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Early non‐invasive tumour therapy response assessment requires methods sensitive

to biological and physiological tumour characteristics.

The aim of this study was to find and evaluate magnetic resonance imaging (MRI)

derived tumour tissue parameters that correlate with histological parameters and that

reflect effects of radionuclide therapy.

Mice bearing a subcutaneous human small‐intestine neuroendocrine tumour were i.v.

injected with 177Lu‐octreotate. MRI was performed (7 T Bruker Biospec) on different

post‐therapy intervals (1 and 13 days) using T2‐weighted imaging, mapping of T2* and

T1 relaxation time constants, as well as diffusion and dynamic contrast enhancement

(DCE‐MRI) techniques. After MRI, animals were killed and tumours excised. Four differ-

ently stained histological sections of themost central imaged tumour planewere digitized,

and segmentation techniques were used to produce maps reflecting fibrotic and vascular

density, apoptosis, and proliferation. Histological maps were aligned with MRI‐derived

parametric maps using landmark‐based registration. Correlations and predictive power

were evaluated using linear mixed‐effects models and cross‐validation, respectively.

Several MR parameters showed statistically significant correlations with histological

parameters. In particular, three DCE‐MRI‐derived parameters reflecting capillary function

additionally showed high predictive power regarding apoptosis (2/3) and proliferation

(1/3). T1 could be used to predict vascular density, and perfusion fraction derived from

diffusion MRI could predict fibrotic density, although with lower predictive power.

This work demonstrates the potential to use multiparametric MRI to retrieve impor-

tant information on the tumour microenvironment after radiotherapy. The non‐

invasiveness of the method also allows longitudinal tumour tissue characterization.

Further investigation is warranted to evaluate the parameters highlighted in this study

longitudinally, in larger studies, and with additional histological methods.
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1 | INTRODUCTION

Neuroendocrine tumours (NETs) are slow‐growing malignancies and metastases are often found at the time of diagnosis. Currently available treat-

ment options have limited effect on patient survival. New therapeutic options are being developed, such as radionuclide therapy (RNT) using the

radiolabelled somatostatin analogue octreotate (177Lu‐octreotate). This compound binds to receptors expressed on tumour cells. Thereby the radi-

ation dose to primary and metastatic tumours is maximized, while exposure of healthy tissue to radiation is limited. 177Lu‐octreotate shows great

potential for treatment of NETs, but optimization of therapy protocols is required. To facilitate this, non‐invasive methods for prediction and

assessment of therapeutic effects are needed.

Tumour size is conventionally regarded as a response endpoint. It can be accurately determined using computed tomography (CT) or magnetic

resonance (MR) imaging, but is becoming obsolete for evaluating modern, targeted therapies. Methods that are sensitive to the targeted biological

processes, such as angiogenesis, proliferation and apoptosis are required instead.1-3

Histological methods provide unambiguous characterization of biological features of tumours, but examining an entire tumour precludes lon-

gitudinal assessment, while biopsies only provide information on the focally sampled tissue regions. Erroneous sampling and problematic anatom-

ical locations of tumours are further limiting factors.

Several functional MR imaging methods are currently being investigated for their ability to indirectly measure tumour characteristics. Promising

results regarding early assessment of tumour response to RNT have been found.1,4 For example, dynamic contrast‐enhancedMR imaging (DCE‐MRI)

is used in oncological imaging to reveal abnormal biokinetic interactions between tumour tissue and contrast material. Semi‐quantitative or

quantitative parametric analysis or modelling of the DCE‐MRI signal‐time curve can provide important information on, e.g., spatial distribution of

vascularity, vessel structure and function, oxygenation, perfusion, and blood volume.5 Diffusion weighted MRI (DWI) is commonly used to measure

structural restrictions on the Brownian motion of tissue water molecules. Measures obtained can exclude (diffusion coefficient, D) or include

(apparent diffusion coefficient, ADC) perfusion related water molecule motion. In addition, DWI can be used to determine the fractional tissue

volume of actively perfused microvasculature ( f ).6 Quantification of magnetic relaxation times (T1, T2, and T2*) can reveal altered molecular orga-

nization, presence of macromolecules after microvasculature restructuring or leakage, or changes in tissue deoxyhaemoglobin levels.7,8

Furthermore, the interest in combining several MR techniques in a multiparametric MR (mpMR) approach is increasing, since it would enable a

non‐invasive, spatiotemporally resolved, comprehensive evaluation of several dynamic and functional biological mechanisms that are associated

with tumour response.1,9-12

In previous studies, individual MR‐derived tissue parameters for tumour response assessment (e.g. water diffusion, vascular parameters, perfusion

and hypoxia) have been correlatedwith biological measures. However, the results sometimes showweak, diverging or even contradictory results, most

likely due to the diversity of tumour types, therapeutic modalities, experimental conditions and methodologies described in the literature.13,14 Hence,

developing a reliable and sensitive response assessment method based on mpMR necessitates a comprehensive evaluation of the link between the

pathophysiological processes and the MR‐derived tissue parameters for each combination of tumour type and treatment modality studied.

For MR‐derived parameters to provide robust in vivo tumour therapy response assessment, the MR‐methods must be better optimized and

understood, both regarding acquisition and evaluation of data, and the parameters must be evaluated with corresponding histological tissue data

(e.g. Dominietto & Rudin, 201311). To our knowledge, the biological interpretation of mpMR data of NETs receiving RNT has not been studied using

histological methods.
2 | AIM

The aim of this project was to evaluate the potential of mpMR for response assessment of NETs receiving RNT by studying correlations between

in vivo, MR‐derived tissue parameters and biological characteristics of corresponding ex vivo tissue samples.
3 | MATERIALS & METHODS

3.1 | Tumour model and therapeutics

Samples from the human small‐intestine neuroendocrine tumour model (GOT115) were xenografted subcutaneously on female BALB/c nude mice

(n = 21, Charles River, Wilmington, MA, USA) that were fed with a standard diet and water ad libitum. Each animal grew one tumour in the neck region,

which will be referred to as tumour 1 for animal 1, tumour 2 for animal 2, etc. As tumours reached 10–20 mm in diameter, 15 MBq 177Lu‐octreotate

(specific activity: 26 MBq/μg octreotate, IDB Holland, Baarle‐Nassau, the Netherlands) was injected intravenously, resulting in an absorbed dose to

the tumour of approximately 4 Gy (cf. Dalmo et al., 201716). The initial 21 animals were included in our mpMR project, including studies on the

longitudinal behaviour of MR‐derived tissue parameters in response to therapy4 and optimization of image post processing techniques,17 both with

different specific aims and results. Based on inclusion criteria described below, n = 5 of the 21 animals were evaluated in the current study.

The Gothenburg Ethical Committee on Animal Research approved this study.
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3.2 | Overall experimental setup

To correlate MRI data with a broad range of biological response effects, rather than with effects from therapeutic doses, and thereby to increase

the biological variability of the investigated parameters, we used a non‐curative amount of 177Lu‐octreotate (15 MBq) and also included data from

different time points after treatment.

Imaging experiments including the methods mentioned inTable 1 were conducted on days −1, 1, 3, 8, and 13 after treatment (day 0), whereof

data from days 1, 8 and 13 are included in the current study. The T2 weighted images were used to verify partial tumour response (reduced

tumour volume or reduced growth rate during the first week after treatment, followed by stable or increasing tumour volume during the second

week, data not shown) as previously described.18

The 5/21 tumours included in this study fulfilled the following requirements: 1) they were successfully imaged in the MR experiment preced-

ing tumour extraction, 2) they were adequately located, shaped and sized for the resection method used, 3) they were successfully stained at his-

tology, and 4) anatomical landmarks were recognizable on both histological sections and MR images. These inclusion criteria resulted in 4/5

included tumours (no. 1, 3, 4 and 5) being harvested on day 13 and 1/5 included tumours (no. 2) being harvested on day 1.

During imaging, animals were anaesthetized using air and isoflurane (2–3%, MSD Animal Health, Copenhagen, Denmark), body temperature

was maintained using a circulating warm water system and a heating pad, and a pressure sensitive pad was used to monitor respiration (SA Instru-

ments, Inc., NY, USA). For contrast‐material administration during image acquisition, a peripheral venous catheter was fixed to the tail vein and

connected to a 1 ml syringe outside the magnet bore via a 70 cm infusion line.

Immediately after the MRI experiment preceding the tumour extraction, animals received a lethal intraperitoneal injection of sodium pento-

barbitone (Pentobarbitalnatrium vet, Apotek Produktion & Laboratorier AB, Huddinge, Sweden, 60 mg/ml) followed by heart incision, tumour

extraction and histological preparation.

3.3 | MRI experiments

MRI examinations were performed using a 20‐cm inner‐diameter horizontal bore 7 T MR system with 400 mT/m gradients (Bruker BioSpin MRI

GmbH, Ettlingen, Germany; software: ParaVision 5.1).
TABLE 1 MR examinations and pulse sequence parameters

MR technique & pulse sequence Pulse sequence parameters

IVIM‐DWI 3 orthogonal gradient directions, gradient separation/duration: 9/4 ms
12 b‐values: 0, 5, 10, 20, 35, 50, 75, 100, 200, 400, 600 and 800 s/mm2

2D SE‐EPI TR: 1500 ms, TE: 21 ms, number of averages/segments: 3/1
Effective bandwidth ≈ 300 kHz
Partial Fourier acceleration: 1.5
Pixel size: 3202 μm2, slice thickness: 1000 μm, slice gap: 500 μm
Fat suppression: Frequency selective
Scan time < 6 minutes

T2*‐mapping 10 echoes (TE): 5, 10, 15, … 50 ms
TR: 2000 ms, number of averages: 1, flip angle: 30°

Multiple echo gradient echo (MGE) Slice positions imported from IVIM‐DWI experiment
Pixel size: 1602 μm2, slice thickness: 1000 μm
No fat suppression scan time < 4 minutes

T1‐mapping 7 TR: 13000, 9000, 4500, 2500, 1500, 750, 300 ms
TE: 24 ms, number of averages: 1, RARE factor: 4

2D RARE (RAREVTR) Refocusing flip angle: 180°
Pixel size: 2802 μm2, slice thickness: 1000 μm, single slice
Slice positions imported from IVIM‐DWI experiment (central slice)
No fat suppression
Scan time < 10 minutes

DCE‐MRI Number of repetitions (dynamics): 100, temporal resolution: 4.2 s
(varied slightly with FOV), contrast injection during sixth dynamic

2D RARE TR: 300 ms, TE: 24 ms, number of averages: 1, RARE factor: 4
Partial Fourier acceleration: 1.5
Pixel size: 2802 μm2, slice thickness: 1000 μm, single slice
Slice positions imported from IVIM‐DWI experiment (central slice)
Fat suppression: Frequency selective
Scan time < 8 minutes

T2 weighted MRI TR: 4190 ms, TE: 45 ms, number of averages: 2, RARE factor: 6
Pixel size: (160 ± 50)2 μm2 (varied with FOV)

2D RARE Slice thickness: 700 μm, no slice gap
Fat suppression: Frequency selective
Scan time < 4 min
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A 4‐channel array rat brain receiver coil (RAPID Biomedical GmbH, Rimpar, Germany) and a 72‐mm volume coil were used to image tumours 1

and 3, 4, and 5, and a 50‐mm quadrature transmit/receive volume coil was used to image tumour 2 (RAPID Biomedical GmbH, Germany).

Field‐map based shimming (MAPSHIM) was used to improve the field homogeneity within the tumour. Transversal images of the longitudinal

position of the animal with greatest tumour area were acquired using a field of view (FOV) that covered the tumour extent, including the following

methods: Multi b‐value diffusion‐weighted imaging for intravoxel incoherent motion modelling (IVIM‐DWI), T2* and T1 quantification, dynamic

contrast‐enhanced MRI (DCE‐MRI: 0.1 M Gd‐DTPA, DOTAREM, Gothia Medical, Billdal, Sweden, 0.3 mmol/kg bodyweight, tail i.v. injection dur-

ing the 6th dynamic) and T2‐weighted MRI.

Imaging experiments were performed on the same day the animal was killed for tumour tissue harvesting, except for the DCE‐MRI experi-

ments on animals 1, 3, 4, and 5, which were conducted on day 8 instead of day 13 for logistical reasons involving the other studies. Total scan

time was approximately 90 min. Detailed acquisition parameters are given in Table 1.
3.4 | MR image post processing

Post processing was performed on a voxel‐by‐voxel basis using MATLAB (R2015b, The MathWorks, Inc., Natick, MA, USA) with standard and in‐

house developed functions, scripts and graphical user interfaces. A 2 × 2 median filter was applied to all images for noise reduction before further

post‐processing. The 19 parameters derived from MRI examinations are defined in Table 2.
3.5 | Tissue sampling, histological processing and digitization

Just after the animal had been killed, a scalpel was used to divide the tumour in situ by placing a section adjacent and parallel to the imaged tumour

plane. The same plane was colour coded with tissue ink on the left, right, and dorsal tumour borders to keep track of anatomical orientation during

histological processing. At paraffin embedding (Thermo Scientific™ HM 355S Automatic, Fisher Scientific, Lund, Sweden), the flat tumour surface

made by the scalpel was positioned to meet the sweep plane of the microtome knife. When the tissue ink was reached by the microtome, i.e. when

the imaged tumour plane was reached, serially produced 3‐μm sections were collected for histological and immunohistochemical staining. Digital

images of the stained sections were produced using a Leica SCN400 Slide Scanner (40× magnification, Leica Microsystems, Wetzlar, Germany),

resulting in images of 0.25 × 0.25 μm2 resolution. Image post‐processing was performed in MATLAB, where the tissue ink was located on the

magnified images, allowing proper alignment of the digitized histological images and the MR images. Figure 1 visualizes the process of producing

digital histology images for subsequent alignment with the corresponding MR parameter maps.

Four stains were applied to adjacent tumour sections: haematoxylin‐eosin (HE, Tissue‐Tek Prisma, Sakura FineTek, Alphen aan den Rijn, the

Netherlands), Masson Trichrome (MT, Artisan Link, Dako, Glostrup, Denmark), and antibodies to Ki67 (AB9260; Merck Milipore Burlington, MA,

USA) and CD31 (AB28365; Abcam, Cambridge, UK). The latter two were pre‐treated with EnVision™ FLEX Target Retrieval Solution (high pH;

PT‐Link; Dako, Glostrup, Denmark) followed by incubations using Envision Flex (Dako, Glostrup, Denmark). The staining was performed in an

Autostainer Link (Dako, Glostrup, Denmark) following the manufacturer's instructions. Positive and negative controls were included in each run.
3.6 | Image registration and data sampling

Landmark‐based manual image registration using the MATLAB control point selection tool was performed to intermutually align the histological

images and to register them to the T2‐weighted MRI. The MR parameter maps were manually registered to the T2‐weighted image by manual

adjustment of rotation, translation and scaling. The MATLAB fitgeotrans function, which fits a geometric transformation to pairs of landmark

points defined in the images to be aligned, was then used to infer the transformation matrices linking all images. Tumour regions affected by

obvious histological tears/folds or MR‐related artefacts, or where landmarks could not be identified were avoided by performing the registration

and data sampling sequentially on tumour sub‐regions. Figure 2 illustrates how a data sample is taken from a registered tumour sub‐region.

Before the automatic sampling process of a registered sub‐region was started, the histological regions corresponding to each planned sample

position were sequentially magnified and scrutinized. If an artefact was observed for a particular stain and position, the corresponding

histological index was treated as missing data. Similarly, if an MR parameter was not defined according to Table 2 for a particular sample, it

was automatically discarded.
3.7 | Histological indexing

Histological indices were calculated for each sampling position in area units of 250 × 250 μm2, i.e. dimensions similar to the in‐plane resolution of

the MR experiments. The HE segmentation was based on previously presented principles.19 In brief, a normalization algorithm was used to

account for inconsistencies in the preparation and staining process. Normalized images were converted to grey‐scale intensity images and sub-

jected to a modified watershed segmentation to detect cell shaped objects (round to oval). Colour thresholding was then used to identify tumour



TABLE 2 MR parameter definitions

Parameter Description

Diffusion weighted imaging (DWI)

Intravoxel incoherent motion (IVIM)

S bð Þ ¼ S0 1 − fð Þ·e−bD þ S0f·e
−b DþD*ð Þ

S0: Signal without diffusion weighting
A voxelwise Bayesian method with uniform prior distributions and mode as central tendency

measure was used to estimate the model parameters17

Parameter limits were D: [0, 5] μm2/ms, f : [0, 1], D*: [0, 1000] μm2/ms, S0: [0, 2 × Smax], where
Smax is the maximum measured signal

D Diffusion coefficient The tissue water diffusion coefficient

D* Pseudo diffusion coefficient Perfusion related pseudo diffusion coefficient of incoherently flowing blood in the tissue

f Perfusion fraction Signal fraction of from incoherently flowing blood in the tissue

Apparent diffusion

S(b) = S0e
−b · ADC

S0: Signal without diffusion weighting
ADC was estimated from a least squares fit with two b‐values (0 and 800 s/mm2.)

ADC Apparent diffusion coefficient The apparent diffusion coefficient, which includes effects from both diffusion and perfusion

Relaxation time mapping

T2* relaxation

S TEð Þ ¼ Aþ Ce
−TE
T2*

S (TE) is the signal intensity for echo time TE
A = signal bias
C = signal intensity without T2* relaxation and no bias
Least squares fitting was used to estimate T2*. Voxels with the goodness‐of‐fit parameter

R2 < 0.4 were excluded

T2* T2* time Transversal tissue relaxation time

T1 relaxation

S TRð Þ ¼ Aþ C 1 − e
−TR
T1

� �

S (TR) = signal intensity for repetition time TR
A = signal bias
C = signal intensity after complete T1 relaxation with no bias
Least squares fitting was used to estimate T1

T1 T1 time Longitudinal tissue relaxation time

Dynamic contrast enhancement (DCE) MRI

Semi quantitative characteristics
S(t), a continuous representation of signal intensity as a function of time, was determined by

fitting a smoothing spline (smoothing parameter = 0.01)
S0, the baseline signal intensity, was defined as the mean of the pre‐contrast dynamics
σvoxel, the voxel noise, was defined as the standard deviation of the residuals of S(t) for each

voxel
S(t) > S0 + 5 · σvoxel defined significant contrast enhancement
σimage, the image noise, was defined as the mean of σvoxel
S0 > 5 · σimage defined the threshold for inclusion of voxels in the analysis
Smax was defined as the maximum value of S(t) for each voxel

AT Arrival time Time after injection required for signal intensity to reach significant enhancement

TOP Time of peak intensity Time after injection required to reach maximum signal intensity

TTP Time to peak Time between AT and TOP

SEmax Relative, maximum signal enhancement Maximum signal intensity relative to baseline signal intensity:
(Smax – S0) /S0

SE60 Relative signal enhancement at 60 s Signal intensity at 60 s after injection relative to signal baseline intensity:
[S(60 s) – S0] /S0

SER Signal enhancement ratio Ratio of early (55 s) and late (300 s) relative signal enhancements

CER Contrast enhancement ratio Ratio of maximum signal intensity and baseline signal intensity:
Smax/S0
Missing value if no significant enhancement was obtained

AUCn Normalized area under the curve Area under S(t) between 0 and 5 minutes, normalized to S0

WI Wash in Maximum time derivative of S(t) between AT and TOP

WO Wash out Maximum negative time derivative of S(t) between TOP and the last dynamic.
Missing value if <5 dynamics left after TOP

BE Brevity of enhancement Time between the time points of WI and WO

IS Initial slope Average rate of signal enhancement between TOP and contrast injection: (Smax ‐ S0) /TOP

NS Negative slope Average rate of signal decrease between TOP and the last dynamic.
Missing value if <5 dynamics left after TOP
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FIGURE 1 Obtaining digital histology images for alignment with the corresponding MR parameter maps. A) The dead animal is positioned for
incision through skin and tumour, with scalpel cutting adjacent and parallel to the imaged tumour plane. B) Colour coding of the imaged
tumour plane by tissue ink injections on the left, right and dorsal tumour borders. C) Digital photography of the divided and colour coded tumour,
with indications of where the ink is visible. The plane of the surface facing the camera will be parallel to the microtome knife sweep plane. D) Glass
microscopy slides with differently stained parallel sections are digitized using a slide scanner. E) The ink, preserved through the preparation and
paraffin embedding procedure, is visible on the magnified portions of the digitized HE stained section, and can be used to recover the orientation
of the histological sections for alignment with the MR images
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cells with dark stained nuclei. Assuming that the dark stain represented condensed chromatin due to apoptosis (c.f. Kroemer et al. 200520), the

apoptotic tumour cell count (HEcount) was defined as the number of apoptotic cells per area unit.

Ki67 positive tumour cells were identified using the method described for HEcount except normalization, which was unnecessary due to the

higher contrast between cells and background tissue. The colour threshold was set to detect only cells with brown‐stained Ki67 positive chroma-

tin. Proliferating tumour cell count (Ki67count) was thus defined as the number of Ki67 positive cells per area unit.

Micro‐vessel density (MVD) and fibrotic density (FD) were determined by colour thresholding only, and defined as the fraction of CD31 and

MT positive area per area unit, respectively.

The segmentation and indexing performance was validated by a board‐certified pathologist (ON). Examples are shown in Figure 3.
3.8 | Data collection & statistics

All data analyses and statistical tests were performed in MATLAB.

Non‐normally distributed MR parameters or histological indices were transformed to approximately normal distributions using the Box‐Cox

power transformation (MATLAB boxcox function).

A linear mixed‐effects model including intercept and slope for both fixed and random effects was used to investigate the pairwise correlations

between each MR parameter and histological index, where tumour number (1‐5) accounted for random effects, such as differences in tissue prep-

aration, staining concentration, colour thresholding, and coil configuration. Observations containing missing values in the pairwise comparisons

were omitted. A p‐value <5.0 × 10−4 (0.05 adjusted for multiple comparisons) for the fixed effects variable was considered statistically significant.

A statistically significant correlation was further evaluated on a per‐animal basis. Five‐fold cross‐validation of a simple linear regression model

between the MR parameter and the histological index was calculated, and the mean squared error of the cross validation, normalized to the

squared mean of the histological index, was used to indicate the predictive power of the correlation. The normalization enabled comparison

between histological indices.

To study similarities and differences between histological indices and MR parameters, agglomerative hierarchical clustering was performed on

the normalized parameters, omitting observations containing missing values. The single linkage distance measure was evaluated due to its invari-

ance to transforms.21



FIGURE 2 Histological images [(A‐D): HE, Ki67, CD31, MT] and MR images/parametric maps [(E‐H): IVIM‐DWI of b = 600 s/mm2, T1 map, T2*
map, T2 weighted image] of tumour 2. The sequential image registration and data sampling procedure is as follows: 1) a tumour sub‐region (blue
delineation on (A‐H)) is intermutually registered on the histological images, 2) the MR parameter maps of the same region are registered to theT2‐
weighted image (H), 3) the final transformation linking all images to each other is established by registering a histological image also to the T2‐
weighted image, and 4) a data sampling algorithm systematically extracts data from the entire registered region, before the next tumour sub‐region
is manually registered for sampling. The yellow rectangle in (A‐H) shows the position of a first 250 × 250 μm2 sample in a registered tumour sub‐
region. The average MR parameter values in the sample region are extracted from each parameter map, and the histological indices are calculated
for the same position. The next sample is then taken adjacent to the first position, and the procedure is repeated until the entire registered region
has been sampled. Enlargements of the sample position shown in (A‐D) are shown in (I‐L). enlargements were used to validate proper registration
based on the tissue microscopic landmarks (e.g. region with low cell density on (I‐L)), as well as to reject samples where the magnification revealed
histological artefacts, such as cracks or folds. Bars in (A) and (J) indicate 1.0 and 0.1 mm, respectively
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4 | RESULTS

4.1 | Image quality and registration performance

In general, the 19 MR‐derived tissue parameters that were evaluated (Table 2) produced parametric images of good quality, except for the IVIM

pseudo diffusion coefficient D*, which was mostly assigned either of the parameter limit values in the fitting procedure (Table 2). The results based

on D* are thus inconclusive.

The image quality of the MR technique most sensitive to image distortions (EPI‐based DWI for estimation of ADC, D, D* and f ) is shown for

tumour 2 in Figure 2. The figure confirms visually that the sub‐regions in the MR images and histological sections were well aligned after image

registration.
4.2 | Tissue segmentation and histological indexing

Results from the automatic segmentation of histological images used for index calculation are shown for tumour 4 in Figure 3. The combination of

the algorithm for cell detection and colour thresholding facilitated automatic identification of apoptotic cells in the HE images (Figure 3d) and pro-

liferating cells in the Ki67 images (Figure 3f). Fibrotic tissue (Figure 3h) and vascular endothelial cell presence (Figure 3j) were also adequately iden-

tified in the MT and CD31 images, respectively.

Heat maps of the histological indices HEcount, Ki67count, MVD and FD reveal highly heterogeneous and markedly different patterns in the

contiguous tumour sections (Figure 3k), which demonstrates a broad range of biological states in the treated tumours.

The distribution of histological indices is shown for each tumour in Figure 4. With some exceptions, there seems to be less variation of indices

between tumours than within tumours.



FIGURE 3 Tissue segmentation and calculation of histological indices. (A) HE stained histological section of tumour 4 with corresponding heat
maps (K) of HEcount, Ki67count, MVD and FD. The orange square in (A) is magnified in (B), showing apoptotic regions (densely packed, dark
stained nuclei of apoptotic cells, indicated by a yellow arrow), necrotic tissue (red arrow) and viable tumour, as verified by the corresponding Ki67
magnification (brown‐stained cells in (E)). the region in the blue rectangle in (B) is magnified in (C), where haematoxylin positive (dark purple)
nuclear fragments of pyknotic (apoptotic) cells are visible. Another region of the same tumour, but stained with MT, is magnified in (G), with a black
arrow indicating fibrotic tissue. The corresponding region stained with CD31 (i) reveals formations of blood vessels by the presence of endothelial
cells (brown regions indicated with a green arrow). The right panel of the figure (d, f, h, j) shows the results from the segmentation used for index
calculations, resulting in indices: HEcount = 395, Ki67count = 136, FD = 12.3% and MVD = 0.7% in b, f, h and j, respectively. Bars in (A, C, I)
indicate 1.0, 0.01 and 0.1 mm, respectively
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4.3 | Regression analysis

In total, n = 1821 samples could be extracted from the five evaluated tumours (n = 215, 998, 228, 252 and 128 samples from tumours 1–5, respec-

tively). The HEcount index was excluded completely from the samples of tumour 2 due to a digitization artefact visible on magnification, and the

DCE‐MRI and T1 parameters were excluded from the tumour 3 samples since no adequate landmarks for registration could be identified. Some

MR parameters were excluded from analysis since they were undefined according to Table 2 (e.g., if significant contrast enhancement was not

reached). A complete overview of the data finally included in the analyses is presented as supplemental material.

The predictive power of simple linear regression models of the pairwise combinations of MR parameters and histological indices that were

significantly correlated on the total sample population level are shown in Figure 5. For the set of evaluated MR parameters, we found a relatively

high predictive power for correlations with HEcount and Ki67count, and an intermediate level for MVD. FD seems to be the histological index that

is most difficult to evaluate in vivo using the MR parameters included in this study.

The results from the linear mixed‐effects regression analysis of the total sample population are summarized in Figure 6, and the tumour origin

and number of samples from each tumour are shown for each correlation in the supplemental figure. Several combinations of MR parameters and

histological indices were correlated on a statistically significant level. Of these, the MR parameters that correlated with HEcount were: time of

peak intensity (TOP, n = 573 samples, regression coefficient (r) = −0.16, p‐value (p) = 1e−4); time to peak (TTP, n = 564, r = −0.19, p = 7e−6); brevity

of enhancement (BE, n = 563, r = −0.16, p = 1e−4). MR parameters correlating with Ki67count were: initial slope (IS, n = 1355, r = 0.25, p = 1e−9); T1



FIGURE 5 Predictive power of pairwise
correlations for individual animals. The
predictive power, defined as the mean
squared error of 5‐fold cross validation
normalized to the squared mean of the
histological index, of models constructed from
pairwise simple linear regression of MR
parameters and histological indices. Data from
each investigated tumour (animal) is shown
separately

FIGURE 4 Distribution of histological indices within each tumour (x‐axis) for the four evaluated stains. By visual inspection, the variation of
histological indices within tumours appears greater than the variation between tumours, except for, e.g., MVD in tumour 4 and Ki67count in
tumour 4 and 5. The indices of tumour 2 (harvested day 1 after therapy) show a distribution similar to the other tumours. Note the logarithmic
scale for improved visualization of MVD and FD indices. The number of indices in the HEcount boxplots for tumour 1–5 are n = 209, 0, 222, 247,
and 117, respectively. The corresponding numbers for Ki67count are: 210, 997, 222, 247 and 128; MVD: 213, 997, 222, 247 and 127; FD: 212,
996, 222, 247 and 125. The dot represents the median value, box edges represent 25th and 75th percentiles and whiskers represent 2.5th and
97.5th percentiles

MONTELIUS ET AL. 9 of 14
time (T1, n = 1804, r = −0.09, p = 4e−4). MR parameters correlating with MVD were: maximum signal enhancement (SEmax, n = 1583, r = ‐0.10,

p = 1e−4); T1 time (T1, n = 1806, r = −0.09, p = 6e−4). The MR parameter correlating with FD was the perfusion fraction ( f , n = 1802, r = 0.09,

p = 3e−4). The corresponding sample statistics for non‐significant correlations can be found in the supplemental material.

No obvious clustering was found between the histological indices in the cluster analysis, except for a slightly earlier joining of MVD and FD at

approximately 75% of the height of the clade joining all indices (Figure 7, upper dendrogram). The corresponding dendrogram for the MR param-

eters (Figure 7, lower dendrogram) show that the contrast enhancement ratio (CER) and SEmax, as well as D and ADC, contain highly similar infor-

mation, as expected from similarities in the parameter definitions. Viewed from a perspective of differences (from above in Figure 7), seven overall

groups of parameters may be identified: four groups containing single parameter (wash out (WO), negative slope (NS), T1 and T2*), one group with

the IVIM perfusion parameters ( f , D* and f × D*), one group with the diffusion parameters (D and ADC) and one group with the remaining DCE‐

MRI parameters.
5 | DISCUSSION

In this work, we demonstrate the potential of multiparametric MRI to non‐invasively characterize tumour tissue treated with 177Lu‐octreotate

therapy. Previous studies that have evaluated MR‐derived tissue parameters with histology have focussed on one or a few MR parameters,



FIGURE 6 Regression coefficients and p‐
values for correlations found by the linear
mixed‐effects model. The relation between
MR parameters and histological indices,
determined for the combined data from all
tumour samples (n = 1821) is shown by the
regression coefficient (upper plot). The
corresponding p‐value is shown in the lower
plot, where the vertical dashed line indicates
the p = 0.05 level after adjustment for
multiple comparisons. The p‐value for IS vs.
Ki67count was 1.5e‐23. Note that
interpretation of D* correlations should be
avoided due to poor quality of data

FIGURE 7 Dendrogram of the cluster analysis of the histological indices (upper), and MR derived parameters (lower)

10 of 14 MONTELIUS ET AL.
and compared global, averaged tumour MR parameters or histological parameters to address the image registration problems that arise due to

deformation of tissue on histological preparation.9,10,12 We use a semi‐automatic method to calculate histological indices on a large number of

tissue samples, and use a straightforward method based on registration of tumour sub‐regions to accomplish localized correlation analysis.

No standard for spatial registration of histological tissue sections to in vivo image data has emerged, but some methods have been pro-

posed.22,23 Most of them are in‐house developments with, e.g., moulding of subcutaneous tumours or stereotactic assemblies and fiducial markers

that preserve spatial orientation throughout the histological preparation. Various image registration techniques, such as rigid or affine and elastic

registration have been proposed.24 Unfortunately, the laborious nature common to all techniques effectively restricts their use to smaller studies.

We chose to perform the study onmice xenograftedwith a patient‐derived small‐intestine neuroendocrine tumour (GOT115) treatedwith 177Lu‐

octreotate, since we have plenty of experience working with this model. The model tumour retains most of the properties of the patient's tumour. In

general, we do not expect the choice of treatment to influence the overall results in the present study. It is, however, likely that RNT and, e.g., external

radiation therapy would affect the tumour differently due to inhomogeneous vascular supply, resulting in uneven accessibility for RNT.

The primary mechanism of action of radiotherapy is to damage tumour cell DNA. In addition, radiation affects several mechanisms in the

tumour microenvironment, including proliferation, vascularization, and tissue degeneration. The results from the linear mixed‐effects regression
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indicate that it is possible to non‐invasively characterize these effects using mpMR, since all four evaluated histological indices could be predicted

by one or several MR parameters (Figure 6).

DCE‐MRI parameters reflecting exchange rate and perfusion (e.g. TTP, TOP and BE) were, to a larger extent than contrast amount‐related

parameters (e.g. AUCn and SEmax), negatively associated with HEcount. These findings match those of other studies25,26 (Figure 6). If low TTP,

TOP, and BE imply adequate vascular function and perfusion, and thereby delivery of 177Lu‐octreotate, increased apoptotic activity in the affected

regions can be inferred. It should be noted that TTP, TOP, and BE were measured a week prior to the tumour extraction for HEcount calculation,

but it seems plausible that apoptosis was induced in tumour regions that previously were well perfused, and thereby adequately reached by the

therapeutic agent. Our study also showed a positive correlation between IS, i.e. the initial slope of theTIC, and Ki67count. In tumours, the vascular

permeability is often high, and IS is therefore considered a measure of perfusion.27-29 This agrees with our results, since perfused tumour regions

should exhibit higher proliferative activity due to adequate supply of nutrients and oxygen. For similar reasons, IS may also reflect tissue oxygen

status. In a rat model of prostate cancer, rapid rise of the TIC (similar to high IS) was found in tumour regions that were less hypoxic on histology

and vice versa.30 Tissue hypoxia is associated with malignant progression, metastatic potential, angiogenesis, and increased interstitial fluid pres-

sure (IFP),1,29,31 which makes IS a highly interesting, non‐invasive biomarker for tumour response assessment.

The linear models of the functional DCE‐MRI parameters (TOP, TTP, BE, IS) predicted the histological indices with relatively high power

(Figure 5), which supports the assumption of fairly linear relationships. Furthermore, the cluster analysis (Figure 7) shows that the parameters con-

tain relatively unique information within the largest DCE‐MRI cluster (AT and left, Figure 7), underlining the importance of extracting

multiparametric information in evaluations of tumour tissue.

Tissue T1 was negatively correlated with both MVD and Ki67count (Figure 6). T1 is affected by variations in macromolecular concentration, and

increasedMVD is often associated with angiogenesis and high microvascular permeability in tumours.32-34 Plasma proteins leaking into the extracellular

extravascular space (EES) and accumulating due to inadequate lymphatic drainage may thus have reduced T1. Increased biosynthesis of macromolecules

related to proliferation may have had the same effect. This finding is consistent withT1 increases that have been observed after vascular normalization

induced by anti‐angiogenic drugs.7,31,35 For example, T1 increased when microvascular density and proliferation (determined from CD31 and Ki67

staining, respectively) decreased in a mouse model of ovarian adenocarcinoma receiving anti‐angiogenic therapy.7

Angiogenesis/MVD and proliferation are clinically relevant tumour characteristics, which makes T1 highly interesting as a non‐invasive imag-

ing biomarker that should be further studied. Furthermore, T1 had relatively high predictive power for Ki67count and, unlike IS, T1 would not

require contrast injection for Ki67count assessment. Nevertheless, T1 and IS contain complementary information as shown by the cluster analysis

(Figure 7). Indeed, T1 reflects an environmental characteristic rather than a functional perfusion‐related characteristic, and both parameters may

be useful in a multiparametric approach for tumour tissue characterization.

Tissue T2* did not correlate with any of the histological parameters in the present study. T2* is sensitive to magnetic field inhomogeneities

caused by, e.g., deoxyhaemoglobin concentrations, and it has also been associated with necrosis.22 It may, however, be problematic to study

T2* correlations with parameters acquired after a certain delay (e.g. between imaging and subsequent tissue fixation) due to temporal variations

in tissue oxygenation, a phenomenon often observed in solid tumours.36 It is also possible that CD31‐based MVD, the parameter we anticipated

would correlate with T2*, is a poor choice for assessing regional perfusion properties, and thereby oxygen status in tumours.

No correlations were found between diffusion parameters (D and ADC) and the evaluated histological indices in this study. Diffusion is

affected by the size and viscosity of the EES, membrane structures in cellular debris, and other factors. Although viscosity may not be reflected

by any of the evaluated indices, it seems plausible that the level of apoptosis, proliferative activity, or fibrosis should be reflected in Ki67count,

HEcount, or FD. Due to the lack of landmarks for registration in central parts of the tumours, however, a majority of the data is based on more

peripheral parts of the tumours (typically outside half the tumour radius). Reduced variation of the evaluated parameters may thus have obscured

correlations. More likely, however, only day 1 and 13 after therapy were evaluated, so transient or increased effects affecting diffusion may have

been missed.

The perfusion fraction ( f ) showed a significant correlation with the fractional tissue area of fibrosis (FD). Tissue response to irradiation may

result in fibrotic tissue formation, and the GOT1 tumour model has demonstrated fibrosis in response to 177Lu‐ocreotate therapy, as seen on MT

staining.16,37 Few studies have correlated f with fibrosis in tumours. Residual lesions demonstrated significantly higher f in post‐

chemoradiotherapy fibrosis compared with untreated tumours in nasopharyngeal carcinoma patients,38 which is consistent with our results, but

opposite correlations have been demonstrated in liver fibrosis.39 The role of f in tumour characterization thus remains unclear, and further efforts

to optimize acquisition and post‐processing methods for IVIM‐DWI are probably required before f , as well as D*, can be properly understood and

evaluated.

The heat maps of the histological indices (Figure 3k) are informative regarding the heterogeneity of the tumour vasculature and viability. As

previously mentioned, the use of CD31‐based MVD as a measure of vascular functionality and perfusion may not be optimal. MVD is mostly seen

in the tumour periphery, whereas apoptosis and proliferation seem more evenly distributed throughout the tumour (Figure 3k), both of which

would require vascular supply. A measure of the functional properties or maturity of the vasculature, instead of a static measure of endothelial

cell presence (MVD), may better reflect perfusion.32-34

Some potential limitations of this study should be noted. 1) Some correlations may have been obscured by the temporal discordance between

DCE‐MRI experiments (day 8) and tissue extraction (day 13) in 4/5 tumours. It is likely that the tumour biological characteristics evolved between

day 8 and 13, which may have led to false negative results, i.e. reduced or missed correlations. However, more than 50% of the data were from
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tumour 2, imaged and harvested on the same day. 2) The analyses were based on data from five tumours only. This was partly due to the index

calculations requiring lengthy data processing due to the immense amount of data associated with digitized histological images of microscopic res-

olution. Furthermore, our own tumour inclusion criteria, namely high image quality, minimal artefacts on histological sections, and adequate land-

marks for proper image registration, restricted the number of tumours for evaluation. However, the variation of indices within tumours seems

greater than the variation between tumours with some exceptions (Figure 4), which indicates that additional tumours would add little information.

3) As mentioned above, a lack of landmarks in central tumours reduced the amount of data from those regions, which may have limited the range

of biological characteristics evaluated. To address this problem, other methods to ascertain proper registration are required. 4) No quantitative

evaluation of registration accuracy was made in this study, and the landmark‐based approach for image registration entails a risk of introducing

false correlations. A more objective approach would be to use non‐lesion features, such as markers outside the tumour, but intra‐tumour registra-

tion may be degraded by such an approach. 5) The 2D representation of the tumour tissue provided by the histological sections makes the method

insensitive to tumour heterogeneity in the dimension of the MR slice thickness. Since biological features investigated can be seen to vary even

along the dimensions of a sample (e.g., Figure 3), it is obvious that variations along the distance of an MR slice (4 times the sample dimensions)

will influence the accuracy of the index calculations. A possible remedy would be to collect more histological sections within the distance covered

by the MR slice, with enough separation to get a better representation of the imaged tumour tissue. For this to improve the accuracy, however,

would require better knowledge of the precise location of the beginning and end of the acquired image slice, and thus a more sophisticated system

for tracking those locations than offered by manual application of tissue ink or similar fiducial markers. There are also substantial processing times

and costs involved in histological processing and post‐processing of the digitized images that would have to be considered.
6 | CONCLUSIONS

In this work, MR parameters are correlated with spatially registered histological parameters of the imaged tumour tissue. Registration problems

due to MR artefacts or morphologically distorted histological sections were minimized by sequential registration of tumour sub‐regions, and objec-

tive evaluation on a substantial amount of data samples by statistical regression methods was enabled by the supervised automatic histological

indexing method.

Predictive power and statistical significance were high for several of the correlations found between MR parameters and histological indices.

Models predicting HEcount and Ki67count had the strongest predictive power, while models describing MVD and FD had slightly lower predictive

power. Altogether, HEcount could be predicted by three DCE‐MRI parameters related mainly to perfusion (TOP, TTP, and BE); Ki67count could be

predicted by one DCE‐MRI parameter (IS, reflecting perfusion) and one relaxation parameter related to macromolecular content (T1); MVD could

also be predicted by T1, and by a DCE‐MRI parameter reflecting the amount of contrast reaching the tissue (SEmax); and FD could be predicted by

one IVIM‐DWI parameter reflecting fractional volume of actively perfused tissue ( f ). In total, seven of the evaluated MR parameters were capable

of predicting apoptosis, proliferation, vessel density or fibrosis in the studied tumour type. Apart from the similarly defined TOP and TTP, the data

provided by these MR parameters seem, based on cluster analysis, to contain unique information.

This work demonstrates the importance of combining data from several MR methods for gaining knowledge of tumour tissue characteristics,

and we believe the information contained in this work will be valuable for further studies on mpMR evaluation of tumour tissue and response

assessment. Further work is needed, such as improvements of registration procedures and MR post‐processing methods.
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