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Abstract

Glaucoma, a leading cause of blindness, is characterized by optic nerve damage related to 

intraocular pressure (IOP), but its full etiology is unknown. Researchers at UAB have devised a 

custom device to measure scleral strain continuously around the eye under fixed levels of IOP, 

which here is used to assess how strain varies around the posterior pole, with IOP, and across 

glaucoma risk factors such as age. The hypothesis is that scleral strain decreases with age, which 

could alter biomechanics of the optic nerve head and cause damage that could eventually lead to 

glaucoma. To evaluate this hypothesis, we adapted Bayesian Functional Mixed Models to model 

these complex data consisting of correlated functions on spherical scleral surface, with 

nonparametric age effects allowed to vary in magnitude and smoothness across the scleral surface, 

multi-level random effect functions to capture within-subject correlation, and functional growth 

curve terms to capture serial correlation across IOPs that can vary around the scleral surface. Our 

method yields fully Bayesian inference on the scleral surface or any aggregation or transformation 

thereof, and reveals interesting insights into the biomechanical etiology of glaucoma. The general 

modeling framework described is very flexible and applicable to many complex, high-dimensional 

functional data.

Keywords

Bayesian models; Functional data analysis; Functional mixed models; Functional regression; 
Glaucoma; Longitudinal Functional Data; Nonparametric effects; Smoothing Splines; Spherical 
data; Wavelets
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1. INTRODUCTION

Glaucoma is one of the leading causes of blindness in the world. While its etiology is not 

fully understood, it is known to be caused by damage to the optic nerve head (ONH) that can 

be induced by intraocular pressure (IOP). Researchers hypothesized that the biomechanics 

of the peripapillary (PP) scleral region close to the ONH, shown to be an important 

determinant of ONH biomechanics, may play a major role in glaucoma pathogenesis and 

progression (Sigal et al., 2005; Burgoyne and Downs, 2008). Recently, novel custom 

instrumentation was developed that can induce a fixed level of IOP and precisely measure 

the mechanical strain in the posterior human sclera (Fazio, Bruno, Reynaud, Poggialini and 

Downs, 2012; Fazio, Grytz, Bruno, Girard, Gardiner, Girkin and Downs, 2012). A 

commercial laser speckle interferometer (ESPI) is used to measure the IOP-induced scleral 

displacement continuously around the posterior eye. The scleral displacement is processed 

to estimate the mechanical strain tensor on a grid of points on the scleral surface, and the 

largest eigenvalue of this strain tensor computed to yield the maximum principal strain 

(MPS), a scalar measurement for each location on the scleral surface that summarizes the 

magnitude of tensile strain at that location. Intuitively, scleral regions with higher MPS for a 

given level of IOP are more pliable, which in principle could either relieve IOP and reduce 

the potential for ONH damage or focus strain at the ONH and increase glaucoma damage. 

Age is a primary glaucoma risk factor and age-related stiffening occurs in other load-bearing 

soft tissues. Thus, the researchers hypothesized that age-related changes in scleral stiffness 

might contribute to the known age-related increase in glaucoma risk.

Utilizing this custom instrumentation, Fazio et al. (2014) conducted a study to test the 

hypothesis that scleral stiffness increases with age, with the expectation that future work will 

follow to elucidate the specific role of scleral stiffness in glaucoma. They obtained twenty 

pairs of eyes from normal human donors in the Lions Eye Bank of Oregon in Portland, 

Oregon, and the Alabama Eye Bank in Birmingham, Alabama. From each subject, the MPS 

was measured in the posterior globes of both left and right eyes on a partial spherical domain 

with 120 circumferential locations ϕ ∈ (0°, 360°) and 120 meridional locations θ ∈ (9°, 

24°), where θ = 0° corresponds to the ONH. For each eye, MPS was measured under nine 

different IOP levels (7, 10, 15, 20, 25, 30, 35, 40, and 45 mmHg). Further scientific and 

technical details can be found in Section 5. Figure 1 plots a polar azimuthal projection of 

MPS functions for one subject under 45 mmHg IOP level. The center of each panel 

corresponds to the ONH of each eye. The hypothesis is that MPS will decrease with age, 

especially in scleral regions closer to the ONH.

The resulting data set is complex and high dimensional with many layers of structure. First, 

for each eye at each IOP level, the MPS measurements constitute a function on a two-

dimensional partial spherical domain for which one needs to account for within-function 

(intrafunctional) correlations. Second, there are multiple sources of between-function 

(interfunctional) correlation. The measurements from the left and right eye from the same 

subject are expected to be correlated, and measurements from the same eye across the IOP 

levels should be serially correlated. The strength of these nested and serial correlations may 

potentially vary around the scleral surface. Based on preliminary looks at the data, it appears 

that the age effect on MPS may not be linear, and also appears to vary around the scleral 
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surface. This data set is also enormous, with over 4.5 million measurements, which poses 

practical problems for model building and fitting.

Many researchers, when faced with such complexities, would use one of several strategies to 

simplify the data so they can analyze them. Some researchers would get rid of the 

complexities of the functional data by computing summaries and modeling only those, while 

discarding the original functional data. In this application area, some researchers create 

summaries in the peripapillary (PP) and mid-peripheral (MP) scleral regions by integrating 

over the region closest to the ONH (9° – 17°) and further out (17° – 24°), respectively, or 

over several circumferential sections. This practice would miss any scientific insights not 

captured by these summaries. Alternatively, some researchers would only model a subset of 

the data (e.g. only a single IOP or single eye per subject) to avoid having to deal with 

potentially complex interfunctional correlation, or ignore this correlation entirely by 

modeling IOP within eyes or eyes within subject as independent. Some would ignore 

intrafunctional correlation by modeling individual pixels on the image independently. Many 

researchers would also only consider parametric or linear effects for covariates such as age 

without considering whether more complex nonparametric covariate effects might be 

necessary to capture the true relationship. All of these simplification strategies have potential 

statistical downsides.

In our opinion, it would be far preferable to model this complex function data set in its 

entirety using a statistical model that is flexible enough to capture all of its potentially 

complex intrafunctional and interfunctional structure. However, to the best of our 

knowledge, no statistical model has been presented in existing literature that simultaneously 

handles all of this structure. In this paper, we use the Bayesian functional mixed model 

(BayesFMM) framework, introduced in Morris and Carroll (2006) and further developed in 

subsequent papers, to model these data, which has sufficient flexibility to capture 

nonparametric covariate effects, serial and nested interfunctional correlation, functions on a 

fine 2d partial spherical domain, and is computationally efficient enough to scale up to this 

enormous size and produce Bayesian inference for functional parameters as well as any 

desired summaries. This requires a careful description of how to utilize the BayesFMM 

framework to model smooth nonparametric effects and serial interfunctional correlation, 

which has not been done in any existing literature to date.

While motivated by and applied to the glaucoma scleral strain data, the BayesFMM 

framework we present here is more generally applicable to many types of complex, high 

dimensional functional data of modern interest including wearable computing data, genome-

wide data, proteomics data, geospatial time series data and neuroimaging data. Our hope is 

that besides revealing scientific insights into glaucoma, this paper can serve as a template for 

performing a state-of-the-art functional response regression analysis for other complex 

functional data sets.

The rest of the paper is organized as follows. Section 2 contains a brief review of some 

relevant literature in functional regression, including existing methods for modeling nested 

or serial interfunctional correlation and nonparametric smooth covariate functional effects. 

Section 3 contains methods, overviewing the BayesFMM framework and providing 
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methodological details for how to fit serially correlated functions and nonparametric smooth 

functional effects in this framework and discussing its properties. Section 4 describes a 

model selection heuristic that can be used to assess which of the various potential complex 

modeling structures are needed for the current data before having to run a full MCMC. 

Section 5 presents the details of our analysis of the glaucoma scleral strain data, including 

details on basis function and modeling components chosen, a summary of results, and 

various sensitivity analyses. Section 6 contains a discussion of general scientific conclusions 

from our analysis and an assessment of the strengths and weaknesses of the BayesFMM 

framework for this setting of complex functional regression models. Supplementary 

materials provide additional computational details and graphical results of the analysis, as 

well as code to fit the models contained in the paper.

2. LITERATURE REVIEW

There is a rich and rapidly expanding literature on methods to perform functional regression, 

which includes functional predictor regression (scalar-on-function), functional response 
regression (function-on-scalar), and function-on-function regression. For example, see 

Morris (2015) for an extensive review of work in this area, which has exploded in the past 

decade. In this paper, our goal is to regress the scleral strain MPS functions on predictors 

age and IOP, so we are interested in functional response regression. Here, we will 

summarize some key existing literature relevant to the structures present in the glaucoma 

scleral strain data set, including methods that account for nested and serial interfunctional 

correlation and smooth nonparametric covariate effects.

As summarized in Morris (2015), much of the work on functional response regression 

assumes independently sampled functions, but a number of published models can handle 

interfunctional correlation. Many are focused on nested or crossed sampling designs that 

induce compound symmetry covariance structures among functions sampled within the same 

cluster, including Brumback and Rice (1998), Morris et al. (2003), Berhane and Molitor 

(2008), Aston et al. (2010), and Goldsmith and Kitago (2016). There are relatively few that 

model serially correlated functions, for which functions are observed at multiple levels of 

some continuous variable for the same subject. Most commonly, the functions occur along a 

grid of time points, which could be called longitudinally correlated functional data, but can 

also occur over other continuous variables such as IOP for our glaucoma data. There are a 

number of papers that focus on functional predictor regression (Goldsmith et al., 2012; 

Gertheiss, Goldsmith, Crainiceanu and Greven, 2013; Kundu et al., 2016; Islam et al., 2016) 

or estimate multi-level principal components (Greven et al., 2010; Zipunnikov et al., 2011; 

Chen and Müller, 2012; Li and Guan, 2014; Zipunnikov et al., 2014; Park and Staicu, 2015; 

Shou et al., 2015; Hasenstab et al., 2017) for serially correlated functions, but these papers 

do not deal directly with functional response regression, i.e. do not regress the functions on 

covariates while accounting for this serial correlation in the error structure. Any methods 

built for a general functional mixed modeling framework containing multiple levels of 

general random effect functions, including the BayesFMM framework first introduced by 

Morris and Carroll (2006) and the functional additive mixed model (FAMM) framework first 

introduced by Scheipl et al. (2015), can be used for functional response regression while 

accounting for serial interfunctional correlation if an acceptable parametric form for the 
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serial variable can be found. However, no specific models or examples in existing papers 

have presented such a case. In this paper, we will demonstrate in detail how to account for 

serial correlation within the BayesFMM framework.

Most functional response regression work, while modeling coefficients as nonparametric in 

the functional domain t, has focused on models linear in covariates x, e.g. with terms such as 

xβ(t). A number of methods allow functional coefficients that are smooth and nonparametric 

in covariate x as well, e.g. f(x, t). The last chapter of Wood (2006) describes additive mixed 

models (AMMs) that extend Laird and Ware (1982) to include nonparametric fixed effects 

and parametric random effects. After specifying a parametric form for t in fixed and random 

effects, this framework can fit terms f(x, t) that are nonparametric in x but parametric in t 
using mgcv in R. Scheipl et al. (2015) describe a generalization of AMMs to the functional 

regression settting, yielding functional additive mixed models (FAMM) that can fit 

functional response, functional predictor, or function-on-function regression models, and 

allowing terms f(x, t) that are nonparametric in both x and t, using mgcv to fit the underlying 

models. Initially designed for splines, this work was extended to allow the use of functional 

principal components (fPC) for the random effect functions to handle sparse, irregularly 

sampled outcomes in Cederbaum et al. (2015), to model generalized outcomes in Scheipl et 

al. (2016), and to utilize a new boosting-based fitting procedure for some models that leads 

to other computational and modeling benefits in Brockhaus et al. (2015). This series of work 

is summarized in a review article Greven and Scheipl (2017a). These works utilize the fact, 

going way back to Wahba (1978), that penalized splines can be represented using a linear 

mixed model framework. Using similar representations, the BayesFMM framework first 

introduced in Morris and Carroll (2006) can also be used to fit nonparametric terms f(x, t) 
with appropriate specification of the design matrices X and Z in the model, but this has not 

been done in any existing paper. In this paper, we will describe in detail how to 

accommodate smooth nonparametric terms f(x, t) in the BayesFMM framework.

To our knowledge, the only methods in existing literature with the flexibility to both fit 

smooth nonparametric functional covariate terms f(x, t) and simultaneously account for 

nested and serial correlation are the FAMM framework (Scheipl et al., 2015; Greven and 

Scheipl, 2017a) and the BayesFMM framework (Morris and Carroll, 2006). Both of these 

frameworks are extremely flexible, based on functional extensions of linear mixed models, 

but have important differences, which are discussed in detail in Morris (2017) and Greven 

and Scheipl (2017b). The FAMM framework has several limitations that prevent its 

application to our glaucoma scleral strain data, including the requirement of functions to be 

on 1d Euclidean domains, use of spline bases for fixed effects with L2 penalties, and use of a 

computational approach that may not scale up well to enormous data sets like this. Thus, to 

fit these data, we adapt the BayesFMM framework to include smooth nonparametric age 

effects and serial correlation across IOP, and demonstrate how we can use it to reveal 

insights into the biomechanical etiology of glaucoma.

3. METHODS

We first overview the BayesFMM framework in Section 3.1, and then for ease of exposition 

we build up the necessary components of our model separately before presenting our final 
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general model. In Section 3.2, we demonstrate how to capture serial interfunctional 

correlation through functional growth curve models, and then demonstrate how to 

accommodate smooth nonparametric covariate functional effects in Section 3.3. Besides 

presenting the models, we also describe their properties and contrast with existing alternative 

methods. In Section 3.4 we present a general alternative form of the BayesFMM that 

includes smooth nonparametric terms that we use to fit our glaucoma scleral strain data.

3.1 Bayesian Functional Mixed Models (BayesFMM)

Suppose we have a sample of functions Yi(t), i = 1, …, N observed on a common fine grid 

of size T on a domain , which is potentially multi-dimensional and/or non-Euclidean 

(Morris et al., 2011). The FMM introduced by Morris and Carroll (2006) is a functional 

response regression model given by

Y i(t) = ∑
a = 1

A
XiaBa(t) + ∑

h = 1

H
∑

m = 1

Mh
ZihmUhm(t) + Ei(t) . , (1)

where Ba(t) are fixed effect functions that model the effect of covariate Xia on the response 

Y at position t for each covariate a = 1,…, A, and the Uhm(t) are random effect functions at 

level h = 1, …, H corresponding to design matrix Zihm, with m = 1, …, Mh being the number 

of random effects at the respective levels. As in linear mixed models for scalar data, the 

fixed and random effect predictors can be discrete or continuous, and can involve individual 

covariates or interactions of multiple covariates. Although not explicitly portrayed in (1), 

this modeling framework also accommodates functional predictors to perform function-on-

function regression (Meyer et al., 2015).

Distributional and Covariance Assumptions—Here, for simplicity, we first describe 

the Gaussian FMM with conditionally independent random effect and residual error 

functions, and then mention some other alternatives available in this framework. In this case, 

the random effect functions Uhm(t) are iid mean zero Gaussian Processes with 

intrafunctional covariance cov{Uhm(t1), Uhm(t2)} = Qh(t1, t2) and the residual error 

functions Ei(t) are iid mean zero Gaussian Processes with intrafunctional covariance 

cov{Ei(t1),Ei(t2)} = S(t1, t2). Other extensions of this framework allow the option of 

conditional autoregressive (CAR) (Zhang et al., 2014) or Matern spatial covariance or AR(p) 

temporal interfunctional correlation structures in the residual errors (Zhu et al., 2014). 

Although focusing on Gaussian regression here, a robust version of this framework 

assuming heavier tailed distributions on the random effects or residuals is available (Zhu et 

al., 2011) if robustness to outliers is desired, and can also be utilized with any other features 

or modeling components in the BayesFMM framework.

Basis Transform Modeling Approach—A basis transform modeling approach is used 

to fit model (1). This first involves representing the observed functions with a basis 

expansion with a set of basis functions ψk(t), k = 1, …, K:
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Y i(t) = ∑
k = 1

K
Y ik

∗ ψk(t) (2)

While initially developed for wavelets (Morris and Carroll, 2006), as first discussed in 

Morris et al. (2011), the modeling approach can be used with any basis. It is meant to be 

used with lossless transforms with Y i(t) ≡ ∑k Y ik
∗ ψk(t) for all observed t, so that the basis 

coefficients { Y ik
∗ ; k = 1, …, K} contain all information within the observed functional data 

{Yi(t); t = t1, …, tT }, or at least near-lossless with

Y i(t) − ∑
k = 1

K
Y ik

∗ ψk(t) < ε ∀i = 1, …, N (3)

for some small value ε and measure ||●||. This assures that the chosen basis is sufficiently 

rich such that for practical purposes it can recapitulate the observed functional data, and 

visual inspection of the raw functions and basis transformation should reveal virtually no 

difference. Any basis functions can be used, including commonly used choices splines, 

wavelets, Fourier bases, PCs or creatively constructed custom bases, and can be defined on 

multi-dimensional or non-Euclidean domains .

Rather than including the bases in a design matrix and using scalar regression methods to fit 

the model, our approach is to transform the observed functions into the basis space to obtain 

the basis coefficients Y*, a N ×K matrix for which element (i, k) contains the basis 

coefficient k for observed function i, fit a basis-space version of the FMM to these 

coefficients, and then transform results back to the data space model (1) for estimation and 

inference. With basis representation written in matrix form Y = Y*Ψ with Ψ a K ×T matrix 

of basis functions evaluated on the observational grid with Ψkj = ψk(tj ), the coefficients can 

be computed by Y* = YΨ′ with Ψ′ = Ψ′(ΨΨ′)−1 as long as rank(Ψ) = K, or for certain 

basis functions including wavelets and Fourier bases their special structure enables fast 

algorithms for computing these coefficients.

Basis Space Model—Thus, rather than fitting model (1) directly, the basis-space version 

of the model is fit for each basis coefficient k = 1, …, K:

Y ik
∗ = ∑

a = 1

A
XiaBak

∗ + ∑
h = 1

H
∑

m = 1

Mh
ZihmUhmk

∗ + Eik
∗ , (4)

where Bak
∗ , Uhmk

∗ , and Eik
∗  are basis coefficients for the functional fixed effects 

Ba(t) = ∑k Bak
∗ ψk(t), functional random effects Uhm(t) = ∑k Uhmk

∗ ψk(t), and functional 
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residuals Ei(t) = ∑k Eik
∗ ψk(t), respectively. While in principle correlation across basis 

coefficients can be accommodated, for complex, high-dimensional functions, it may be 

beneficial to model these basis coefficients independently. For the Gaussian FMM with 

conditionally independent random effect and residual error functions, it is assumed 

Uhmk
∗ N(0, qhk) and Eik

∗ N(0, sk) with qhk and sk scalar variance components. Although 

modeling independently in the basis space, this structure induces intrafunctional correlation 

according to the chosen basis functions. For example, for the residual error functions, the 

induced T × T intrafunctional correlation S with Sij = S(ti, tj) is given by:

S = Ψ′S∗Ψ, (5)

where S* = diag{sk; k = 1, …, K}, and Qh defined likewise. For suitably chosen basis 

functions that effectively capture the characteristic structure of the observed functions Yi(t), 
this can allow a flexible class of covariance structures indexed by K covariance parameters. 

One can assess the suitability of these assumptions by taking the basis-space variance 

components, computing (5), and plotting this covariance matrix to see if it appears to capture 

the salient structure. Figure 3 panels (e) and (f) plot the intrafunctional correlation structure 

induced by the chosen tensor wavelet basis for the scleral strain MPS data set for a particular 

scleral location for the eye-to-eye random intercepts and residual error functions, and the file 

intrafunctional_correlation.mp4 in the supplement shows a more extensive 

summary of all random levels across scleral locations.

Shrinkage Priors for Regularization of Fixed Effects—If fitting this model using a 

frequentist approach, L1 or L2 penalties could be imposed on the basis space fixed effects to 

induce regularization/smoothing of the fixed effect functions Ba(t), as described in Morris 

(2015). However, this framework was designed to use a Bayesian modeling approach, in 

which case regularization of the fixed effect functions Ba(t) is accomplished through 

specification of shrinkage priors for the corresponding basis coefficients:

Bak
∗ g(γa j) (6)

for some mean zero distribution g(●) with corresponding regularization parameters γaj 

indexed by j = 1, …, J that define a partitioning of the basis coefficients k = 1, …, K into 

regularization sets, which are subsets of basis coefficients sharing the same regularization 

parameters. Morris and Carroll (2006) used the spike-slab prior (George and McCulloch, 

1993) for g(●) and we also use that here, but other alternatives include Gaussian, Laplace 

(Park and Casella, 2008), Horseshoe (Carvahlo et al., 2010), Normal-Gamma (Griffin and 

Brown, 2010), and Dirichlet-Laplace (Bhattachary et al., 2015). The regularization 

parameters γaj can be given hyperpriors or be estimated by empirical Bayes, which is 

described in detail for the spike-slab in Morris and Carroll (2006).
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Model Fitting Approach—A fully Bayesian modeling approach is used to fit a Markov 

Chain Monte Carlo (MCMC) to the basis space model (4) for each k, and then transforming 

back to the data space, e.g. using Ba(t) = ∑k Bak
∗ ψk(t) to yield posterior samples for each 

parameter in the data-space FMM (1). This requires specification of priors for the variance 

components; a vague empirical Bayes approach is used that centers the prior on REML 

starting values of these parameters, minimally informative to be equivalent to two data 

points of information, as detailed in Section 5. BayesFMM fits a marginalized version of 

model (4) with all random effects U* integrated out, which integrates over the interfunctional 

correlation induced by the random effect levels when updating the fixed effects, and speeds 

convergence of the chain and calculations since the random effect functions themselves need 

not be sampled. As detailed in the supplement, the fixed effect updates involve conjugate 

(spike-slab) Gibbs steps and variance components are updated via Metropolis-Hastings with 

proposal variances automatically computed based on the corresponding Fisher information. 

If desired, posterior samples for random effects can be obtained by sampling from conjugate 

Gaussians.

Bayesian Inference—Given these posterior samples, one can compute any desired 

posterior probabilities and pointwise or joint credible bands that can be used for Bayesian 

inference. Joint bands can be constructed using the approach described in Ruppert et al. 

(2003). These inferential summaries can be constructed in the data or basis space for any 

functional of model parameters, including contrasts (e.g. B1(t) – B2(t)), nonlinear 

transformations (e.g. exp{Ba(t)}), derivatives (e.g. ∂f(xa, t)/∂xa), or integrals (e.g. ∫t∈ 0 
Ba(t)dt for some 0 ⊂ ) aggregating information across regions of t. We make use of 

these to produce inference on numerous scientifically interesting summaries for our scleral 

strain MPS data in Section 5.

Example FMM for Scleral Strain MPS Data—To illustrate this framework, suppose 

that we model MPS functions from both left and right eyes for each subject, but only for a 

specific IOP level, and suppose we are willing to assume a linear age effect. Let Yi1(t) and 

Yi2(t) be MPS functions for the left and right eyes respectively from the i-th subject, with t 
∈  indexing the scleral domain, with t = (θ, ϕ) being spherical coordinates on the scleral 

surface. We could represent these data with the following FMM:

Y i j(t) = B0(t) + Xage, iBage(t) + Ui(t) + Ei j(t), (7)

with Ui(t) ~ N{0,Q(●)} and Eij(t) ~ N{0, S(●)}. The Ui(t) induce a generalized compound 

symmetry covariance structure between the functions from the left and right eyes from the 

same subject, with cov{Yij(t), Yij′(t)} = Q(t, t) + S(t, t)/(j = j′). To simultaneously model 

data for all IOP, we would need to add a random effects level to capture the serial correlation 

across MPS functions for different IOP for the same eye. We next describe how this can be 

done.

Lee et al. Page 10

J Am Stat Assoc. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.2 Accommodating Serial Interfunctional Correlation via Functional Growth Curves

Recall that in our scleral strain MPS data set, for each eye we have MPS functions from each 

of a series of IOP levels ranging from 7 mmHg to 45 mmHg, which induces a serial 

correlation across scleral strain functions for the same eye according to IOP. It is important 

to account for this serial interfunctional correlation in some appropriate fashion in order to 

obtain efficient estimates and accurate inference for any fixed effect functions in the model. 

Here we demonstrate how functional random effects in a functional mixed modeling 

framework can be used to capture this serial correlation using a type of functional growth 

curve model, and discuss the properties of this strategy in the context of the BayesFMM 

framework using a basis transform modeling approach.

Basic Growth Curve Model for Scleral Strain MPS Data—For illustration, here we 

only consider the serial effect of IOP and omit any age effect and consider only the left eye 

for each subject. Suppose Yip(t) is the MPS function for the ith subject, i = 1, …, N, after 

exposure to an IOP level of p. Note that Yip(t) is a function of t that varies across serial 

variable p. To capture the serial effect of p, we consider the following functional growth 
curve model:

Y ip(t) = m(p, t) + ui(p, t) + Eip(t), (8)

where m(p, t) is the mean MPS for IOP level p and scleral location t, ui(p, t) is a mean zero 

random effect for subject i that represents a subject-specific growth curve in p that is allowed 

to vary across scleral location t, and Eip(t) are residual error functions assumed to be 

independent and identically distributed mean zero Gaussians with covariance S(●). If we 

can find a suitable parametric form for the serial effect of p with basis functions Gd(p), d = 

0, 1, …, D, we assume m(p, t) = ∑d = 0
D Bd(t)Gd(p) and ui(p, t) = ∑d = 0

D Ui, d(t)Gd(p) with 

cov{Ui,d(t1), Ui,d(t2)} = Qd(t1, t2). In practice, we recommend using basis functions that are 

orthogonal across d, i.e. ∫ Gd(p)Gd′(p)dp = 0 for d ≠ d′ to obviate the need to have cross-

covariance terms between Ui,d(t) and Ui,d′(t) to avoid additional computational complexity 

in the model.

The introduction of this eye-level random growth curve induces serial covariance across 

functions for the same eye at different levels of IOP, with 

cov {Y ip(t), Y ip′(t)} = ∑d = 0
D Gd(p)Gd(p′)Qd(t, t). Indexed by t, the strength and shape of this 

serial covariance can vary across the scleral surface t. Figure 3 panel (d) contains the 

induced serial correlation across IOP for the marked scleral location, and the file 

IOP_corr.mp4 in the supplementary materials is a movie file that demonstrates how this 

correlation varies over the scleral surface. Note also that 

cov {Y ip(t1), Y ip′(t2)} = ∑d = 0
D Gd(p)Gd(p′)Qd(t1, t2), meaning that this structure enables 

“borrowing of strength” from nearby t in determining the strength and shape of the serial 

covariance according to the intrafunctional covariance indicated by the off-diagonal 

elements of Qd(●). If model (8) is marginalized with respect to the random effect functions, 

the resulting error terms can be seen to contain the induced serial correlation structure, 
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which is subsequently accounted for in any estimation or inference of the fixed effect 

functions.

Incorporation into BayesFMM framework—It can be seen that model (8) can be 

written as a functional mixed model with D+1 fixed effect predictors and D+1 random effect 

levels, each with N subject-specific random effect functions. Thus, any FMM framework 

allowing multiple levels of random effect functions could be used to fit this model. In the 

BayesFMM framework, after transforming the observed functions Yip(t) into the basis space 

through Y ip(t) = ∑k = 1
K Y ipk

∗ ψk(t) as described in Section 3.1, the model for coefficient k 

would be given by:

Y ipk
∗ = ∑

d = 0

D
Gd(p)Bdk

∗ + ∑
d = 0

D
Gd(p)Uidk

∗ + Eipk, (9)

with Uidk
∗ N(0, qdk) and Eipk

∗ N(0, sk). This would induce serial covariance across p in the 

model for each basis coefficient with cov (Y ipk
∗ , Y ip′k

∗ ) = ∑d = 0
D Gd(p)Gd(p′)qdk, and the 

marginalized model that is fit with the Uidk
∗  integrated out will contain this serial covariance 

in the error structure and explicitly account for it when updating the fixed effect coefficients. 

This basis space model induces the serial covariance structure described in the data space 

model (8), with Qd(t1, t2) = ∑k = 1
K ψk(t1)ψk(t2)qdk. The heteroscedasticity of the variance 

components across basis functions k allows the strength and shape of the serial covariance to 

vary across the scleral surface t, and effectively borrows strength from nearby t through the 

chosen basis functions as determined by the induced off-diagonal elements of Qd(t1, t2). 

Figure 3 panel (e) plots the intrafunctional correlation structure corresponding the random 

intercept Q0(t1, t2) induced by the tensor wavelet basis chosen for the scleral strain MPS 

data set at the marked scleral location, and file intrafunctional_correlation.mp4 in 

the supplement presents the induced intrafunctional correlation for each of the Qd(t1, t2), (d 
= 0, 1, 2) across all scleral locations.

This strategy can be used with any parametric model indicated by the Gd(p), d = 0, …, D, 

preferably orthogonalized. Section 5 demonstrates that the IOP effect in the scleral strain 

MPS data is hyperbolic, so we devise an orthogonalized hyperbolic model for these data. 

Also, note that while the serial variable IOP is sampled on a common grid across subjects 

for our data, this strategy can allow each the grid points for the serial variable to vary across 

subjects.

3.3 Smooth Nonparametric Covariate Functional Effects

One of the primary scientific goals in the scleral strain MPS data is to study the effect of age 

on MPS and assess how it varies around the scleral surface. Preliminary investigations of the 

data suggest that the age effect might not follow a simple parametric form, and a 

nonparametric representation might be appropriate. While the fixed effect functions in the 

BayesFMM framework are linear in the covariates, using the mixed model representation of 
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penalized splines shown by Wahba (1978), it is possible to fit a semiparametric functional 

mixed model with a smooth nonparametric age effect using this framework, as we will 

demonstrate in this section.

Smooth Nonparametric Age Effect for Scleral Strain MPS data—For ease of 

exposition, in this section we just consider a single smooth nonparametric term with no other 

covariates or random effects. Thus, suppose for each subject i = 1, …, N we only model a 

single scleral strain function Yi(t), say for left eye and IOP=45mmHg, with the model:

Y i(t) = B0(t) + f (Xagei
, t) + Ei(t), (10)

where B0(t) is a functional intercept and f(Xagei, t) represents a nonparametric effect of age 

on MPS at scleral location t, with ∫ f(x, t)dx = 0∀t and penalizing ∫{f″(x, t)}2dx to induce 

smoothness across x for each t. As we will demonstrate, it is possible to represent this 

smooth nonparametric term as a sum of a linear fixed effect function for age and spline 

random effect functions,

f (Xage, i, t) = Xagei
B1(t) + ∑

m = 1

M + 2
Z𝓑, m(Xagei

)U𝒮m(t) (11)

for some suitably constructed random effect design matrix {Zℬ,m(x),m = 1, …, M + 2} based 

on Demmler-Reinsch basis functions (Demmler and Reinsch, 1975), with spline random 

effects U m(t) following a mean zero Gaussian with cov{U m(t1), U m(t2)} = Q (t1, t2). 

These model components can be incorporated within a FMM framework like BayesFMM, as 

we now describe.

Incorporation into BayesFMM framework—To fit model (10) using the BayesFMM 

framework, we fit separate penalized splines for each basis coefficient k, which induces 

correlated penalized spline fits for each scleral location t. Specifically, after transforming the 

observed functions Yi(t) into the basis space according to the basis representation 

Y i(t) = ∑k = 1
K Y ik

∗ ψk(t) as described in Section 3.1, we specify the following model for each 

basis coefficient k = 1, …, K:

Y ik
∗ = B0k

∗ + f k
∗(Xagei

) + Eik
∗ , (12)

with Eik
∗ N(0, sk) and f k

∗(x) a smooth nonparametric function of x for basis function k. We 

pull out the intercept B0k
∗  and constrain ∫ f k

∗(x)dx = 0 to ensure identifiability in additive 

models that contain multiple smooth nonparametric terms. We represent B0k
∗ + f k

∗(x) using B-

spline basis functions,
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B0k
∗ + f k

∗(x) = ∑
m = 1

M + 4
ℬm(x)νmk

∗ , (13)

where νmk
∗  are B-spline coefficients and ℬm(x),m = 1, …, M + 4 are the cubic B-spline basis 

functions defined by the knots η1, …, ηM+8 such that

a = η1 = η2 = η3 = η4 < η5 < ⋯ < ηM + 4 = ηM + 5 = ηM + 6 = ηM + 7 = ηM + 8 = b,

and a and b are two boundary knots (Hastie et al., 2009). We can write model (12) in matrix 

form,

yk
∗ = 𝓑νk

∗ + ek
∗, (14)

where yk
∗ = (Y1k

∗ , …, YNk
∗ )′, ℬ is the N × (M + 4) B-spline design matrix with the (i,m)-th entry 

being ℬm(Xage,i), νk
∗ = (ν1k

∗ , …, ν(M + 4)k
∗ )′, and ek

∗ = (E1k
∗ , …, ENk)′ N(0, skIN). Following Wand 

and Ormerod (2008), we assume the following prior distribution on the B-spline 

coefficients:

νk
∗ MVN(0, q𝒮kΩ) (15)

where Ω is a (M + 4) × (M + 4) matrix with Ωmm′ = ∫ a
bℬm″ (x)ℬm′″ (x)dx. The resulting 

posterior mean of the spline random effects is νk
∗ = (𝓑′𝓑 + λk

∗Ω)−1𝓑′yk
∗, where λk

∗ = sk /q𝒮k. 

It can be shown that 𝓑νk
∗ corresponds to the O’Sullivan penalized spline estimator of 

B0k
∗ + f k

∗(x) with penalty term λk
∗∫ a

b{ f k
∗″(x)}2

dx (Wand and Ormerod, 2008), and if the knots 

are placed at each observed Xagei, then this corresponds to the cubic smoothing spline 

estimator.

The spectral decomposition of Ω allows us to reformulate this prior specification as a mixed 

model with independent random effects as follows. It is known that rank(Ω) = M + 2. 

Therefore, the spectral decomposition of Ω has the form of Ω = PDP′, where D = diag(0, 0, 
d1, …, dM+2) and P′P = IM+4. Let P = (XΩ, ZΩ), where XΩ is a (M +4) × 2 sub-matrix of P 
corresponding to the first two columns of P and ZΩ is a (M +4) × (M + 2) sub-matrix of P 

corresponding to the other columns. Let βk
∗ be a two-dimensional vector, and 

u𝒮k
∗ = (U𝒮1k

∗ , …, U𝒮(M + 2)k
∗ )′ be an (M + 2)-dimensional random vector. It can be shown that 
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νk
∗ = XΩβk

∗ + ZΩdiag(d1
−1/2, …, dM + 2

−1/2 )u𝒮k
∗  with βk

∗ a fixed effect and u𝒮k
∗ MVN(0, q𝒮kIM + 2)

Therefore, we have the following mixed model representation of (12),

yk
∗ = 𝓑νk

∗ + ek
∗

= 𝓑{XΩβk
∗ + ZΩdiag(d1

−1/2, …, dM + 2
−1/2 )u𝒮k

∗ } + ek
∗

= X𝓑βk
∗ + Z𝓑u𝒮k

∗ + ek
∗,

(16)

where Xℬ = ℬXΩ and Z𝓑 = 𝓑ZΩdiag(d1
−1/2, …, dM + 2

−1/2 ). The Zℬ are called the Demmler-

Reinsch spline bases (Demmler and Reinsch, 1975). It can be shown that Xℬ is a basis for 

the space of the straight line, so model can equivalently be rewritten as

yk
∗ = 1NB0k

∗ + xageB1k
∗ + ZBu𝒮k

∗ + ek
∗, (17)

where 1N is an N-dimensional vector consisting of 1’s and xage = (Xage,1, …, Xage,N )′. We 

see that this is the form of a linear mixed model with a level of spline random effects with 

design matrix Zℬ and random effects u𝒮k
∗ MVN(0, q𝒮kIM + 2). With the intercept term pulled 

out as implied by the ∫ f k
∗(x)dx = 0 assumption, the term f k

∗(Xagei
) in (12) is given by 

Xagei
B1k

∗ + Z𝓑(Xagei
)u𝒮k

∗  and thus in the BayesFMM framework we can incorporate a 

nonparametric term f k
∗(x) by simply including a linear fixed effect xB1k

∗  plus a level of 

random effects with the corresponding Demmler-Reinsch design matrix 

∑m = 1
M + 2Z𝓑m(x)U𝒮mk

∗ . These penalized splines for each basis k, when projected back to the 

function space, induce a smooth nonparametric functional effect f(Xagei, t) given by (11), 

with Q (t1, t2) = Σk ψk(t1)ψk(t2)q k. Based on these derivations, we can add any 

additional smooth nonparametric term f(z, t) to the FMM framework by simply adding a 

linear fixed effect function zB2(t) and an additional level of spline random effects 

∑m = 1
Mz + 2

Z𝓑(z)U𝒮zm(t) with U zm(t) a mean zero Gaussian with covariance cov{U zm(t1), 

U zm(t2)} = Q z (t1, t2).

A similar procedure could be followed to utilize other spline modeling approaches within 

this framework, e.g. P-splines (Eilers and Marx, 1986) with differencing penalties or 

truncated polynomial splines (Ruppert et al., 2003), but we prefer the O’Sullivan splines 

(Wand and Ormerod, 2008) given their natural second derivative penalty and formal 

connection to smoothing splines.

Intrafunctional Correlation of f(x, t) Across t—This framework allows the 

nonparametric smooth effect f(x, t) of x to vary over t, but is not the same as modeling 
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independent splines for each t. Because the splines are fit in the basis space, the 

nonparametric fits are correlated intrafunctionally by:

cov { f (x, t1), f (x, t2) ∣ B1(t1), B1(t2), q𝒮m} = ∑
k = 1

K
∑

m = 1

M + 2
ψk(t1)ψk(t2){Zℬm(x)}

2q𝒮m . (18)

This means that the spline fit for t1 borrows strength from other functional locations t2 

according to the effective intrafunctional covariance structure Q (t1, t2) that induces 

smoothing across t in the spline fits of f(x, t).

Smoothing Parameter of x, λ(t), is Nonstationary and Smooth Across t—In our 

BayesFMM implementation of the smooth nonparametric term f(x, t), we allow the 

penalized spline for each basis function k to have its own smoothing parameter λk = sk/q k. 

The basis space model induces a residual error covariance matrix cov{Ei(t1),Ei(t2)} = St1,t2 
back in the data space, with diagonal elements s(t), and a spline random effect covariance 

matrix cov{U m(t1), U m(t2)} = Q (t1, t2) back in the data space, with diagonal elements 

q (t). Thus, the effective smoothing parameter for the induced spline fit f(x, t) at location t 
is given by

λ(t) = s(t)/q𝒮(t), (19)

meaning that the smoothness in x is allowed to vary across t, enabling some parts of the 

function to be linear with large λ(t) and others to be nonlinear with small λ(t). Also, this 

smoothing parameter is not estimated independently for each t, but the off-diagonal elements 

of S and Q  imply a dependency across t in λ(t), meaning that the model “borrows 

strength” across t leading to smoothness in λ(t) across t.

We believe this to be the first presentation of a model with such flexibility in the literature, 

i.e. with f(x, t) varying smoothly across t with the smoothing parameter in x, λ(t), also 

varying smoothly across t. The FAMM models of Scheipl et al. (2015) and Greven and 

Scheipl (2017a) estimate terms like f(x, t) that are smooth across both x and t, but utilize an 

additive penalty term involving marginal smoothing parameters in the x and t directions, λx 

and λt. This structure does not allow the type of nonstationarities enabled here, which in 

Section 5 of the supplement we demonstrate are necessary to accurately model the scleral 

strain MPS data. It may be possible in the FAMM framework to accommodate this type of 

flexibility by putting a spline on λx that varies smoothly across t, but this has not been done 

in any published paper to date, and it is not clear whether such an approach would be 

computationally feasible for large functional data sets.

Degrees of Freedom Function DF(t)—In the penalized spline literature with penalized 

spline estimator given by f̂(x) = ℬ(ℬ′ℬ+λΩ)′1ℬ′y = X(λ)y, a standard summary of the 

nonlinearity of the fit is given by the dimensionality of the projection space given by DF = 

trace{X(λ)}, called the degrees of freedom of the fit. A DF = 2 indicates a linear model and 
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DF ≫ 2 indicates significant nonlinearity. To assess how the degree of nonlinearity of the 

spline fit f(x, t) varies over t, we can compute the degrees of freedom function DF(t) 
marginally across t by

DF(t) = trace[X{λ(t)}] = trace[ℬ{ℬ′ℬ + λ(t)Ω}−1ℬ′], (20)

with λ(t) defined as in (19). In general semiparametric functional mixed models with other 

levels of random effects to account for interfunctional covariance according to model (21) 

below, as necessary for modeling our scleral strain MPS data, the derivation for DF(t) is 

more complex, and outlined in Section 2 of the supplementary materials. Panel (c) of Figure 

3 presents DF(t) for the MPS data.

3.4 General Bayesian Semiparametric Functional Mixed Model

In order to model the highly structured scleral strain MPS data set, we need include all of the 

modeling structures described in the preceding sections, including random effects to capture 

nested and serial interfunctional correlation and smooth nonparametric smooth covariate 

effect functions, together in a common BayesFMM model. To highlight its ability to model 

smooth nonparametric structures as described in Section 3.3, it is useful to adapt the notation 

of the core BayesFMM model to explicitly include these terms. We term this version of the 

FMM a semiparametric functional mixed model since it includes both linear and smooth 

covariate effects.

Given a sample of functions Yi(t); i = 1, …, N; t ∈ , with covariates for fixed linear effects 

Xial, al = 1, …, Al, smooth nonparametric effects Xian, an = 1, …, An, and H levels of 

random effect covariates Zihm, h = 1, …, H;m = 1, …, Mh, we have the following 

semiparametric FMM:

Y i(t) = ∑
al = 1

Al
Xial

Bal
(t) + ∑

an = 1

An
f (Xian

, t) + ∑
h = 1

H
∑

m = 1

Mh
ZihmUhm(t) + Ei(t), (21)

with Uhm(t) ~ GP(0,Qh) and Ei(t) ~ GP(0, S) being mean zero Gaussian processes with 

covariance surfaces Qh, h = 1, …, H and S defined on  × .

Using the structures defined in Section 3.3, this model can be directly fit by the BayesFMM 

software of Morris and Carroll (2006) using the following FMM:
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Y i(t) = ∑
al = 1

Al
Xial

Bal
(t) + ∑

an = 1

An
Xian

Ban
(t) + ∑

an = 1

An
∑

man
= 1

Man
+ 2

Zℬman
(Xian

)U𝒮anman
(t)

+ ∑
h = 1

H
∑

m = 1

Mh
ZihmUhm(t) + Ei(t),

(22)

with Man being the number of interior knots for the spline for Xian, Zℬman (Xian) the 

corresponding Demmler-Reinsch design matrix, U anman (t) ~ GP(0,Q an) the 

corresponding spline random effect functions, and Uhm(t) ~ GP(0,Qh) and Ei(t) ~ GP(0, S) 

modeling the interfunction covariance structure. As described above, the model would be fit 

in the transformed basis space. We first fit the basis space model with all random effects 

integrated out, and then sample the spline random effects from their complete conditional 

distribution while integrating out the other H levels of random effects that capture any 

interfunctional covariance, and then project back to the function space in order to construct 

posterior samples of f(xan, t) on any desired grid of t.

While omitted from (21) for ease of presentation, this model can also be easily made to 

include any desired parametric-nonparametric interaction terms, with interaction of 

parametrically modeled covariate Xial and nonparametrically modeled covariate Xian being 

represented by the term Xialfal(Xian, t). For Xial that are categorical dummy variables, this 

allows separate nonparametric fits of (Xian, t) for different levels of the dummy variable. For 

continuous Xial, this allows the corresponding slope to vary smoothly and nonparametrically 

with both Xianand t. For example, in our scleral strain data, one may wish to include an 

interaction term to allow the nonparametric age effect to vary across IOP levels. If dummy 

variables were specified for each IOP level, this would allow separate independent 

nonparametric age effects for each IOP level. If IOP is modeled continuously via a 

parametric model like the hyperbolic model described in Section 5, this would allow the 

hyperbolic coefficients to vary smoothly by age and scleral position, which would be 

equivalent to nonparametric age effects that vary across IOP but borrow strength from 

nearby IOP according to the structure induced by the hyperbolic model. In either case, the 

fixed effect and random spline design matrices corresponding to the Xialfal(Xian, t) would be 

given by XialXian and XialZ m (Xian), respectively, which are straightforwardly included in 

the FMM. As described in Section 5, we considered these interaction structures, but found 

they did not appear necessary for representing the scleral strain MPS so were not included in 

the final model.

4. MODEL SELECTION HEURISTIC FOR SEMIPARAMETRIC BAYESFMM

Given the extensive flexibility of the semiparametric BayesFMM framework, there are a 

large number of modeling decisions to make. For example, in our sclera strain MPS data set, 

should the age effect be linear or nonparametric? If nonparametric, should the smoothing 

parameter in age be allowed to vary across the scleral surface t, or is a common smoothing 

Lee et al. Page 18

J Am Stat Assoc. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



parameter across all scleral locations sufficient? Should the fixed IOP effect be linear, 

hyperbolic, or nonparametric? Should there be an interaction of age and IOP? Should there 

be a fixed left vs. right eye effect? For the random effect levels, is the subject-specific 

random effect necessary to account for correlation between right and left eyes for the same 

subject? Is the correlation across functions from multiple IOP for the same eye sufficiently 

handled by a compound symmetry structure assuming equal correlations, or is a structure 

allowing serial correlation necessary? Should this serial correlation be based on a linear, 

parabolic, or hyperbolic model? These decisions are challenging to make in a simple 

generalized additive mixed model framework with scalar responses, and become even more 

challenging in the current setting with complex, high-dimensional functional responses.

There are a some papers in the frequentist literature for performing variable selection in 

functional regression contexts (Scheipl et al., 2013; Gertheiss, Maity and Staicu, 2013; 

Brockhaus et al., 2015). However, there is a lack of functional regression model selection 

methods for MCMC-based fully Bayesian models such as the semiparametric BayesFMM, 

which present special challenges. One could split the data into training and validation data 

sets, fit separate MCMC for each prospective model in the training data, and then compute 

ratios of predicted marginal densities, integrating over MCMC posterior samples, for the 

validation data, as done in Zhu et al. (2014), for example. These predictive Bayes Factors 

would provide a rigorous model selection measure, or alternatively parallel MCMC could be 

run for each prospective model, and a multinomial random variable with Dirichlet prior used 

to select and perform Bayesian model averaging across models as the chains progress. These 

strategies might work fine for simple, low dimensional data sets or settings with only a few 

prospective models, but for the current setting with complex, high-dimensional data, they are 

impractical.

In this section, we present a model selection heuristic that we have developed that can 

explore a number of potential model structures to find which seem to be most appropriate 

for the given data without running any MCMC, and also provides ML and REML estimates 

that can be used as starting values for the parameters in the BayesFMM. This heuristic is 

admittedly ad hoc, but is based on standard methods and appears to perform well in 

simulations, and so we believe can be a useful tool for modelers to assess which structures to 

included in their semiparametric FMM.

Our overall approach is to fit linear mixed models (LMM) to each basis coefficient k using 

the lme function in R (Pinheiro et al., 2017) for each prospective model, and then use a 

weighted voting scheme based on importance weights for each basis and an adapted 

Bayesian Information Criterion (aBIC) to obtain probability scores for each prospective 

model. Here we outline the steps in detail.

1. Basis transform and importance weights: Transform the raw functions Yi(t), i 

= 1, …, N to the basis space Y ik
∗ , k = 1, …, K, and compute a series of weights 

wk that measure the relative importance of each basis for representing the data 

set. These weights can be computed by wk = ∑iY ik
∗ 2/∑i ∑k Y ik

∗ 2, with Σk wk = 1. 
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For orthogonal ψk(t), the wk represent the relative percent energy captured by 

basis coefficient k.

2. Fit basis-specific LMM and compute aBIC scores: For each prospective 

model ℳc, c = 1, …, C, use lme in R (Pinheiro et al., 2017) to fit the 

corresponding LMM to the data for each basis coefficient k = 1, …, K, and 

compute an adapted version of the BIC (aBICck), which we define as:

aBICck = − 2 log − likelihoodck + npar, clog(N),

where the log-likelihood is the marginal likelihood of the fixed effect and 

variance components of the model with the non-spline random effects integrated 

out conditional on the data for basis k, N is the total number of observations in 

the dataset for basis k, and npar,c is the total number of parameters of model c. As 

discussed by Vaida and Blanchard (2005) and Spiegelhalter et al. (2002), 

selection of the effective number of parameters for LMM or Bayesian 

hierarchical models is tricky and context dependent. If inference is desired on the 

random effects themselves, then counting only fixed effects and variance 

components as parameters is not appropriate. In our setting, we are not interested 

in the random effects at levels capturing interfunctional correlation as we work 

with the marginalized model, but for nonparametric terms f(x, t) we are clearly 

interested in the “random effects” corresponding to the spline coefficients. Thus, 

we count the number of parameters to be the sum of the number of fixed effects, 

the number of variance components and the estimated degrees of freedom for 

each nonparametric term. This last term adjusts appropriately for the extra 

parameters of the spline fits even thought they are captured as random effects in 

the LMM.

3. Use weighted voting scheme to rank models: We compute a probability weight 

Pc for each model ℳc; c = 1, …, C:

Pc = ∑
k = 1

K
wkI{c = arg min

c′
aBICc′k}

This procedure is applied in two steps: first assessing different fixed effect models (including 

parametric and/or nonparametric effects), and second assessing various random effect 

structures for capturing interfunctional variability while conditioning on the best fixed effect 

model.

In principle, I{c = argminc′ aBICc′k} indicates whether the model ℳc is the best in terms of 

aBIC for the data set on the kth basis. Therefore, the Pc is computed via a weighted voting 

scheme, an aggregated measure of proportion of timesℳc is the best model across the all 

basis coefficients, with basis coefficients weighted by wk. In this way, the model fit for basis 

coefficients that account for a larger proportion of the total variability in the data count more 

towards the overall model selection. Empirically, we have found this weighted voting 

scheme seems to work well, as it is robust in the sense of not allowing any one basis 
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function, especially one explaining a relatively low proportion of total energy for the given 

data set, to dominate the model selection because of an extreme aBIC score. This can also be 

applied using alternative measures (e.g. aAIC). We acknowledge that this strategy is ad hoc 
and more rigorous model selection methods for settings like this are needed, but we believe 

it can provide useful guidance for modelers and performs well in simulations, as described 

below.

A word of caution—This heuristic is meant for selecting among various different 

modeling structures for specified covariates as done for our case study, or perhaps could be 

used to select among a few covariates, but it is not intended for high-dimensional variable 
selection across many potential predictors. In such settings, consideration of a large number 

of models and only fitting the “best” one can dramatically inflate type I error rates, and post-

selection inference as described in Berk et al. (2013) would need to be considered.

Simulation Study on Model Selection—We conducted a simple simulation study to 

investigate the performance of this model selection heuristic. We considered four different 

models:

• Model 1 (null model): Yij(t) = B0(t) + Eij(t),

• Model 2 (linear age effect): Yij(t) = B0(t) + Xage,iBage(t) + Eij(t),

• Model 3 (nonparametric age effect): Yi(t) = f(Xage,i, t) + Eij(t), and

• Model 4 (linear age effect, random effect): Yij(t) = B0(t) + Xage,iBage(t) + Uj(t) + 

Eij(t).

We fit each of these models to the scleral strain data and used the fitted model as the truth, 

and simulated 100 replicate data sets for each model. For each simulated data set, we fit each 

of these four models and performed the model selection procedure using Pc to select the best 

model. In all four scenarios, this procedure selected the correct model 100/100 times. 

Average values of Pc for each model can be found in Section 4 of the supplementary 

materials, and Section 6 of the supplement investigates issues that can arise in variable 

selection of GAMMs when considering nonparametric smooth terms of subject-specific 

covariates in models including subject-level random effects.

5. GLAUCOMA SCLERAL STRAIN MPS CASE STUDY

5.1 Overview of Glaucoma Scleral Strain MPS Data

As described in Section 1, glaucoma is characterized by ONH damage related to IOP but its 

etiology is not fully known. Researchers have hypothesized that biomechanics of the scleral 

region close to the ONH may modulate the effect of IOP on the ONH, and thus may play an 

important role in glaucoma. In particular, the scleral surface is elastic so deforms under 

pressure, which can partially relieve IOP-induced forces on the eye, including the ONH. 

Thus, studies of these properties could reveal insights into the etiology of glaucoma.

Recently, novel custom instrumentation was developed that can precisely measure the 

mechanical strain in the posterior human sclera at a fixed level of IOP (Fazio, Bruno, 
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Reynaud, Poggialini and Downs, 2012; Fazio, Grytz, Bruno, Girard, Gardiner, Girkin and 

Downs, 2012). Briefly, the posterior 1/3 of the eye is clamped, sealed, and pressurized. Next, 

the eye is preconditioned, and then pressurized from 7 mmHg to 45 mmHg using an 

automated system with computer feedback control, while scleral surface displacements are 

measured by a laser speckle interferometer. This device measures a light interference 

distribution that is used to reconstruct the surface displacement field in three dimensions 

with nanometer-scale precision. These displacements were processed as described in Fazio, 

Bruno, Reynaud, Poggialini and Downs (2012) to compute the 3D strain tensor, a 3 × 3 

matrix summarizing the displacement in the meridional, circumferential, and radial 

directions, continuously around the outer scleral surface. The leading eigenvalue of the strain 

tensor, called the maximum principal strain (MPS), was computed on a grid of scleral 

locations for 120 circumferential locations ϕ ∈ (0°, 360°) and 120 meridional locations θ ∈ 
(9°, 24°), where θ = 0° corresponds to the ONH. This yields MPS functions defined on a 

grid of 14,400 points on the scleral surface that comprises a partial spherical domain.

Using this custom instrumentation, Fazio et al. (2014) conducted a study to investigate age-

related changes in the scleral surface strain. They obtained twenty pairs of eyes from normal 

human donors in the Lions Eye Bank of Oregon in Portland, OR and the Alabama Eye Bank 

in Birmingham, AL. For each subject, the MPS measurements were obtained as described 

above at nine different levels of IOP (7, 10, 15, 20, 25, 30, 35, 40, and 45 mmHg) for both 

left and right eyes. The data for both eyes from one subject failed a quality control check, so 

was excluded from analysis, as did one of the eyes from four other subjects. Thus, the data 

we analyzed consisted of 34 eyes from 19 subjects. With 14,400 measurements for each of 9 

IOP levels × 34 eyes, this data set contained over 4.5 million measurements. Let Yijp(t) be 

the MPS for eye j for subject i under IOP level p at scleral location indexed by t = (θ, ϕ), 

which on the sampling grid can be written as a vector yijp of length 14, 400. The primary 

goals are to study MPS, assessing how it varies around the scleral surface, across IOP, and 

with age. The hypothesis is that MPS is greater near the ONH, which could confer a 

protective effect, and that MPS tends to decrease with age, which could contribute to 

increased stress on the ONH thus conferring increased glaucoma risk.

5.2 Model Specification

Basis Transform—Various criteria can be considered when choosing which basis to use 

within the BayesFMM framework, including sparse representation, fast calculation, richness 

for representing the functional parameters at the various levels of the models, ability to 

capture the key visual features of the observed functions, and flexibility for representing the 

intrafunctional correlation in the data. Multiresolution bases like wavelets have advantages 

for many of these considerations, so we constructed a custom rectangular wavelet basis 

defined on the cylindrical spherical projection of the partial scleral space t = (θ, ϕ), which is 

a tensor transform computed by successively applying 1D wavelet transforms to the 

meridional and circumferential directions.

Tensor Wavelets for Scleral Space—Specifically, we constructed ψk(t) = ψk(θ, ϕ) as a 

tensor wavelet, ψk(t) = ψk1
θ (θ) ⊗ ψk2

ϕ (ϕ), with meriodonal wavelet ψk1
θ (θ) being a db3 wavelet 
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basis with three vanishing moments, reflection boundary condition, 5 levels of 

decomposition and circumferential wavelet ψk2
ϕ (ϕ) being a db3 wavelet with three vanishing 

moments, 5 levels of decomposition and periodic boundary conditions since its domain is 

circular, covering the entire circumferential space. This transform yielded a basis {ψk(t); k = 

1, …, K = 17, 185}. While single-indexed here for simplicity of presentation, these basis 

coefficients can be written as multiindexed by circumferential scale j1 = 0, …, 5, meriodonal 

scale j2 = 0, …, 5, circumferential locations k1 = 1, …, K1j1 and meriodonal locations k2 = 

1, …, K2j2 with K = Σj1Σj2 K1j1 *K2j2. The levels j1 = 0 and j2 = 0 correspond to the father 

wavelet coefficients at the lowest level of decomposition, and the other j1 and j2 index the 

corresponding mother wavelets at increasing levels of scale. With yijp = Yijp(t) being the 

observed function for subject i, eye j, and IOP p on the scleral surface sampling grid of size 

T = 14, 400 written in vector form, this basis representation can be written as yijp = yijp
∗ Ψ, 

where Ψ is a K × T basis matrix with elements ψk(t) and yijp
∗  is a vector of K corresponding 

basis coefficients. Because of the structure of the tensor transform, if we unstack yijp into a 

(T1 = 120) × (T2 = 120) matrix Yijp with rows indexed by equally spaced meriodonal 

locations θ1 = 9°, …, θ120 = 24° and columns by equally spaced circumferential locations ϕ1 

= 0°, …, ϕ120 = 360°, we could write yijp
∗ = vec(ΨθYijpΨϕ′ ), where vec(●) is the column-

stacking vectorizing operator, Ψθ is the K1 × (T1 = 120) basis matrix corresponding to the 

meriodonal wavelet ψk1
θ (θ) and Ψϕ the K2 × (T2 = 120) basis matrix corresponding to the 

circumferential wavelet ψk2
ϕ (ϕ). In principle, spherical wavelets could be used as the 

transforming basis, but currently available software does not handle transforms for part of 

the sphere, and since we only model θ over a limited range of 9° – 24°, the distortion from 

using the basis on the projection and not the true spherical geodesic is not great.

Some eyes had technical processing artifacts that resulted in a spike of extremely high MPS 

at some local set of scleral locations, typically close to the boundary. Given the 

multiresolution nature of the wavelet transform, these artifacts were captured by wavelet 

coefficients at extremely high frequency scales. Given the relatively smooth nature of most 

of the MPS functions, these wavelet coefficients were essentially zero for all eyes except for 

those with the artifact which yielded very large coefficients. Thus, we removed these 

artifacts by filtering out any wavelet coefficients with extremely skewed distributions for 

which the mean across all samples was more than 100× the median. As seen in the 

supplementary file RawMPScurves.zip, with illustration in Supplemental Figure 26, this 

strategy effectively removed the outlying spikes without substantively affecting MPS values 

for other scleral locations. We also applied the joint wavelet compression strategy described 

in Morris et al. (2011) to obtain a reduced dimension near-lossless basis function to use, and 

found a subset of 269 wavelet coefficients that jointly preserved > 99.5% of the total signal 

energy for each eye, and an average of > 99.9%, leading to > 50: 1 compression. As shown 

in Supplemental Figure 26 and RawMPScurves.zip, the data projected into the basis is 

essentially identical to the raw data, demonstrating its near-lossless nature. We considered 

this basis for our model.
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We modeled these basis coefficients using the basis transform modeling approach described 

in Section 3.1. Besides providing a relatively sparse representation and enabling the adaptive 

removal of spiky artifacts, this transform being a location-scale decomposition allowed 

nonstationary intra-scleral correlations and adaptive borrowing of strength across scleral 

locations. File intrafunctional_correlation.mp4 in the supplement contains a movie 

file demonstrating the form of the intrafunctional correlation structure induced by this 

choice, computed by constructing the basis and basis transform matrices Ψ and Ψ−, 

respectively, and applying (5) to the basis space covariances at the various random effect and 

residual error levels of the model. For illustration, panels (e) and (f) of Figure 3 contains 

plots of this surface at a particular scleral location for two of the random levels.

We also considered using principal components computed on the wavelet-transformed (and 

compressed) data, similar to the strategy used in Meyer et al. (2015), which implies applying 

a singular value decomposition to the wavelet-space data matrix, and then using the resulting 

eigenvectors to construct the empirical basis functions ψk(t) that are used for the 

BayesFMM modeling. In this case, we kept K = 29 basis functions that explained > 99.5% 

of the total variability in the data set according to the scree plot, which as estimated by four-

fold cross validation retained a minimum of 96.7% of the total energy for each eye, so is 

somewhat near-lossless. We used the wavelets for our primary analysis given that it yielded a 

richer basis set for representing the various functional parameters at various levels of the 

models, but for sensitivity we also presented results using the BayesFMM using these 

wavelet-regularized principal components in Section 7 of the supplement, as well as other 

summaries including the induced intrafunctional correlation structures.

Model Selection—We applied the model selection heuristic described in Section 4 to help 

select the structures in the semiparametric FMM to include in the FMM. We first determined 

which fixed effect covariates to include and what their functional forms should be. Here we 

summarize the results, for which more details are provided in Section 3 of the 

supplementary materials. Three different fixed effects were considered: age, IOP, and eye 

(left vs. right). For the form of the age effect, we considered two possibilities: linear or 

nonparametric. For the form of the IOP effect, we considered three different possibilities: 

linear, hyperbola, or nonparametric. Models without the eye effect were also compared. As a 

result, we compared 12 different models for the fixed effect selection. It turned out that the 

model with the nonparametric age effect, the hyperbolic IOP effect, and no eye effect 

showed the highest Pc when using aBIC, and the model with nonparametric age effect, 

hyperbolic IOP effect, and a left vs. right eye effect had the highest Pc when using aAIC. For 

our primary analysis, we considered the model with no left vs. right eye effect, since there is 

no strong scientific rationale for such an effect, and present the other model as a sensitivity 

analysis in Section 7 of the supplementary materials. We also assessed whether the 

smoothing parameter for the nonparametric age effect should be constant or vary around the 

sclera, and found that the sclerally varying smoothing parameter was clearly necessary for 

good fit, as detailed in Section 5 of the supplement. Once we selected the main fixed effects, 

we assessed whether the interaction term between age and IOP was needed, and our model 

selection heuristic suggested the interaction was not necessary. Finally, with the selected 

fixed terms, we compared several different random effect distributions to capture the 
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interfunctional covariance structure. Two different levels of random effects were considered: 

the subject-level random effect and the serial eye-level random effect. For the form of the 

eye-level random effect in terms of IOP as illustrated in Section 3.2, we considered three 

different forms: constant (compound symmetry), linear, or hyperbola. Our model selection 

heuristic selected the eye-level random effect with the hyperbolic IOP effect, but not the 

subject-level random effect.

Model—Thus, the final fitted semiparametric FMM was:

Y ijp(t) = B0(t) + B1(t)G1(p) + B2(t)G2(p) + f (Xage, i, t) + Ui j(t) + Ui j1(t)G1(p) + Ui j2(t)G2
(p) + Eijp(t),

(23)

with Xage,i is the age for subject i, and G1(p) and G2(p) are the values of the orthogonalized 

hyperbolic basis corresponding to IOP = p as described below. This is equivalent to the 

FMM:

Y ijp(t) = B0(t) + B1(t)G1(p) + B2(t)G2(p) + B3(t)Xage, i + ∑
m = 1

M + 2
Zℬm(Xage, i)U𝒮m(t) + Ui j(t)

+ Ui j1(t)G1(p) + Ui j2(t)G2(p) + Eijp(t),

(24)

with Zℬ,m(x) the Demmler-Reinsch basis functions corresponding toM interior knots on x, U

m(t) ~ GP{0,Q }, Uij(t) ~ GP{0,Q0}, Uij1(t) ~ GP{0,Q1}, Uij2(t) ~ GP{0,Q2}, and Ei(t) ~ 

GP(0, S), and with Q ,Q0,Q1,Q2, and S being covariance surfaces defined on  × . 

Following the guidelines suggested by Ruppert et al. (2003), we chose M = 5 equally spaced 

knots over Xage.

Parameterization of IOP effect—From a preliminary investigation in which we fit 

separate models to each scleral location t, we found that the serial IOP effects were well 

modeled by a hyperbola of special form Y = b0 + b1p + b2p−1, with an average R2 of 0.98 

across all eyes and scleral locations, and this form was also chosen by the model selection 

heuristic. To accommodate model fitting without having to include a covariance between b1 

and b2, we utilized orthogonalized versions of these predictors: G1(p) = 2/2X1, p − 2/2X2, p

and G2(p) = 2/2X1, p + 2/2X2, p where X1,p is a standardized version of p and X2,p is a 

standardized version of p−1.
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Basis Space Model—We used the fast rectangular 2D wavelet transform to compute the 

basis coefficients from the raw functions, equivalent to the matrix multiplication 

yijp
∗ = yijpΨ− with Ψ− = Ψ′(ΨΨ′)−1 with yijp

∗  a vector of length K = 269 with elements Y ijpk
∗ , 

k = 1, …, K. We then fit the basis-space version of model (24):

Y ijpk
∗ = B0k

∗ + B1k
∗ G1(p) + B2k

∗ G2(p) + B3k
∗ Xage, i + ∑

m = 1

M + 2
Zℬm(Xage, i)U𝒮mk

∗ + Uijk
∗ + Ui j1k

∗ G1

(p) + Ui j2k
∗ G2(p) + Eijpk

∗ , with

U𝒮mk
∗ N(0, q𝒮k), Uijk

∗ N(0, q0k), Ui j1k
∗ N(0, q1k), Ui j2k

∗ N(0, q2k), and Eijpk
∗ N(0, sk) .

(25)

Prior Specification—We specified vague conjugate inverse Gamma priors for each basis 

space variance component {q k, q0k, q1k, q2k, sk} in the model, with prior mode being the 

REML starting values and with effective sample size of 2, e.g. sk ~ InverseGamma(as, bs) 

with as = 2 and bs = 3 * ŝk where ŝk is the REML starting values for sk. We used spike-slab 

priors for the basis-space fixed effects { Bak
∗ , a = 0, …, 3}, with regularization parameters 

{πaj, τaj} varying over predictor a = 0, …, 3, with regularization sets j = 1, …, J = 36 

determined by the tensor wavelet scale levels, with j = 0 for j1 = j2 = 0, j = 1 for j1 = 0, j2 = 

1, …, j = J = 36 for j1 = j2 = 5. We estimated the regularization parameters using the 

empirical Bayes algorithm specified in Morris and Carroll (2006). To assess sensitivity of 

results to these choices of regularization parameters, we also ran the model doing no 

additional regularization (beyond wavelet compression) by setting πaj ≡ 1 and τaj ≡ 106. 

Results are provided in Section 7 of the supplementary materials.

Model Fitting—We ran an MCMC to obtain posterior samples of the parameters of model 

(25) { B ● k
∗ , q●k, sk} from the marginalized version of this model with U ● k

∗  all integrated 

out. We fit a total of 10,000 posterior samples after a burn-in of 5000, thinning by keeping 

every 10. We then sampled the spline random effects U𝒮mk
∗  from their complete conditional 

distributions with the other random effects still integrated out, which are conjugate 

multivariate normal Gibbs steps as detailed in Section 1 of the supplementary materials, 

from which posterior samples of f k
∗(x) = xB3k

∗ + ∑mZℬm(x)U𝒮mk
∗  were subsequently 

constructed for a grid of ages x of size 71 corresponding to ages 20–90. Let Fg
∗ be a 71 × (K 

= 269) matrix representing posterior sample g of the basis space nonparametric age effect, g 

= 1, …, 1000. We then transformed this back to the data space via Fg = Fg
∗Ψ to obtain the 71 

× (T = 14, 400) matrix of posterior samples of the nonparametric age effect f(Xage, t) in 

model (23), and similarly transforming the other fixed effects back to the data space to get 
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posterior samples of {B0(t),B1(t),B2(t)} on the sampling grid of t and used for posterior 

inference.

On a laptop computer, the entire analysis took 7hr39min on a single core, with the basis 

transform taking 1m37s, model selection 22m48s, each MCMC iteration 0.77s with 15,000 

iterations taking 3hr15m, and the postprocessing including inverse basis transform of 

posterior samples and key inferential summary calculations 4hr. Many other summaries and 

plots were computed for the purposes of this paper for sensitivity and illustration of the deep 

properties of the modeling framework at more computational expense, but these additional 

analyses are not necessary for analysis of the data. The Metropolis-Hastings acceptance 

probabilities (≈ 0.85 – 0.95) were reasonable, and Geweke convergence statistics (median 

0.01, Q.025 = −1.98,Q0.975 = 1.94) across the many parameters in the model showed that 

most were within roughly 2 standard deviations of zero, and only 4.4% of the corresponding 

p-values were less than 0.05, so suggest reasonable MCMC convergence (see Section 9 of 

the supplementary materials for more details). We simulated virtual MPS functions for 

hypothetical subjects with specified age and IOP from the posterior predictive distribution of 

the data (see Section 10 of the supplementary materials), and found that the simulated MPS 

data are visually similar to the MPS data from real eyes, suggesting the BayesFMM model 

with the tensor wavelet bases was sufficiently flexible to capture the salient features of these 

data, and lending support to its use for inference. We share these pseudo data on github 

(https://github.com/MorrisStatLab/SemiparametricFMM), as well as the real data and scripts 

to perform all analyses.

5.3 Scientific Results

Nonparametric MPS function of age—First, we computed the posterior mean MPS 

curve as a function of age over the entire meridional and circumferential domain at each 

level of IOP. As a thorough summary of the model fit, we generated a plot of these fits for 

each scleral location, and joined these together to make a digital movie file MPSvAGE-

wave.mp4 contained in the supplemental materials. Figure 2 shows a snapshot of the movie 

at the scleral location indicated by the white dot. Panel (a) depicts a polar azimuthal 

projection of the fitted MPS function for a left eye from a subject of age 90yr under 45 

mmHg of IOP. Note that MPS is higher near the ONH, as expected as a protective effect. 

Panel (b) shows the posterior mean degrees of freedom (DF) of the nonparametric age effect. 

We see strong nonlinear age effects in scleral regions close to the ONH and towards the 

inferior and nasal regions of the sclera, while many other regions show linear or almost 

linear age effects. The right nine panels contain the fitted nonparametric age effect at nine 

different IOP levels at the scleral position indicated by the white dot. In each panel, the 

black dots are the raw data, the solid blue line is the estimated nonparametric mean MPS 

function of age, and the solid and dashed red lines correspond to joint and point-wise 95% 

credible bands of the mean MPS curve, with joint bands computed as described in Meyer et 

al. (2015). We see from this plot how the MPS increases with IOP, and that the hyperbolic 

model seems to capture the rate of increase very well. From this plot and the movie in the 

supplement showing results stepping across the scleral locations, we see this model fits the 

data for all IOP and scleral locations remarkably well in spite of the fact that independent 

splines were not fit to the data for each IOP and scleral location separately, but rather is the 
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result of the complex joint unified model (23) that borrows strength from other IOP 

according to the modeled hyperbolic serial effect and from other scleral locations according 

to the basis functions. The model also borrows strength from other nearby scleral locations 

according to the basis functions in estimating the nonlinearity of the age effect, as seen in 

the local smoothness of the DF(t) plot.

Induced Intrafunctional and Interfunctional Covariance Structures—To assess 

the intrafunctional covariance structures induced by our tensor wavelet bases, we used 

equation (5) to estimate the scleral space intrafunctional covariance matrices Qd(t1, t2), d = 

0, 1,2 and S(t1, t2). Supplementary Figure 22 plots the diagonals of these matrices 

representing the variances at the various hierarchical levels as a function of scleral location t. 
Note that the variance for the eye intercept Q0(t, t) is an order of magnitude greater than that 

of the eye-level IOP coefficients Q1(t, t) and Q2(t, t), which are in turn an order of 

magnitude greater than the residual error variance S(t, t). Also, note that these covariances 

vary around the scleral surface, with locations near the ONH having greater levels of 

variability. The supplement also contains a movie file interfunctional_cor.mp4 that 

represents the corresponding intrafunctional correlation surfaces induced by our model by 

stepping around scleral locations and for each plotting a heatmap representing the 

correlation of the indicated location with all other scleral locations. For illustration, panels 

(e) and (f) of Figure 3 show the correlation of a specific scleral location t* (indicated by the 

white dot) with all other scleral locations t at the eye intercept Q0(t*, t) and residual error 

S(t*, t) levels, and Supplementary Figure 18 contains these plus those for the eye hyperbolic 

random effects Q1(t*, t) and Q2(t*, t) for this location, and 

Intrafunctional_correlations.mp4 contains a movie file showing all scleral 

locations. Note how our model captures local intrafunctional correlation, and the strength 

and tails of this correlation are allowed to vary by scleral location and hierarchical level. 

Supplementary Figure 19 includes equivalent plots for the wavelet-regularized principal 

component basis functions, and Intrafunctional_correlations-pc.mp4 contains a 

movie showing all scleral locations. Note that the PC basis functions, although global, 

induce intrafunctional correlation surfaces that are dominated by the local correlation among 

nearby scleral locations that is also captured by the tensor wavelet bases.

We also computed the induced interfunctional serial correlation across MPS curves for 

different IOP for the same eye using the formulas contained in Section 3.2. The supplement 

contains a movie file Intra_IOP_corr.mp4 that plots the variance, var{Yijp(t)| IOP = p, 
t}, as a function of IOP and scleral location and the serial correlation across IOP, 

corr{Yijp(t), Yijp′(t)}, as a function of IOP as it varies around the scleral surface t. Note the 

form of the serial correlation induced by the hyperbolic model, and how it is able to vary yet 

borrow strength across scleral locations. Panel (d) of Figure 3 portrays this serial correlation 

at a single scleral location.

Inference on functionals of the parameters—While Figure 2 and the accompanying 

movie file provide a thorough summary of the age effect on MPS estimated by our model, 

for interpretability it may be useful to aggregate results over IOP and/or scleral locations. 

One major advantage of our fully Bayesian approach is that we are able to compute posterior 
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samples and obtain estimates and inference for any functional of the model parameters. 

First, to aggregate information across all IOP, we considered the area under the MPS vs. IOP 

curve, defined as follows:

AUC(Xage, t) = f (Xage, t) + ∫7
45

{B1(t)G1(p) + B2(t)G2(p)}dp .

This integral summarizes the total MPS behavior over the range of IOP in the study, which 

covers the practical range of IOP values in this context. The integral is estimated 

numerically for each MCMC sample to yield posterior inference on AUC. We plotted the 

posterior mean AUC vs. age curve and corresponding posterior pointwise and joint credible 

bands for each scleral location, and assembled into a digital movie file AUCvAGE-wave.mp4 

in the supplementary materials, and for illustration panel (b) of Figure 3 contains this plot 

for a single scleral location. Although our model was not fit to the AUC data, but rather the 

raw data for each IOP, note how the model provides a nonparametric smooth fit of AUC vs. 

age for each scleral location, and again these fits borrow strength across scleral locations. 

From these results, we see that that aggregating over IOP, the MPS tends to decrease with 

age at most scleral locations, especially near the ONH. With MPS decreasing with age, the 

eye seemingly becomes less elastic and less able to absorb IOP, potentially exposing the 

ONH to IOP-induced damage over time.

Given the nonlinearity of the age fit, it may be instructive to directly look at the rate of 

decline of MPS over age. We can do this by computing inference on the derivative of the 

AUC curve with respect to Xage. Given the lack of an IOP × age interaction in our final fitted 

model, it follows that ∂AUC(Xage, t)/∂Xage = ∂f(Xage, t)/∂Xage. Using the fact that f(Xage, t) 
= β0(t) + Xageβ3(t) + Zℬ(Xage)u (t) as described in Section 3.3, with 

Z𝓑(Xage) = {ℬ1(Xage), …, ℬM + 4(Xage)}′ZΩdiag(d1
−1/2, …, dM + 2

−1/2 ), it can be easily seen that

∂AUC(Xage, t)
∂Xage

= β3(t) +
∂Z𝓑(Xage)

∂Xage
u𝒮(t) . (26)

Our R scripts contain calculations of 
∂Z𝓑(Xage)

∂Xage
, which come from Wand and Ormerod 

(2008). By applying (26) to the posterior samples of β3(t) and u (t), we could obtain 

posterior samples of this derviative for each scleral location, although we do not present 

those results here. Since the nonparametric fits were done placing a smoothness penalty on 

the age effects themselves, the derivatives may appear slightly undersmoothed. If one had 

primary interest in estimating these derivatives smoothly, they could do so by simply 

choosing higher order penalties in the spline fits. A third order penalty would produce 

smoothness in the first derivative.

Aggregated summaries over functional regions—Although our model fits the entire 

data set over all scleral locations, for ease of interpretation researchers at times would like to 
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look at estimates and inference for aggregated scleral regions. Given the hypothesis that 

scleral strain is most important near the ONH, we averaged results over all circumferential 

regions to obtain results as a continuous function of meridional distance from the optic nerve 

head. Figure 4 depicts the posterior mean AUC as a function of age and distance from the 

ONH, aggregating over circumferential regions. We can see how MPS is higher near the 

ONH and decreases moving away from the ONH, potentially providing a protective effect to 

the ONH. Younger individuals have high MPS levels at scleral locations extending well out 

from the ONH, while for middle age individuals the regions of high MPS does not extend 

out far from the ONH, and for older individuals the MPS is quite low even close to the 

ONH. This coincides with the increased glaucoma risk in older individuals.

We also summarized the results aggregating over the innermost region closest to the optic 

nerve head, which is called peripapillary(PP) region and also within the adjacent region, 

called the mid-peripheral( MP) region. Here we present aggregated AUC results in both PP 

and MP regions. Figure 5 depicts the age effects aggregating AUC over the PP and MP 

regions, with the top two plots containing the posterior mean fits and the bottom containing 

the derivatives with respect to age. The blue line contains the posterior mean fit. The dotted 

and solid red lines indicating 95% pointwise and joint credible intervals, respectively. From 

this we can clearly see that the MPS is systematically higher in the PP region closest to the 

ONH than in the MP region further away, potentially conferring a protective effect. The 

MPS decreases with age in both regions, but the decrease is substantially steeper for the all-

important PP region close to the ONH. This effect is nonlinear, with the rate of decrease 

accelerating throughout middle age (40–60 years old), an age at which glaucoma risk 

increases substantially.

These analyses confirm the hypothesis that MPS is higher in scleral regions closer to the 

ONH, decreases with age, and this decrease with age is more pronounced near the ONH. 

This agrees with the notion that biomechanical changes in the sclera may contribute to 

increased glaucoma risk.

Sensitivity Analyses—Section 7 of the Supplement and Supplementary Figures 2–25 

present extensive results for the alternative model with the left vs. eye effect, with the 

alternative values for the prior shrinkage hyperparameters {τaj, πaj}, and using the wavelet-

regularized principal components as the projected basis. Substantive results do not change, 

so we see our conclusions are not driven by these choices.

6. DISCUSSION

In this paper, we demonstrated how to adapt the BayesFMM modeling framework to account 

for serial interfunctional correlation and smooth nonparametric covariate functional effects 

and applied it to an innovative glaucoma study investigating MPS of scleral strain tensors. 

We found that MPS is maximized near the ONH. We also found that MPS decreases with 

age, especially in regions closest to the ONH, and the decrease in MPS accelerates 

throughout middle-age. This could contribute to the increased glaucoma risk seen in elderly. 

The age effect on MPS tends to be non-linear near the ONH, especially towards the inferior 
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and nasal sides, while the other scleral regions show the age effect close to linear. Focal 

glaucoma damage is most often observed in the inferior quadrant of the ONH.

While motivated by the glaucoma data application, the BayesFMM framework presented 

here is extremely general, with the ability to be used with any near-lossless basis tranform 

and applicable to many types of complex, high dimensional functional data of modern 

interest including wearable computing data, genome-wide data, proteomics data, geospatial 

time series data, neuroimaging data, and many others. Using this framework, one can not 

only accommodate nonparametric functional fixed effects, but also model serially correlated 

functions through functional growth curve effects. Our model allows the nonparametric fits, 

smoothness, and interfunctional correlations to potentially vary over the functional domain, 

which is necessary for good fit to these data and likely many other complex functional data 

sets. In addition, we introduced a model selection heuristic that can be used to select among 

fixed and random effects and decide whether they should be linear, parametric, or 

nonparametric, and whether the fits or smoothness should be constant or vary around the 

functional domain before running the MCMC.

On our github page (https://github.com/MorrisStatLab/SemiparametricFMM), we share the 

Matlab files required to fit these models, including scripts to apply the model selection 

heuristic, links to automated software to perform the MCMC, and scripts to compute 

posterior samples and posterior inference for the nonparametric functional effects and all 

summary plots included in this paper. The model is set up using lmer style model statements 

(Bates et al., 2015). The software can be used to fit models with any fixed or random effect 

function covariates, with different basis functions, and for functions on domains of any 

dimension or measure given suitable basis functions for the corresponding space. The 

method is efficient enough to feasibly apply to very large data sets like our glaucoma data 

set here with over 4.5 million observations. While it took a relatively long time to run the 

MCMC using a single core, we do not think this is inordinate considering the cost and time 

to collect these data and the extensive inferential summaries provided by the model fits. This 

run time was orders of magnitude less than a conceptually simpler approach of applying lme 

to each scleral location, applying a 2d smooth, and using a bootstrap for inference, which by 

our calculations would take 10 weeks to compute using 1000 bootstrap samples on the same 

computer we used for the BayesFMM model. If further speed is desired for our method, the 

model fitting is highly parallelizable and the MCMC code has cluster computing capabilities 

so can be sped up using GPU or cluster computing resources. While to code we share only 

utilizes a single core, future updates of the software will enable distributed computing for 

faster calculations for big data sets. We are in the process of extending the package to fit 

these models and including many other features of the BayesFMM framework in other 

publications but not included in this paper. We anticipate this package, which will be 

available in Matlab and R, will greatly enhance the usability of the method, and expect this 

package to be completed and freely available in the near future.

One significant benefit of our fully Bayesian approach to fitting these semiparametric 

functional mixed models is that we can produce inference on any parameters in the model, 

or any functional or aggregation of these parameters, and this inference integrates over the 

various sources of interfunctional variability in the model and over the uncertainty in 
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estimating the covariance parameters and level of nonlinearity of the spline fits. This allows 

us to perform a flexible, thorough analysis in the entire functional domain, yet produce 

inference and results for aggregated summaries that may be more interpretable to 

investigators. This raises the obvious question, “What is the advantage of fitting the entire 

functional model? Why not just compute the aggregated summaries and model those using 

standard tools?” The answer to this question is multi-faceted.

First, if one only looked at specific aggregated summaries, they may miss insights that could 

have been gleaned from their data but were not captured by these summaries. For example, 

if only looking at the PP and MP regions, one may miss out on different MPS behavior in 

the inferior and nasal regions of the sclera, which may be important. By modeling the scleral 

function in its entirety, we are able to examine the entire domain to ensure we are not 

missing out on any insights, and then we can still produce inference for any desired 

aggregated summaries for ease of interpretation, as well. This concept is also relevant in 

other application areas where summaries are used because of the complexity and high 

dimensionality of the raw functional data. This approach of flexible modeling followed by 

inferenct on summary measures can capture the best of both worlds, analyzing the entire 

function yet producing inference for summary measures interpretable for the scientific 

subject area.

Second, any aggregation draws arbitrary boundaries in the function space. MPS for scleral 

locations at the boundary of the PP and MP regions are highly correlated with each other, 

and yet PP and MP extracted summaries arbitrarily separate them from each other. The 

flexible functional modeling framework introduced in this paper models the entire functional 

space, yet captures and accounts for intrafunctional correlation through the chosen basis 

functions. This allows a smooth borrowing of strength from nearby locations, and if 

location-scale bases like wavelets are used, then this borrowing of strength can be adaptive, 

able to accommodate spatially heterogenous functions for which some functional regions are 

more correlated than others. In principle, accounting for this intrafunctional correlation leads 

to greater efficiency, as has been shown in various contexts.

While flexible, the BayesFMM framework presented here has some limitations and 

drawbacks, including the need to choose a common basis to use for transformation at all 

levels of the model, the independence in the basis space assumption that can limit certain 

types of intrafunctional covariance structure depending on the choice of basis, and the 

computational intensity from having to run a full MCMC to obtain estimates and inference 

for model quantities. It is designed for representing functional data sampled on a common 

fine grid, so is not suitable for sparsely sampled functional data or functional data for which 

the individual functions are sampled on wildly different sampling grids, a setting in which 

the Scheipl et al. (2015) and Greven and Scheipl (2017a) framework is well-suited. The 

model selection heuristic is ad hoc, and should not be used to select over a large number of 

variables.

In spite of these limitations and drawbacks, the BayesFMM modeling framework is very 

general, and this paper can serve as a template for how to utilize this modeling framework to 

model complex functions with various types of interfunctional correlation structures. It has 

Lee et al. Page 32

J Am Stat Assoc. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the potential to impact many areas of science yielding complex functional data, and the 

analysis presented here illustrates a rigorous, thorough workflow to analyze the entire data 

set, extract many types of information from them, yet provide interpretable graphical 

summaries and inferential results desired by investigators.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Data plot
Polar azimuthal projection of partial spherical MPS function for both left and right eyes 

from one subject of age 66yr under 45 mmHg of intraocular pressure.
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Figure 2. 
(a) Polar azimuthal projection of fitted MPS function for left eye from one subject of age 

90yr under 45 mmHG of IOP. (b) posterior mean of degrees of freedom of nonparametric 

MPS fit of age. The right nine panels depict estimated nonparametric MPS fit of age for all 

nine IOP levels at the scleral location indicated by the white dot in (a) and (b), along with 

the raw data indicated by the black dots.
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Figure 3. Key Summaries of Fitted Model
Shows key summaries at the scleral position marked by the open circle, including (a) the 

fitted MPS for a 90yr old with IOP=45mmHg, (b) the nonparametric MPS vs. age curve 

using the AUC to integrate over IOP, with blue line being posterior mean, dotted and solid 

red lines pointwise and joint credible bands, and the raw data (computing AUC for this 

scleral location for each eye) indicated by dots, (c) the degrees of freedom of the 

nonparametric age fit as a function of the scleral location, (d) the serial correlation across 

IOP induced by the model at this scleral position, and (e) and (f) being the intrafunctional 

correlation surface induced by our model and choice of tensor basis for the eye-to-eye 

random intercept and residual error levels, respectively, at this scleral position. The file 

combo_plot.mp4 in the supplement is a movie file showing how these summaries vary 

across scleral locations.
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Figure 4. Posterior mean AUC (of MPS) as a function of age and distance from ONH
These results are obtained by aggregating posterior samples over all circumferential regions.
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Figure 5. Aggregated AUC summaries
AUC aggregated over peripapillary (PP) region adjacent to the ONH and the mid-

peripheral(MP) region just beyond PP. (a) and (b) show AUC summaries over the two 

regions. (c) and (d) show derivatives of aggregated AUC summaries presented in (a) and (b).
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