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1 | INTRODUCTION

Longitudinal measurements are becoming increasingly popular in clinical research, particularly in studies where patients
are followed up to an event of interest. By repeatedly collecting and analyzing measurements on patients, their progress
is monitored more closely and temporal trends in the disease progress can be estimated, leading to improved prediction
of outcomes.! In these kinds of studies two types of outcomes are collected: the longitudinal outcome (often a biomarker)

Abbreviations: AUC, area under the ROC curve; CC, case-cohort; MAR, missing at random; PE, prediction error.
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and the time-to-event outcome, eg, death. When interest lies in using temporal patterns of the longitudinal response to
estimate the event of interest, both outcomes can be modeled together by using the joint modeling approach.? To increase
prediction even further, instead of one biomarker, a set of multiple markers can be measured.

The motivation for the current paper comes from the longitudinal “BIOMarker study to identify the Acute risk of a
Coronary Syndrome” (BIOMArCS), in which acute coronary syndrome (ACS) patients were examined in different medical
centers in the Netherlands to study the association between (multiple) biomarkers and a recurrent ACS event (primary
endpoint).>* Multiple biomarkers were identified to be of interest, measured in blood samples taken regularly during
one year of follow-up. A downside of collecting multiple biomarkers is the rising costs due to the numerous biomarker
measurements, since costs are associated with the ascertainment of each biomarker measured. This can cause such a
project to become infeasible in practice. On top of the burden of costs, the BIOMATrCS study turned out to have a low
event rate, with only 5% of the patients reaching the primary endpoint. This means that the overwhelming majority
of biomarker measurements belong to the censored patients where low additional information from the longitudinal
patterns is expected. This gave motivation to opt for a case-cohort design, which enables analysis of the relevant subset of
patients, while largely maintaining statistical power.

In the case-cohort design,’ a random sample of patients from the full cohort is taken, defined as the subcohort (AU B in
Figure 1). For every patient in the full cohort, the failure status is known. The complete longitudinal biomarker informa-
tion, however, is only measured in the patients who experienced the study endpoint (the cases) and the random subcohort
(A U BU C in Figure 1). The advantage the case-cohort design has over the more popular case-control design is that
the same random subcohort can be used to study different endpoints. The disadvantage, and the main reason why the
case-cohort design is not as popular is that the appropriate analysis becomes more complicated. The case-cohort design
is also known (early on) as “case-base design” or “hybrid-retrospective design”.’> These designs were described by Kupper
et al® and Miettinen.” Prentice was the first to introduce the design in an failure-time setting and used a pseudolikelihood
estimation approach to obtain unbiased estimates for the hazard of the event.’ In this approach, cases outside the sub-
cohort are only included in the risk-set right before experiencing the endpoint. Other researchers followed and extended
this approach by considering other types of weighting schemes.??

Motivated by BIOMATrCS, the aim of our paper is twofold: first, to extend the estimation framework of joint models for
longitudinal and survival data in the context of case-cohort designs and, second, to assess how dynamic predictions and
their accuracy perform in this setting. As mentioned above, the previously developed strategies for case-cohort designs
have been based on pseudolikelihood ideas. However, in joint models, a full specification of the joint distribution of
the two outcomes is required, making the use of these approaches complicated. Hence, to appropriately account for the
selection bias in the case-cohort design, we approach the fact that we do not have longitudinal information for a subset of
the patients as a missing data problem. This, theoretically, should provide unbiased estimates if the appropriate models

A ! D
|
|
|
AUB = Subcohort
A = Noncases inside subcohort
B = Cases inside subcohort
C = Cases outside subcohort
D = Noncases outside subcohort

AU B U C = Case-cohort design

FIGURE 1 A graphical representation of the case-cohort design
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are used and only requires small modification in the formulation of the likelihood of the model. With regard to our second
goal, we focus on how the accuracy of dynamic predictions for the survival outcome is influenced by the case-cohort
design. The evaluation is based on standard measures of predictive accuracy, such as the time-varying area under the
receiver operating characteristic curves and time-varying squared prediction errors (PEs). The remainder of this paper
is organized as follows. Section 2 presents the joint model used throughout this paper. Section 3 describes the general
scenario of estimating a joint model, as well as our proposed modification to avoid biased estimates in relation to the
case-cohort design. Methods to measure the predictive accuracy of the models will be discussed in Section 4. A simulation
study to verify our method is performed in Section 5, whereas Section 6 shows the application to the real-life BIOMArCS
data. Finally, in Section 7, results will be discussed and conclusions are made.

2 | MODEL SPECIFICATION

We consider here a basic joint model for a continuous longitudinal outcome and a time-to-event outcome. More specifi-
cally, let y;(¢) be the longitudinal measurement for the ith patient at time ¢. The longitudinal outcome y,(¢) is modeled by
a mixed effects submodel. The design vector for the fixed effects is denoted by x;(f) and the design vector for the random
effects by z;(t). The time-to-event outcome is modeled by a proportional hazards submodel. Both submodels are of the
form

Yi()) = my(t) + &(¢)
=X (DB +z] (Ob; + (1)

(€]
hi(t) = ho(t) exp {y Tw; + ami(t) } .

The vector f in the longitudinal submodel denotes the parameters for the fixed effects and b; the random effects for
patient i, which are assumed to follow a normal distribution with mean 0 and variance-covariance matrix D. The error
terms are denoted by () and are also assumed to be normally distributed with mean 0 and variance 2. Real-life studies
often shown nonlinear trends in the longitudinal patterns, which can be incorporated in the design vectors for the fixed
and random effects parts (x;(t) and z;(¢t)). Furthermore, let T? be the true event time, C; the censoring time, and T; =
min(T}, C;) the observed event time. For each patient, the event indicator is given by 6;, taking the value ofl1when T r<G
and 0 otherwise. Baseline covariates used in the survival submodel are denoted by w;. The hazard for the survival outcome
(T3, 6;) is modeled with a proportional hazards model h;(t) defined in (1). Here, we assume m;(¢) is the true and unobserved
value of longitudinal outcome for patient i at time ¢, modeled by the longitudinal submodel. The baseline hazard is given
by ho(f) and is modeled in a flexible manner by B-splines. Finally, « denotes the association between the longitudinal and
time-to-event outcome.

3 | ESTIMATION

3.1 | Bayesian estimation in a standard full cohort

In this study, the Bayesian framework will be used for estimation. The parameters of the model will be estimated using
Markov chain Monte Carlo (MCMC) methods. The contribution of patient i to the posterior distribution of the joint model
is defined as

p@,b; | Ty, 6;, yi) o« p(Ti, 6; | by, O)p(y;i | bi, O)p(b; | 6)p(H),

where 6 denotes the vector of all parameters. The contribution of patient i to the likelihood of the survival submodel is
written as

p(T;, 6 | by, B, 6,) = i{ T; | Mi(Ty), 0, Y Si{ Ty | Mi(T), 0, }
= [ho(T; [ 7o) exp { Tw; + ami(T) }] "

T;
exp {—/ ho(s | ys) exp{y "w; + ami(s)}dS} ’
0
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where 6; = (y,,7,a) and m;(t) = xiT(t)ﬂ + ziT(t)bl-. Additionally, M;(T;) denotes the complete history of longitudinal
marker for patient i. The contribution of patient i to the likelihood of the longitudinal submodel is given by

2
i T T
1 Z;=1(yif _xijﬁ_zijbi)

ex - 5
P 2072

p(yi | bi,6,) =

2r6?
with 6, = (B,0)and 0 = (6],6,)".

Uninformative normal priors are used for the g, y, and a parameters, as well as the parameters for the B-splines in the
baseline hazard (y,). For the elements of the variance-covariance matrix of the random effects (D), an inverse Wishart
prior is used and a gamma prior is used for the variance of the errors of the longitudinal outcome (c?). Initial values for
the parameters of the prior distribution are obtained from estimations based on fitting the longitudinal and time-to-event
submodels separately. The joint models are analyzed with JAGS software, using Gibbs sampling to execute the MCMC
methods.

3.2 | Biasin a case-cohort design

If a study follows a case-cohort design, estimation with the abovementioned standard likelihood will result in bias, due
to the outcome dependent missingness in the data. The bias occurs, because in the case-cohort design, only a selection of
the censored or nonevent patients is used in the analysis, along with all the event patients. As a consequence, the event
rate in the case cohort is higher than the event rate in the original full cohort.

In a standard full cohort, the observed data is 7,, = {y;, T3, 6;;i = 1, ..., n} and is fully observed for each patient. In the
case-cohort design, additionally, we have S; as the indicator for the randomly drawn subcohort with a pre-specified size g
(eg,z = 1/3) (AU Bin Figure 1) and CC; denoting the indicator for being included in the case-cohort design (A U BUC
in Figure 1), whereby

1, if5i=1orSl-=1,
CCi =
0, if5i=0andSi=0
or CC; = 6; + (1 — 6;)S;. The full set of observed data is now F,, = {S;,CC;, y;, Ti,6;;i = 1, ...,n}. There are four
distinct groups a patient in the case-cohort design can belong to as defined in Figure 1. In each group, the following data
is collected:

A={S=1,CC;=1,)0,T;,5; =0},
B={S=1,CC;=1,)°,T;,6; =1},
C={Si=0,CC;=1,0.T;,5; =1},
D={S;=0,CC; =0,y T;,6; =0},

where y? are the observed longitudinal measurements and y;" the unascertained longitudinal measurements. In the stan-
dard version of the case-cohort design, only patients belonging to .A U BU C are included in the analysis. CC; can be seen
as selection indicator and the missing data in the case-cohort design (patients in D) can be interpreted as missing due
to selection bias. Since these missings depend on unobserved data, the missing data mechanism will be missing not at
random (MNAR). The different event rates between the full cohort and the case-cohort design will result in a misspeci-
fication of the baseline hazard. This, in turn, will lead to bias both in the estimation of the parameters of the model and
the estimation of survival probabilities.

3.3 | Unbiased estimation using survival information from entire cohort

The bias caused by the outcome-dependent missings can be circumvented by utilizing the survival information of the
entire cohort, which has to be available due to the nature of the case-cohort design, as argued by Dong et al.'* Since the
random subcohort (A U B) is supplemented with the remaining cases outside the random subcohort (C), it follows that
the patients left out are all event free and therefore censored patients (D).

If all survival information is used in the analysis, the missing data only comes from missing longitudinal measurements
in D. In this case, these missing values are missing depending on observed information (survival status) and are therefore
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missing at random (MAR). The probability that the longitudinal response is missing, which is the same as the probability
that the patient belongs to group D;, can be written as

p (Dl | 5i7 y?7 y:n’ W) :p(Dl | 6i9 W)7 (2)

where y is the vector of parameters describing the missingness model. In the version of the case-cohort design used
throughout this manuscript, this is simply the probability of not being drawn by the random subcohort (p = 1 — z).
To obtain unbiased estimates for the joint model, we have to estimate the full distribution of all processes, including D;.
When the complete survival information is taken into account (so patients in D are included in the analysis), the full
distribution can be decomposed as

p(Ti.6:,30.D; | b, 0,y) = /P (Ti. 630, ¥ | bi,0) X p (Dy | by 61, 30, ¥ w) dy.
Under (2), this becomes

p (Ti,éis Y?,Di I bi’ 05 II/) =p (Tl'3 5i3 y? | bl’? 9) ><l)(Dl | bi9 5i9 W) (3)

Because of the decomposition, the distribution of CC; does not depend on y!" but only on observed data 6;. Additionally,
since y and § are distinct, the missing data caused by D; is ignorable and analysis on the observed data gives unbiased
results. This decomposition does not hold when patients in D are excluded from the analysis, where, as a result, D;
depends on unobserved data.

In the newly proposed version of the case-cohort design, all patients will be included in the analysis, but not all patients
supply the same amount of information. The posterior distribution stated earlier, will be different for certain patients. For
the patients in the case-cohort design (CC; = 1), all information is available and the posterior distribution remains equal.
For the censored patients outside the subcohort (CC; = 0), the longitudinal information is not measured and therefore
missing. However, the values are imputed by the model and the posterior distribution of longitudinal submodel is replaced
by imputed values (y"). The values are based on the posterior predictive distribution of the missing data, which is

zﬂﬂIR&=QEJ=/pM”ﬂ@:Q®pwaw,

where the first term of the integral can be expressed as
Mﬂln&=aw=/b@mMﬁM@|n&=am%L

Based on the observed data and averaged over the posterior distribution of the parameters and random effects estimated
by the model, this distribution is available. For each patient, the missing values of y can be obtained directly, and this
occurs during estimation of the model. Aside from the survival information, any available covariate measurements taken
on baseline can also be included for these patients. The posterior distribution for all patients in the cohort will therefore
be given by
p(Ti, 6 | bi, 0)p (37 | bi, 6) p(bi | 6)p(6), if CC;i=1,
p(0.bi,y" | Ti 61, y0) o

4 | PREDICTIVE PERFORMANCE

In clinical studies, it is often of interest to use the estimated model to predict survival probabilities for (a) new patient(s).
Therefore, we need to assess the performance of the model in terms of predictive accuracy of the survival outcome. In
general, a joint model fitted on the data sample 7, = {T}, ;, yi;i = 1, ..., n} is used to make survival predictions for a new
patient j, with longitudinal measurements (J;(t)) up to time t. The information that the new patient provided longitudinal
measurements up to ¢ is used to postulate that the patient was event free at t and interest lies in events taking place in a
medically relevant time interval (t,t + At]. The probability that the patient survives this time window is

mit+ At ) =Pr(T; 2 t+ At| T, > £, Y;(8), Fn) . )
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This probability can be estimated based on the posterior predictive distribution given by
mi(t+At|t) = / P(T; 2 t+At| T; > t,Y;(t),0) p0 | Fr)do,
where the first part of the integrand can be rewritten as

P(T; 2 t+At| T; > t,Y(t),0) = /P(Tj.‘ >t+At| T; > t,b;,0)p(b; | T; > t,Y;(1),0) db,

~ / Si{t+ At | M;(t + At, b)), 0}

StTaEsye) P T 6.0 d

Based on these equations and the posterior distribution of the parameters for the original data F,, obtained by the MCMC
samples, Monte Carlo estimates of z;(t + At|f) can be obtained by a new simulation scheme. More details on this
procedure can be found in the works of Rizopoulos et al.>**

In this paper, we will assess the accuracy of the predictions in terms of discrimination and calibration. A model shows
good discrimination if the estimated longitudinal biomarker profile can discriminate well between patients with and
without the study endpoint. A model is calibrated well if the estimated longitudinal patterns can predict a future endpoint
with high accuracy. In the situation of a case-cohort design, the data used to fit the joint model is 7, = {S;, CC;, Tj, 6;, i3 i =
1, ..., n}, where, for a set of the patients, y; is missing, as discussed earlier. For these patients, Y;(¢) is not observed, and
therefore, the corresponding survival probability in (4) cannot be estimated. In this paper, the predictive measures will be
calculated only on patients from the random subcohort (S; = 1), so the event rate corresponds to the full cohort while no
missing data occurs in the patients. To assess the discrimination of the model, the area under the ROC curve (AUC) can
be estimated, using longitudinal information up to time ¢ for a new (set of) patient(s) and then calculate the AUC up to At.

With cin [0, 1], a patient is labeled as event free if 7;(t + At| ) > cand as experiencing the endpointif z;(t + At | ) < c.
The AUC, calculated for a pair of randomly chosen patients {i,j}, is therefore

AUC(t, At) = Pr [mi(t + At | ) < mi(t + At | ] {T} € (t,t + At} n {T; > t+ At}].

This means that we would assign a higher survival probability to patient j than to patient i, if patient i experiences the
endpoint in the time window ¢ + At and patient j does not.

However, since T} is not observed for all patients due to censoring, this equation cannot be solved directly. Therefore,
the estimated AUC is decomposed as

AUC(t, At) = AUC, (t, At) + AUC,(t, At) + AUCs(t, Af) + AUC,(L, Ab). (5)

The first part (KU\Cl(t, At)) refers to the pairs without censoring, so, for which, the event times can be ordered directly,
and the remaining parts refer to the patient pairs where censoring occurs.'® The full specification of the AUC is given in
the supplemental material.

The calibration of the model is measured by the PE, where, based on all available information of a patient j, the estimated
survival probability (z;(t + At | t)) is compared to the observed survival (I (T;‘ > t+At)). The expected PE is then as follows:

PE(t+At| 0= E|{I(T] > t+at) -zt + At 0}

Lower values of PE indicate smaller differences between the observed and predicted survival and therefore a better cal-
ibrated model. An appropriate estimator for time-to-event data is proposed by Henderson et al*® and is given in the
supplemental material.

For the real life application, an internal validation of the model was applied to evaluate the predictive performance of
the model."” Since the same data is used for fitting the model and evaluating the performance of the model, optimistic
predictions can occur. This holds particular importance when the data set is small. In this paper, corrections for the
optimism will be done by a bootstrap method developed by Harrell et al.’® This method works in several steps.

1. First, fit the model on the data and calculate the apparent predictive measures (here, the AUC and PE), denoted by
AUC,;,, and PE,p,.

2. Take a bootstrap sample of the data. Refit the model on the bootstrap sample and calculate the apparent predictive
measures, denoted by AUC) poot and PEp poot-
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3. Thirdly, calculate the predictive measures on the original data from the model fitted on the bootstrap sample, called
AUCb,orig and PEb,orig-

4. Then, calculate the optimism in this bootstrap sample by Oaucy = AUCppoot — AUChorig and Opgp = PEppoot —
PEb,orig-

5. Repeat steps 2-4 B times. Harrell recommends to use a B between 100-200.

6. After the optimism is calculated for all B bootstrap samples, correct the apparent predictive measure with each
optimism (AUC¢orp = AUCypp — Oauc,y and PEcorp, = PEqapp + Opgp).

7. Inthe last step, take the average of all these corrected predictive measures to obtain the for optimism adjusted AUC and
PE (AUC = B 'Y ;AUCcorp, and PE = B™'Y ,PE; ). Additionally, the 2.5% and 97.5% percentiles of the bootstrapped
samples can be obtained as an indication of the spread of the estimator.

5 | SIMULATION STUDY

5.1 | Design

A simulation study was carried out to verify that the proposed model results in unbiased estimates and shows good pre-
dictive performance. Data sets representing the full cohort were simulated, and from these data sets, a case-cohort design
was imitated by drawing a random set of patients and supplementing the cases to this. The submodel for the simulated
longitudinal outcome is defined as

yi(t) = P1 + Pat + B3t* + fuG; + by; + byt + byt® + £i(1), (6)

where the f's define the average population trajectory, and the b's define subject-specific deviations from this trajectory
and are assumed to be normally distributed (b; ~ N'(0, D)). The variance-covariance matrix of the random effects (D)
is left unstructured. G is a binary covariate, drawn from a binomial distribution with probability 0.5. A quadratic term
for time was added to the fixed and random effects to imitate nonlinear trajectories often found in real-life longitudinal
studies. The survival times are generated by

hi(t) = ho(t) exp{yG; + am;(1)}. 7

Here, m;(t) is assumed to be the true longitudinal outcome at time t. The baseline hazard h((t) was generated with a
Weibull distribution with a shape parameter (¢) of 2. The scale of the Weibull model is exp{yG; + am;(t)} and the hazard
function can therefore also be written as hy(t) = ho(t) exp{yG; + amy(t)} = ¢t* 1 exp{yG; + am;(t)}. The association
parameter « was set equal to 1. The remaining parameter settings were §; =1, , =0.3, f3 =0.1, 4, =0.1,y = =2, 62 =
1. Data sets were simulated with 2000 subjects and 25 planned measurements per subject. The mean of the exponential
distribution for the censoring mechanism varied and the maximum follow-up time was 15.

5.2 | Analysis

Two versions of the case-cohort design were generated from the simulated data sets. In the first version, the survival
information of all patients was retained and only the biomarker values for the unselected patients were put to missing.
The second version (also called the classical case-cohort) only uses information from the patient in the case-cohort design
and completely removes the remaining patients for analyses. The same joint model was fitted on all three data sets, where
the results from the full cohort were viewed as the golden standard. Four different scenarios with varying event rates and
varying sizes of the random subcohort were simulated 200 times. In scenario 1, the mean value of censoring time was
set at 3.2 and the coefficient of the intercept of the Weibull regression at —7.5, which resulted in a 20% event rate. Here,
1/3 of the cohort was randomly sampled as subcohort. In scenario 2, the event rate was kept at 20%, but now, the size
of the subcohort was 1/6 of the full cohort. For scenarios 3 and 4, the event rate was set to 5% using a mean censoring
time of 2.5 and an intercept coefficient of —9.5. The sizes of the random subcohort in scenarios 3 and 4 were 1/3 and
1/6, respectively. For the predictive performances of the models, a validation data set was simulated with 1000 subjects
using the same scenario as the data on which the model was fitted. Time-dependent AUC and PE were calculated on two
intervals during follow-up, where the intervals depended on the simulation scenario.
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5.3 | Results

Table 1 shows the characteristics of the simulated data in the four different scenarios. Apart from the number of biomarker
measurements, the dimensions of the data sets for the full cohort (FC) and the case-cohort (CCI) are the same. In the
classical case-cohort design (CCII), additionally, the number of patients and event rate differs from the FC. It is clear
that a different event rate, together with the size of the drawn subcohort, has a large impact on the size of the remaining
case-cohort data set. For scenario 4, the resulting event rate in the classical case-cohort data set is 5 times as high (25%) as
it was in the FC. The results of the model estimation are shown in Table 2. For each scenario, the association parameter

TABLE 1 Characteristics of the simulated data sets based on 200 replications of each scenario

Size Subcohort: 1/3 Size Subcohort: 1/6
% Events Scenario Scenario

FC CCI CcIn FC CCI CcCII

20% patients, n 1 2000 2000 900 2 2000 2000 700
events, n 400 400 400 400 400 400

event rate, % 20% 20%  40% 20% 20% 60%
measurements, n 15000 7000 7000 19000 6000 6000

5% patients, n 3 2000 2000 700 4 1900 1900 400
events, n 100 100 100 100 100 100

event rate, % 5% 5% 15% 5% 5% 25%
measurements, n 11000 4500 4500 9000 2000 2000

Abbreviations: CCI, case-cohort design, retain all survival information; CCII, case-cohort design, classical version; FC, full
cohort.

TABLE 2 Results from estimating a joint model on simulated data based on 200 replications per scenario

Size Subcohort: 1/3 Size Subcohort: 1/6
% Events Scenario Scenario

FC CCI CCII FC CCI CCII

20% a 1 0.975 0.971 0.849 2 0.976 0.966 0.799
bias —0.025 —0.029 —-0.151 —-0.024 —0.034 —0.201

(2.5%-97.5%) (0.89-1.07) (0.88-1.07) (0.76-0.94) (0.89-1.07) (0.88-1.06) (0.71-0.89)
coverage 92% 91% 13% 92% 88% 4%

'R 1.003 0.996 1.087 1.004 0.986 1.139

B, 0.319 0.331 0.558 0.324 0.357 0.713

b3 0.110 0.104 0.142 0.109 0.097 0.154

B4 0.104 0.105 0.092 0.102 0.099 0.092
y -1.979 —1.987 -1.774 -1.979 —1.978 -1.676

5% o 3 0.856 0.845 0.727 4 0.858 0.835 0.649
bias —0.144 —0.155 -0.273 —0.142 —0.165 —0.351
(2.5%-97.5%) (0.74-0.99) (0.72-0.98) (0.61-0.86) (0.74-0.99) (0.71-0.97) (0.53-0.78)
coverage 38% 33% 1% 39% 32% 0%

b1 1.003 0.993 1.062 1.005 0.990 1.127

B, 0.331 0.343 0.474 0.334 0.371 0.638

B3 0.108 0.099 0.127 0.106 0.087 0.146

Ba 0.101 0.103 0.055 0.100 0.107 0.023
y —2.730 —2.760 —2.421 -2.771 —2.806 —2.238

The bias indicates the difference between the simulated parameter value and the estimated value by each of the models. The
coverage is calculated by the percentage of times the true simulated values falls in the credible interval of each simulation.
Simulated values of the parameters: a =1, §; =1, f, =0.3, 3 =0.1, f, = 0.1, y = -2.

Abbreviations: CCI, case-cohort design, retain all survival information; CCII, case-cohort design, classical version; FC, full
cohort.
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() is given, along with the bias (the difference between the mean estimate of the simulation and the simulated parameter
value) and the coverage rate. The coverage rate is calculated as the percentage of times the true simulated value of « falls
in the credible interval of each simulation. For all four scenarios, the bias of « in the CCI is small and close to the estimate
of @ based on the FC (the difference between mean apc and acc; < 0.023). This is also the case for the coverage rate,
which is similar for the FC and the CCI. The CCII, on the other hand, shows a clear downward bias (mean bias between
0.15-0.35) and low coverage rates between 0% and 13%. For the scenario's with a low event rate, all three models give an
underestimation of the true parameter value of «; however, the FC and CCI give similar performances compared to CCII.
Table 2 additionally shows the estimated parameters of the longitudinal submodel (#'s) and the parameter of the survival
submodel (y). These parameters indicate the same results; the estimates for the FC and the CCI are very similar, and clear
bias is found for the CCII. The bias, percentiles, and coverage rates of these parameters can be found in the supplemental
material.

The performance of the predictive accuracy of the models is assessed by evaluating the AUC and PE on two different time
points during the simulation follow-up. The time points depend on the follow-up time in the data and can therefore differ
per scenario. The outcomes are shown for scenario 2 by the boxplots in Figure 2. The boxplots for the other scenarios can
be found in the supplemental material. The CCI performs very similar compared to the FC in terms of predictive accuracy,
however only slightly worse (as demonstrated by a smaller AUC and a higher PE). The CCII analysis demonstrates a
decidedly worse performance in prediction, particularly in terms of calibration. The other scenarios show a similar result,
although less pronounced.

An additional simulation study was performed to evaluate the method in smaller data sets (n = 500). The results can
be found in the supplemental material and are in line with the other simulations.
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FIGURE 2 Predictive accuracy measures from scenario 2 (event rate: 20%; size subcohort: 1/6). AUC, area under the ROC curve; CCI,
case-cohort design, retain all survival information; CCII, case-cohort design, classical version; PE, prediction error
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6 | APPLICATION TO BIOMARCS STUDY

6.1 | Study design

We illustrate the use of our findings on data from the BIOMATrCS study. In this multicenter study, patients admitted for
ACS at several Dutch hospitals in the Netherlands were enrolled between January 1, 2008 and September 1, 2014. Patient
follow-up ended at September 1, 2015. Patients were followed for the first year after their initial cardiac event. They were
invited back to the hospital on regular occasions, where blood samples were collected. The first blood sample was collected
during hospitalization for the index event. Subsequent blood samples were collected every two weeks for the first 6 months
of follow-up and once a month during the last 6 months of follow-up. The goal of BIOMArCS was to study the association
between longitudinal patterns of multiple biomarkers and the primary endpoint. In total, 839 patients were included with
a median of 17 blood samples per patient. The primary endpoint was a composite of cardiovascular mortality, nonfatal
ACS or unplanned coronary revascularization due to progressive angina pectoris during 1-year follow-up. In total, 45
patients were identified as having the primary endpoint (5.4% of the entire cohort). The low event rate combined with the
high number of biomarker measurements led to the decision to only ascertain biomarker values in a subset of the patients
using the case-cohort design. A random sample of 150 patients was selected (A U B in Figure 1). Of these, 142 patients
were event free at the end of follow-up and 8 patients had experienced the primary endpoint. The subcohort of 150 was
supplemented with the remaining 37 event patients outside the subcohort (C in Figure 1) reaching a total of 187 patients
in the case-cohort design.

6.2 | Analysis BIOMArCS

It is of interest to model how strongly Cardiac Troponin-I (Tnl), a well established cardiovascular biomarker,' is related
to the hazard of the primary endpoint. The distribution of Tnl is heavily skewed, so a log, transformation was applied.
On top of that, the TnI values were transformed to z-scores, for potential head-to-head comparison between different
biomarkers. Patients showed nonlinear evolutions due to a stabilization period after the index event, which were modeled
by a piecewise linear regression model, with the breakpoint at 30 days. The longitudinal submodel used to fit TnI on the
BIOMATCS data is of the form

ZInl;(t) = p1 + Pot + P3(t — 30)4 + faSex; + by; + byt + bsi(t — 30)4 + £;(0), (8)

where (-); denotes (A)y = Aif A > 0 and 0 elsewhere. Sex is a covariate that denotes the gender (1 = female and 2 =
male) of the patient. The variance-covariance matrix of the random effects (D) is left unstructured. The survival submodel
is given by

hi(t) = ho(t) exp{ySex; + am;(t)}. )

The baseline hazard h(¢) is modeled with cubic B-splines, with five knots placed based on the percentiles of the observed
event times (67, 338, 359, 368, and 382 days). Since the FC is unknown in the BIOMATrCS data, for this application, we can
only estimate and compare the two versions of the case-cohort design. The predictive performance of the models is again
assessed by calculating the AUC and PE. These measures are calculated on a subset of the data that consists only of the
random subcohort (S; = 1) because, in this subcohort, the event rate is equal to the event rate in the FC and longitudinal
measurements are available for all patients. A downside of using this subset of the data is that the random subcohort
only has eight endpoints, which can lead to unstable estimates of the predictive accuracy. For the calculation of the AUC
and PE, longitudinal information from the first 60 days was used to calculate the respective diagnostic measurements at
time 100 (At = 40 days). This interval was chosen by the distribution of the event times of the 8 events in the BIOMArCS
subcohort. To account for the fact that these validation measures are estimated on the same data set as the model was
developed, they are corrected with Harrell's optimism measure using the bootstrap method.™®

6.3 | Results BIOMArCS

Applying a case-cohort design to the BIOMArCS data has a large consequence on the number of patients used in the anal-
yses. In the FC and therefore also in newly proposed version of the case-cohort design (again denoted by CCI), there were
839 patients, where the classical case-cohort design (denoted by CCII) only uses 187 patients. This also leads to a substan-
tial difference in event rate which is 24% in CCII, compared to 5% in CCI. Both versions of the case-cohort design use 1492
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TABLE 3 Results from estimating a joint model for repeated Tnl values and the
combined study endpoint on two versions of the case-cohort design in the BIOMArCS data

CCI CCII
Longitudinal submodel Mean 95% CI Mean 95% CI
B,  Intercept 8.87 (7.98, 9.66) 8.98 (8.26,9.78)
B, Slope (t < 30 days) —6.35 (=7.15, —5.56) -6.34  (=7.07,-5.63)
Bs  ASlope(t < 30,t > 30) —6.77 (=7.55,—=5.97) —6.76  (—7.46,—6.08)
B,  Sex 0.54 (0.15,0.93) 0.48 (0.11, 0.88)
Survival submodel Mean 95% CI Mean 95% CI
a  Association 0.30 (0.10, 0.50) 0.33 (0.14, 0.53)
y Sex, survival —0.43 (=1.04,0.21) —0.44 (=1.07,0.15)
Predictive accuracy Estimate  (2.5%-97.5%)  Estimate (2.5%-97.5%)
AUC t = 60,At = 40 0.551 (0.420-0.695) 0.533 (0.438-0.633)
PE t = 60,At = 40 0.014 (0.007-0.031) 0.017 (0.011-0.032)

B indicates the difference between the slope estimates before and after 30 days. The coefficient for the
slope after 30 days is given by (8, + ).

The area under the ROC curve (AUC) and prediction error (PE) are calculated using longitudinal mea-
surements up to t = 60 (days) to predict events in (60, 100]. The measures are corrected with Harrell's
optimism and shown with the 2.5% and 97.5% confidence limits.

Abbreviations: AUC, area under the ROC curve; CCI, case-cohort design, retain all survival information;
CClII, case-cohort design, classical version; CI, credible interval; PE, prediction error.

Tnl measurements and, additionally, in CCI, there is a large number of missing Tnl values (9829) corresponding to the
unascertained Tnl measurements from the patients outside the case-cohort design. The results from the model estimates
are presented in Table 3. The parameter estimates are very similar for both models. The « parameter, denoting the associ-
ation between the longitudinal marker TnlI and the composite endpoint, is 0.30 (95% credible interval: 0.10-0.50) and 0.33
(95% credible interval: 0.14-0.53) for the new and classical case-cohort design, respectively. The remaining parameters are
also very similar. The predictive accuracy measures, corrected for optimism, are presented in the last part of Table 3. CCI
performs slightly better in predicting new events by showing larger AUC (0.551 vs 0.533) and smaller PE (0.014 vs 0.017).

7 | DISCUSSION

Longitudinal studies following patients over time are becoming increasingly more popular in clinical research, since they
can incorporate dynamic patterns reflecting disease progress and thus improve prediction of events. If longitudinal stud-
ies are extended further to include multiple markers, different aspects of the disease can be modeled, which, in turn,
leads to additional improvement of the model. A severe downturn is the increasing costs associated with ascertaining
large numbers of biomarker measurements. To ensure practical use of these studies, new methods are necessary so that
unbiased results and optimal efficiency are warranted when only utilizing a subset of the measurements. A case-cohort
design can help in cost reduction, by measuring all patients who experienced the study endpoint and only a subset of the
patients without the endpoint. However, the overrepresentation of the cases causes bias, interpreted as selection bias, in
estimation of the model parameters and when predictions for a new patient are made. By incorporating survival informa-
tion of all patients, the problem is solved and models will show unbiased estimations. The simulation study we performed
showed that, by incorporating all survival information, the case-cohort design performs very similar to the FC in terms
of unbiased estimation and predictive accuracy. When the classical case-cohort is applied for comparison, in general, the
model will show biased estimates and worse predictive accuracy.

The difference in estimates between the two versions of the case-cohort design, however, was not found in the real-life
application. Possibly, this is due to the smaller size of association parameter in the BIOMArCS study (0.3), compared
to value of the parameter in the simulated data (which was 1). The difference in event rate also had a modest impact
on predicting new events as shown by the corrected predictive accuracy methods. The newly proposed version of the
case-cohort design performed slightly better in terms of discrimination and calibration than the classical case-cohort
design. It should be noted, however, that, although corrected for optimism, these measures were calculated on a subset of
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the data with only eight events (the random subcohort). New methods are necessary to incorporate the complete survival
information in these functions in a similar manner as we incorporated them in the model estimation.

The findings throughout this paper combined, we can conclude that, for studies with large amounts of longitudinal
measurements, costs can be saved while results remain reliable, by applying a case-cohort design and incorporating
the survival information from the complete cohort in the models. This work can be extended to find the optimal selec-
tion of longitudinal measurements taken while retaining unbiased estimates and high values of predictive accuracy and
developing new methods to efficiently estimate the predictive accuracy.
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