

harbored many relevant functions previously associated with CAD. The gene activity in these 28 

RGNs also displayed strong associations with genetic and phenotypic cardiometabolic disease 

variations both in humans and mice, indicative of their pivotal roles as mediators of gene–

environmental interactions in CAD.

Conclusions: RGNs capture a major portion of genetic variance and contribute to heritability 

beyond that of genetic loci currently known to affect CAD risk. These networks provide a 

framework to identify novel risk genes/pathways and study molecular interactions within and 

across disease-relevant tissues leading to CAD.

Graphical Abstract
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Central Illustration. Environmentally triggered eSNPs of cellular gene networks contribute 
to CAD heritability. (A) Schematics of the macro- and micro levels of gene-environmental 

interactions. Macro-environmental factors (e.g., lifestyle, food intake and smoking) interact with 

genetic variants in organs to change the micro-environment in cellular networks leading to CAD. 

(B)Schematics of environmental and genetic risk for complex diseases over a lifetime. One 

fraction (10–25%) of inherited risk for complex diseases (H2) with the strongest penetrance is 

characterized by genetic variants promoting disease development independent of parallel 

environmental risk factors and thus, likely influence disease development already from early 

stages in life (“G”, upper life span axis). Similarly, there may also be a smaller fraction (10–25%) 

of penetrant environmental risk factors driving disease independently of the genetic makeup of an 

individual (“E”, lower life span axis). However, research in cell cultures has shown that a large 

fraction of SNPs affecting gene expression (eSNPs) in genetically identical cells is altered 

depending on parallel environmental perturbations.(47) Accordingly, it is feasible that the largest 

fraction (50–80%) of inherited risk (H2) for complex diseases constitutes SNPs which disease-

driving effects only transpire at stages in a life when triggering environmental factors are present 

(“GxE”, middle life span axis). An example of a triggering environmental factor can be that of 

fatty diet or smoking, but also a certain age. (C) Fractions of genetic factors contributing to the 

heritability (H2) of CAD.
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Condensed Abstract:

Coronary artery disease (CAD), the cause of myocardial infarction, is partly inherited. Yet less 

than 25% of CAD heritability has thus far been accounted for by genome-wide association studies 

(GWAS). Using two recent genetics of gene expression studies, we sought additional heritability 

contributions from regulatory gene networks (RGNs) active in CAD. Genetic variants of the RGNs 

contribute to additional 10 % of CAD heritability beyond the 25% previously identified by GWAS. 

This novel fraction of genetic variants should help to improve clinical risk predictions of CAD and 

myocardial infarction, and the RGNs provide new mechanistic insights into the etiology of CAD.

Keywords

Heritability; coronary artery disease; systems genetics; regulatory-gene networks

Introduction

The risk of developing coronary artery disease (CAD) is partly inherited. According to 

family-based studies carried out in Western populations (1,2), the overall contribution of 

inherited/genetic factors (i.e., the broad sense heritability (H2)) to total CAD varianceis 

estimated to be in the range of 40–60% (3). Over recent years, single nucleotide 

polymorphisms (SNPs) underlying H2 by additive genetic effects (i.e., by narrow sense 

heritability (h2)) have been identified by genome-wide association studies (GWAS).(4, 5) 

However, the 302 most significant SNPs in genetic loci identified by GWAS currently 

account for less than a quarter of CAD heritability (H2). Thus, the majority of genetic 

variants underlying CAD heritability can be considered “missing”.

The lack of success in identifying a greater portion of genetic variance despite the enormous 

size and statistical power of recent meta-analyses of GWAS suggests that some of the 

missing heritability may not be detectable using a GWAS data analysis design solely 

focusing on SNPs with genome-wide significance.(3) For instance, DNA variants that 

increase risk of CAD only in the presence of environmental risk factors (e.g., environmental-

triggered risk SNPs (Central Illustration; Online Figure 1) may result in sub-significant, or 

weak associations in GWAS data(6). Similarly, rare familial variants(3) are also not 

detectable. Another major limitation of GWAS is that they provide no mechanistic insights 

into how identified risk variants ultimately affect a late-onset disease such as CAD (4, 5).

An extension to GWAS are genetics-of-gene-expression-studies, which introduce RNA 

expression in an intermediary layer capturing both the effects of genetic variability and 

environmental perturbations driving disease phenotypes. This complementary, data-driven 

approach can identify not only disease-causal genes but also CAD-relevant pathways in the 

form of regulatory gene networks (RGNs).(6–12) In these RGNs, the directionality of gene 

interactions is disclosed by applying probabilistic Bayesian network algorithms(13) using 

genetic modifiers (i.e., expression quantitative trait loci (eQTLs)) as priors. In addition, 

certain “hub” genes are identifiable as being highly connected and located in the top of the 

RGN hierarchy (i.e., regulating many down-stream network genes). Accordingly, 

perturbation of these key network drivers by either increasing or inhibiting their level of 
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expression in relevant in vitro model systems has demonstrated their hierarchical ability to 

modulate and impact the activity of the entire network, as well as any downstream network-

associated phenotype such as CAD (14,15). This latter characteristic has also prompted the 

term “key disease drivers” (14,16). It has been suggested that the causal nature of RGNs(17), 

including their key drivers, may provide a valuable mechanistic framework to decipher 

complex disease biology.

Here, we determined whether SNPs associated with expression levels of genes (eSNPs/

eQTLs) in RGNs inferred from two genetics-of-gene-expression studies of CAD(8, 11) 

contribute to heritability not accounted for by known genetic risk loci identified by GWAS. 

Moreover, both at the tissue and molecular level, we functionally characterize these 

networks and determine their individual contributions to CAD heritability.

Methods

Study Populations

The Stockholm Atherosclerosis Gene Network study (STAGE)(8, 11) is a genetics-of-gene-

expression study of atherosclerotic aortic wall, non-atherosclerotic internal mammary artery, 

liver, skeletal muscle, visceral abdominal fat, subcutaneous fat and whole blood. Tissues 

were obtained from CAD patients during coronary artery bypass surgery at the Karolinska 

Hospital in Stockholm, Sweden (Ethical Approval Dnr 2002–04). RNA samples were used 

for gene expression profiling with a custom Affymetrix array (HuRSTA-2a520709).(18) In 

the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task study (STARNET)

(12) (Ethical Approval Dnr 2007/1521–32), a continuation of STAGE, the same seven 

tissues were collected from 600 bypass patients and analyzed by RNA sequencing 

(RNAseq), mainly using the ribo-zero protocol (50–100 bp read-length, pair ends, 20–50 M 

read depth). Standard platforms for genotyping DNA in STAGE and STARNET are shown 

in Online Table 1.

Individual-level GWAS data were obtained from nine case-control studies of CAD, 

representing 13,612 CAD cases and 13,758 controls. Most of the subjects were from 

Germany (the German Myocardial Infarction Family Studies [GerMIFS] I,(19) II,(20) III 

(KORA),(21) IV,(22) and V(23)) and England (Wellcome Trust Case Control Consortium 

[WTCCC]).(24) Others included subjects from France (Cardiogenics)(25) and Italy and the 

US (Myocardial Infarction Genetics Consortium [MIGen]).(26) All subjects were of 

Western European descent and gave broad written informed consent before participating in 

these studies to understand the genetic underpinnings of cardiovascular disease. All GWAS 

were approved by their local Ethical Committees. In the GerMIF studies, Cardiogenics, 

WTCCC, and MIGen, information on CAD manifestations was validated by medical 

records. MIGen data were from the database of Genotypes and Phenotypes(27) (project ID 

49717–3). Genotyping was done with commercially available arrays (Online Table 1).

Mouse Data

The Hybrid Mouse Diversity Panel (HMDP) has been described previously as a set of over 

100 different inbred mouse strains, which were studied under chow diet, high-fat diet and on 
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the background of transgenic implementation of human APOE-Leiden and cholesteryl ester 

transfer protein to generate strain specific degrees of atherosclerosis (28).

Inference and Validation of Regulatory Gene Networks

Using data from the STAGE(11) and STARNET(12) studies, genetic variants affecting gene 

expression in the same locus (cis eSNP/eQTLs) and 171 co-expression networks inferred 

simultaneously to capture gene–gene interactions both within and across tissues(29) were 

identified. By applying a linear Gaussian Bayesian algorithm, RGNs were inferred 

separately for each co-expression network using eQTLs and transcription factors as priors. 

Applying a Bayesian information criterion,(30) a multiple-restart greedy hill-climbing 

algorithm, with edge additions, deletions, and reversals, was used to search optimal RGN 

models for each co-expression module. Performed as described(11) were network; key 

driver identification(31), Gene Ontology (GO)(32), eigengene/phenotype association, 

enrichment in genetic association with CAD risk factors (e.g., blood lipids and glucose 

levels) according to GWAS, and cross-species eigengene/phenotype associations in the 

HMDP data.(28).

Replication of Stage Co-Expression Networks in Starnet

To assess reproducibility of STAGE co-expression networks, gene symbols for microarray 

probes in each tissue were mapped to normalized STARNET RNAseq data. For genes 

matching the STAGE networks, pairwise Pearson’s correlations in STARNET data were 

computed. The average absolute correlation was used as a measure of module connectivity. 

For each candidate module, connectivity was compared to an empirical null distribution 

from 1,000 random permutations with identical numbers of genes per tissue. To account for 

differences in RNA biases between microarray and RNA-seq technologies, permutations 

were also matched to yield identical distributions of RNA categories (e.g., protein coding, 

pseudogenes, and lincRNA) in each tissue. A Benjamini-Hochberg test(33) was used to 

adjust for multiple testing.

Assessment of CAD Heritability

To calculate heritability contributions from eSNPs in the 98 CAD networks inferred from 

STAGE(8, 11) and STARNET,(12) we used individual-level genotype data from a pool of 

GWAS datasets (Online Table 1). For SNPs not originally available in these GWAS datasets, 

±500-kb flanking regions were assessed for the best proxy with a linkage disequilibrium 

(LD) (r2>0.8). Genome relationship matrixes for each eSNP list were calculated with 

LDAK(34) and adjusted for LD and minor-allele frequency of 5%. To eliminate potential 

population stratification or study batch biases, we made further adjustments based on the 

top-20 multiple dimensions derived from individual-level genotype data. With a CAD 

population prevalence set at 5% and the portion of CAD heritability at 40% (i.e. H2) CAD 

variance explained in a liability model was calculated with the restricted maximum 

likelihood method (REML) with GCTA.(35) Unlike traditional multifactorial liability 

threshold models typically used for heritability assessments of independent lead SNPs in 

GWAS,(5) REML enables assessing heritability from groups of multiple SNPs (35). 

Importantly, REML produced similar assessments of CAD heritability from lead SNPs as 
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previously reported using the multifactorial liability threshold model in GWAS (4, 5) 

(Online Figure 2). In most recent GWAS(4, 5, 36), 302 so-called “lead SNPs” were 

identified associated with CAD at the genome-wide significant (P<5×10−8) or a false 

discovery rate (FDR) <5% levels. These 302 SNPs jointly contribute to ~22% of H2. Thus, 

the origin of ~78% of H2 in CAD remains unaccounted for.

Results

We used 171 RGNs previously derived using co-expression and Bayesian algorithms applied 

to genotype and gene expression data from seven metabolic and vascular tissues in the 

STAGE study.(8, 11) By assessing the average connectivity (absolute Pearson’s correlation) 

compared to the null distribution for network genes matched by tissue, we first replicated 98 

of these STAGE networks in STARNET RNA sequencing data(12) (FDR<0.2, Online 

Figure 3). We then used eSNPs also derived from STARNET(12) to assess heritability 

contributions to CAD from the replicated RGNs by applying REML(35) to 13,612 CAD 

cases and 13,758 controls. Prior to this analysis, to ensure that any contribution to CAD 

heritability from the RGNs is independent of that from the lead SNPs found in GWAS, we 

excluded from the analysis all SNPs with known genome-wide significant and FDR<5%(4, 

5) associations with CAD as well as all SNPs in their LD (r2>0.2).

eSNPs in the 98 RGNs replicated in STARNET were found contribute to an additional 

11.9% of CAD heritability (i.e., H2) in addition to the ~22% from known GWAS loci for 

CAD (Figure 1). The majority of this substantial addition to CAD heritability was 

identifiable in the top-28 networks (10.0% of H2), each with a relative contribution to CAD 

heritability >0.2% (Figure 1, Online Table 2). Compared to all independent imputed SNPs 

(n=1 million) in GWAS(37) with a background CAD H2/SNP contribution of 0.0001% (and 

a total CAD H2 contribution of 78%, Online Table 2), the average H2 contribution of eQTLs 

of the top-28 RGNs (with a total CAD H2 contribution of 10.0%) is 0.0072% (Online Table 

2). Compared to randomized groups (n=100) of SNPs regulating expression of genes 

matched by tissue in GTEx (38), the H2 contributions of eQTLs in networks isolated from 

patients with CAD in STAGE/STARNET are on average 2–5 fold higher (P<0.001, Online 

Table 2).

Analysis of the 28 RGNs by tissue of origin showed that 9 in fat (subcutaneous or visceral 

abdominal) and 7 in atherosclerotic arterial wall respectively contribute to 5.0% and 3.1% of 

CAD heritability (H2) (Figure 1). The contributions to CAD heritability from each RGN in 

relation to size are shown in Figure 2. As might be expected, larger RGNs with more genes 

tended to contribute to larger fractions of CAD heritability than smaller RGNs. However, 

this tendency was not significant (Spearman rank correlation, r=0.36, P=0.06), a fact that 

may relate to differences in the number of eSNPs per network and the individual 

contributions of these eSNPs to CAD heritability. The individual contributions of eQTLs in 

the top 28 networks to CAD heritability are shown in Online Table 3.

We next assessed the 28 RGNs by their gene members for functional relevance according to 

GO. Fourteen of the 28 RGNs were enriched for biological processes previously implicated 

in CAD/atherosclerosis, such as cell adhesion, immune and defense responses, scavenger 
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receptor activity, apoptosis and blood coagulation. Four networks had no GO annotation 

(Figures 3 and 4, Online Figures 4 and 5 and Online Tables 3–6).

In order to further analyze the functional implications of these RGNs, we assessed their 

associations with CAD-relevant phenotypes. In this respect, the principal components of the 

expression levels of all network genes (i.e., their eigengene values) were associated with 

continuous phenotypes including the extent of coronary atherosclerosis as assessed in 

preoperative angiographs and established CAD risk factors such as levels of plasma lipids 

and glucose. Twenty-six out of the 28 RGNs were significantly associated with CAD, or at 

least one CAD-relevant phenotype (Figures 3 and 4, Online Figures 4 and 5 and Online 

Tables 3–6).

In principle, an association between a RGN eigengene and a given phenotype cannot 

unequivocally distinguish a causal relationship from a reactive one, where the phenotype is 

affecting the activity of the network (e.g., levels of plasma lipid impacting the gene activity 

of an arterial wall network).(39) In contrast, RGNs controlled by eSNPs that contribute to 

heritability (i.e., those associated with disease in GWAS data) imply a causal relationship, 

since the affected phenotype always is downstream of the regulatory eSNPs.(13) eSNP in 

sixteen of the top-28 networks were, in addition to CAD, also associated with at least one 

CAD-relevant phenotype such as plasma lipids and glucose levels according to 

corresponding GWAS data.(11) In addition, fourteen of the top-28 networks were enriched 

in genes previously implicated in research of CAD or atherosclerosis according to text 

mining(11) (Figures 3 and 4, Online Figures 4 and 5 and Online Tables 3–6).

Lastly, using the Hybrid Mouse Diversity Panel (HMDP) data(28), we examined if the 

described network eigengene-phenotype associations in humans are conserved across 

species. We assessed this by investigating if the network eigengene values of corresponding 

gene orthologs are conserved in equivalent tissues isolated from 105 strains of mice bread 

onto an atherosclerosis susceptible background (i.e., ApoE4 Leiden back crosses).(28) We 

found that, in mice, seven of the top-28 networks were associated with at least on similar 

CAD-relevant phenotype also found in CAD patients (Figures 3 and 4, Online Figures 4 and 

5 and Online Tables 3–6).

The relatively high number of genes in most RGNs makes experimental validation 

challenging. We therefore also inferred the key disease drivers in each network.(31) These 

genes have proven to be good targets for experimental validation(14) and, as suggested,(40) 

for pharmaceutical interventions. Within the top-28 RGNs, we identified a total of 188 key 

drivers, averaging 6–7 per network, and ranging from 1–28 key drivers per network (Figures 

3 and 4, Online Figures 4 and 5 and Online Tables 3–6).

Two examples from the top-28 RGNs (Online Figures 4 and 5)—one active in the arterial 

wall and one in whole blood—are shown in Figure 3. One of these networks identified in the 

non-atherosclerotic internal mammary artery comprised 122 genes and was also found to be 

associated with the extent of coronary atherosclerosis (P<0.05) in STAGE and contributes to 

as much as 0.64% of CAD heritability (H2). It also contains five key disease drivers 

(CCDC55 (NSRP1), TRIP11 ZNF37A, ZNF83, ZNF138) suggesting a role in transcriptional 
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regulation, which was confirmed by GO analysis (Figure 3A). Transcriptional regulation has 

been sparsely studied in relation to CAD/atherosclerosis, which was confirmed by the 

observation that only 12.5% of the genes in this network have been implicated in previous 

studies of CAD or atherosclerosis.(11) Another network found in whole blood with 100 

genes and 8 key disease drivers (GUCY1A1, GUCY1B1, ABLIM3, GFI1B, LY6G6F, 

MFAP3I, PTCRA, TAL1) contributed to 0.41% of CAD heritability. According to GO 

enrichment, genes in this network are involved in blood coagulation (P=1.27e−19). In its 

center is soluble guanylate cyclase, a heterodimeric protein formed by GUCY1A1 and 

GUCY1B1 and activated by nitric oxide, that catalyzes the conversion of GTP to 3’,5’-cyclic 

GMP and pyrophosphate, thereby causing vasodilation and inhibiting platelet function, i.e. 

central disease processes affected in atherosclerosis. Prior studies have implicated as many 

as 52 of the 100 genes in this network in CAD or atherosclerosis (P=4.66e−8).

Nine of the top-28 RGNs contributing to 5.0% of CAD heritability were identified in fat 

(Figure 1). One interesting example among these adipose networks is shown in Figure 4. 

This visceral abdominal fat RGN was found to contribute to as much as 0.57% of CAD 

heritability and to comprise 139 genes, including 10 key disease drivers (C2orf63, BCLAF1, 

MLL5, SCLT1, SP100, THOC1, XAF1, ZNF33A, ZNF92, ZNF136) (Figure 4). GO 

analysis indicated strong involvement of this network in RNA processing (P=1.17e−7), 

similarly as noted above for the arterial wall network (Figure 3A), a biological process that 

has scarcely been studied in relation to CAD or atherosclerosis (Figure 4). Nonetheless, 

eSNPs in this network were strongly enriched in associations with plasma levels of HDL 

(2.8-fold, P<8.93e−33), LDL (4.5-fold, P=1.99e−117), and pro-insulin (4.02-fold, P=3.75e
−84) according to integrative analysis with corresponding GWAS,(41, 42) suggesting an 

indirect role in CAD by modifying levels of plasma lipids and pro-insulin. This notion is 

further supported in the HMDP, where orthologs of the 139 human genes in mouse adipose 

were found to be associated with levels of plasma LDL (P<0.003).

The individual contributions of the top-28 RGNs and their eQTLs to CAD heritability, along 

with key disease drivers, main gene ontologies, phenotype associations, possible enrichment 

in genetic association according to genotype data from GWAS and cross-species 

conservation assessments using the HMDP are shown in detail in Online Figures 4 (tissue-

specific networks) and 5 (cross-tissue networks) and Online Tables 3–6.

Discussion

In this study, three main observations that broaden the view of CAD pathophysiology were 

made. First, we identified a number of regulatory gene networks contributing to a substantial 

proportion of CAD heritability of CAD. Second, of all tissues studied fat and arterial wall 

harbored the regulatory gene networks that exerted the strongest influence on the risk of 

CAD. Third, these regulatory gene networks (and their eSNPs) define, in addition to known 

CAD risk factors, a number of biological functions involving DNA binding, RNA 

metabolism, and blood coagulation with causal roles in CAD pathogenesis. From a broader 

perspective, the CAD heritability contribution of these regulatory gene networks establishes 

systems genetics as a “top-down” interpretation of complex disease biology – 

complementary to established approaches mostly with a gene/pathway “bottom-up” 
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perspective – with the common goal of unbiased characterization of molecular interactions 

within and across specific disease-relevant tissues leading to CAD.

Risk factors for common complex disorders are traditionally divided into two categories: 

genetic (inherited) and environmental (e.g., smoking, sedentary life style, food intake) 

(Central Illustration) each contributing about 40–60% of disease risk.(3) However, in 

reality, it is unlikely that genetic and environmental risk portions operate separately (other 

than perhaps a small fraction). Instead, it is inevitable that they mostly interact(10, 43) in 

that a substantial number of risk alleles exert their disease-causal effects only after 

interactions with certain environmental factors (“environmentally-triggered risk alleles”) 

(Central Illustration; Online Figure 1). Such interactions may become evident at the level 

of transcriptional regulation and ultimately are likely to affect the regulatory gene networks 

studied here. Importantly, since the genetic variants affecting these regulatory gene networks 

account for a large proportion of disease heritability, it is reasonable to conclude that these 

networks reflect causal mechanisms driven by both genetic and environmental factors. Thus, 

further analysis of the most significant networks may help explaining CAD etiology and 

give novel insights on how to prevent its development.

The current study adds a substantial number of genetic variants (Online Table 3) 

contributing to CAD heritability beyond the 160 chromosomal loci with genome-wide 

significant association signals identified by GWAS of CAD to date.(2) The most immanent 

challenge following identification of these associations is to unravel their downstream 

functional consequences. The joint analysis of genetic variants affecting expression levels 

(eSNPs) and interacting transcriptional networks, as carried out in this analysis, offers a first 

step in this direction. In fact, regulatory gene networks harboring genetic variance of CAD 

constitute the beginning of a novel framework of gene-gene interactions across metabolic 

and vascular tissues that will be essential to enable linking DNA risk variants at the top of 

information flow to the end stage phenotypic changes in the forms of CAD and myocardial 

infarction.

In CAD GWAS data, environmentally triggered risk SNPs will not display genome-wide 

significant association. Rather, they will more likely present themselves with weak statistical 

significance due to the fact that the presence of macro- or microenvironmental triggering 

factors (unlike clinically significant CAD) are not uniquely distributed in the case or control 

groups of GWAS. In this study, we discovered that cis eQTLs of genes in networks built 

from both genetic and environmental variation in CAD patients are useful to filter sub-

significant SNPs in GWAS data that truly contribute to CAD variation from SNPs with 

marginal or no contribution to H2.

The understanding of biological networks in complex disease biology is still in its infancy.

(10) Indeed, RGNs identified herein (Online Figures 4 and 5) both strongly align with our 

current understanding of CAD biology but in many ways also challenges the same: The 

RGN affecting coagulation in whole blood (Figure 3B) makes strong sense in relation to our 

current understanding of CAD and risk for myocardial infarction,(44) In contrast, the arterial 

wall and fat networks (Figure 3A and 5) with major contributions to CAD heritability 

respectively involve transcriptional regulation and RNA processing (the latter suggesting 

Zeng et al. Page 10

J Am Coll Cardiol. Author manuscript; available in PMC 2020 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



non-coding RNA involvement), which have not been widely studied in relation to CAD. The 

conceptual novelty of the identified networks is particularly evident looking at those 

consisting of gene/nodes from several tissues (Online Figure 5). As a group these cross-

tissue networks had the third largest contribution to CAD heritability after those in fat and 

the arterial wall (Figure 1). The nature of cross-tissue networks may at first seem obscure. 

However, cross-tissue gene interactions may appear less surprising when one considers that 

key risk factors for CAD such as plasma lipid and glucose levels are not uniquely regulated 

based on gene activity in single tissues, but depend on synthesis, secretion and uptake taking 

place in several tissues. The underlying biological explanation(s) for gene interactions across 

tissues remain to be determined but a recent study suggests that a panoply of largely 

uncharacterized secretory proteins may play central endocrine roles for cross-tissue 

communication of genes (45).

Despite remaining challenges such as lack of detailed pathway information, regulatory gene 

networks described in the literature have proven to be evolutionary well-conserved(46) and 

contain key disease driver genes,(16) some of which have been experimentally validated.(14, 

15) In this study, we extensively evaluated the CAD networks besides enrichments in 

biological processes according to gene ontology, first by replication using the independent 

STARNET RNA sequence data collection, then in relation to relevant CAD phenotypes 

using both network eigengene associations and integrative analyses of network (e)SNPs in 

GWAS data for risk factors of CAD. Last, we found evidence for cross-species conservation 

of identified networks using data from evolutionary diversity in mice (28).

Study Limitations

Additional molecular, anatomical, and functional data with temporal resolution at the tissue, 

cell-type and single-cell levels in a range of CAD-model systems and from spectrums of 

human ethnicities are needed to achieve a complete understanding of the framework of 

RGNs active within and across tissues leading to CAD. We believe that with increasing 

accuracy and resolution of regulatory-gene network models for complex diseases, the more 

they will be found to contribute to heritability and thus, help us to improve our 

understanding of complex disease biology.(7–9, 11) Importantly, network eQTLs may also 

capture non-additive inheritance, including gene-environment, gene-gene and gene-age 

interactions.

Conclusions

We found that genetic variants in disease-causal gene networks contribute to a major portion 

of previously unidentified CAD heritability.(11, 12) The regulatory gene networks with the 

strongest influence on CAD risk were found in fat and the arterial wall, which by inference 

signifies these tissues as being particularly important in understanding the pathobiology of 

CAD. A major step in the future battle of CAD, we believe, will be to assess how our 

knowledge and understanding of these network models can achieve earlier prevention, 

diagnosis and more effective network-focused therapies.
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Clinical Perspectives

Competency in Medical Knowledge:

Single nucleotide polymorphisms (SNPs) in regulatory networks increase the heritability 

relevant of coronary artery disease (CAD) contribute to beyond the amount explained by 

genome-wide association studies (GWAS).

Translational Outlook:

Identified network expression SNPs should be included in polygenetic risk scores to 

improve the precision of CAD risk prediction, and key driver genes in identified CAD 

networks explored as novel therapeutic targets.
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Figure 1. Contribution to CAD heritability from expression (e)SNPs of regulatory gene networks 
identified in STAGE/STARNET.
Bar plots of CAD heritability (H2) contributions from 98 regulatory-gene networks 

identified in the STAGE study(11) and replicated in STARNET(12) (blue). The yellow bar 

indicates contribution to H2 from the top-28 networks, each contributing >0.2% CAD 

heritability. The following bars show H2 contributions from subsets of these 28 regulatory 

gene networks according to their tissue of origin (n = number of networks). Non-fat refers to 

networks found in tissues other than fat; H2 error bars are standard error of mean.
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Figure 2. Individual contributions to heritability from top-28 regulatory-gene networks 
associated with CAD.
Bar plots of CAD heritability (H2) contributions (blue, left y-axis) and network-gene number 

(red, right y-axis) of the top-28 regulatory-gene networks (>0.2% h2/network, Online 

Figures 4 and 5).
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Figure 3. Examples of two regulatory gene networks in the arterial wall and whole blood with 
substantial contributions to CAD heritability.
Shown are two tissue-specific regulatory-gene networks contributing to 0.64% and 0.41% to 

CAD heritability, respectively. These networks were identified in gene expression data from 

the internal mammary artery (IMA) (A) and whole blood (B) isolated from CAD patients in 

the STAGE study(11) and replicated in RNAseq data from corresponding tissues in 

STARNET.(12) Circles in the network illustrations indicate individual genes. Squares 

indicate key disease drivers.
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Figure 4. A regulatory-gene network identified in abdominal fat with major contribution to CAD 
heritability.
This regulatory-gene network example contributing to 0.57% of CAD heritability was 

identified in gene expression data from visceral abdominal fat (VAF) from CAD patients in 

the STAGE study (11) and replicated in RNAseq data from the same tissue in STARNET.

(12) Circles in the network illustration indicate individual genes. Squares indicate key 

disease drivers.
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