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Optical coherence tomography is an imaging technology that has revolutionised the detec-
tion, assessment and management of ocular disease. It is now a mainstream technology in
clinical practice and is performed by non-specialised personnel in some settings. This article
provides a clinical perspective on the implications of that movement and describes best
practice using multimodal imaging and an evidence-based approach. Practical, illustrative
guides on the interpretation of optical coherence tomography are provided for three major
diseases of the ocular fundus, in which optical coherence tomography is often crucial to
management: age-related macular degeneration, diabetic retinopathy and glaucoma. Topics
discussed include: cross-sectional and longitudinal signs in ocular disease, so-called ‘red-
green’ disease whereby clinicians rely on machine/statistical comparisons for diagnosis in
managing treatment-naïve patients, and the utility of optical coherence tomography angiog-
raphy and machine learning.
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In a short 27 years, optical coherence
tomography (OCT) has become an indis-
pensable, modern-day tool for the compre-
hensive evaluation of ocular disease and
diseases of the visual pathway. It is a diag-
nostic imaging technology that provides a
swift, high-resolution, and non-invasive
cross-sectional view of microscopic, ante-
rior and posterior ocular structures.1 The
technology has progressed from time
domain to spectral domain, and swept-
source models are also now available. The
shift from time domain to spectral domain
OCT saw the removal of the need for
mechanical movements of the reference
arm, thus achieving faster, higher-quality
scans with fewer artefacts and greater res-
olution. OCT angiography (OCT-A) repre-
sents the latest in the chain available in

clinical practice, with the capacity to pro-
vide a unique, non-invasive view of retinal
and choroidal vasculature, and has demon-
strated a further potential to alter clinical
practice patterns.2,3

Several OCT adjuncts are available,
including: options for fundus viewing (with
some instruments providing a wide-field
option), enhanced depth imaging of the
choroid and sclera, averaging to improve
the signal-to-noise ratio, live tracking and
image registration. Software analysis algo-
rithms are also manifold, ranging from
thickness or volumetric analyses (total or
layer-by-layer), normative comparison,
asymmetry analyses, automated landmark
detection (of structures such as the fovea
centre, optic cup and disc), visualisation
options (colour rendering, en face, movie or

three-dimensional reconstructions), and
integrity analyses specific to a single layer
or band, for example, the Cirrus OCT
‘advanced retinal pigment epithelium (RPE)
analysis’. In Australia, the ability to use and
interpret OCT now forms an entry-level
competency criteria into the optometric
profession.4

We can, but should we? The use
of routine OCT for disease
screening

OCT uses low-coherence interferometry to
generate a reflectivity profile in the axial
direction, known as an A-scan.1 Several adja-
cent A-scans are compiled to produce a
structural OCT B-scan or histology-like,
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cross-sectional view of ocular topography.
Finally, a volume of B-scans may be assem-
bled to produce a C-scan, en face or front on
view of the same tissue. OCT-A images are
formed using the decorrelation signal
(amplitude and phase variables) of OCT B-
scans acquired in rapid succession and pro-
vide a non-invasive ‘map’ of intrinsic ocular
blood flow.5 Both en face OCT and OCT-A
images may also be tweaked to provide a
discriminate, ‘dissected’ view of deeper reti-
nal tissues with relatively little interference
from inner structures. OCT may be generally
applied for in vivo imaging of the cornea,
anterior chamber, vitreous, retina, optic
nerve head, macula and/or choroid, for a
range of purposes, including: (1) the earlier
detection of eye disease; (2) more accurate
differential diagnosis of ocular disease,
including more precise disease staging; or
(3) change assessment over time.
The primary caveat regarding the use of

OCT for any of these applications is that
despite its resemblance, structural OCT B-
scans are not the same as histology. The
resultant image is a representation of the
optical rather than the histological staining
properties of tissue structure and is bound
by that same logic. For example, opaque
structures will cause posterior shadowing,
such as in the case of a melanotic choroi-
dal naevus.6 Similarly, an irregular highly
reflective surface such as drusen in the
RPE/Bruch’s membrane complex will back-
scatter and alter the visibility of Henle’s
fibre layer.7 Historically, there has also
been considerable confusion regarding
the origin of the layers and the descrip-
tors for the various layers, bands and
zones.8 For instance, the now dubbed
‘inner segment ellipsoid zone’ has been
formerly described as the inner segment
outer segment junction or the photore-
ceptor integrity line.8,9 Clinicians should
also be wary of any quantitative data gen-
erated from these qualitative images.
Each measurement may be compared
against a normative database and using
the manufacturers’ conventions, values
colour-coded green are interpreted as fall-
ing within normal limits. Red indicates a
value outside of normal limits and as such
could be described as abnormal or a ‘fail’
result. However, to use these tools effec-
tively, clinicians should carefully consider
the likelihood of false positives (red dis-
ease) or false negatives (green disease) in
the context of the clinical view of the optic
disc, macular and posterior pole, and take

an active interest in scrutinising the raw
data whenever available. Although time-
consuming, this step is key to avoiding
errors in diagnosis and thus management.
More recently, OCT-A has been likened to
fluorescein angiography. However, a key
difference is that OCT-A, although capable
of visualising choroidal neovascularisation
membranes, does not capture leakage.10–12

The purpose of this review is to provide a
practical guide for the application of OCT to
ocular disease assessment in treatment-
naïve patients, that is, patients most likely to
be seen in a primary care setting who have
not received any treatment for their chronic
eye disease. Because the leading causes of
blindness in Australia are age-related macu-
lar degeneration (AMD), diabetic retinopathy
(DR) and glaucoma,13 the application of OCT
to these diseases forms the focus of this
manuscript. Through illustrative cases of
patients seen at the Centre for Eye
Health,14,15 we describe both the advantages
and limitations of its use. We also emphasise
the importance of an evidence-based, multi-
modal imaging approach to eye care. Finally,
we discuss the role of OCT as a diagnostic
versus a screening test. Research-related var-
iations on OCT, not yet widely available in
clinical practice, including polarisation-
sensitive OCT, projection-resolved OCT-A or
multi-directional OCT, will not be discussed.
All case images herein were captured

under a standardised testing protocol (varying
by the eye condition in question) combining:
monoscopic and stereoscopic fundus photog-
raphy (Kowa WX 3D non-mydriatic retinal
camera, Kowa, Tokyo, Japan), Optomap ultra-
widefield and fundus autofluorescence imag-
ing (Optomap Panoramic 200Tx, Optos, Dun-
fermline, Scotland, UK), OCT (Cirrus HD-OCT,
Carl Zeiss Meditec, Dublin, California, USA
and/or Spectralis HRA2 + OCT, Heidelberg
Engineering, Heidelberg, Germany) with scan
spacing and density at the discretion of the
examining clinician, and standard automated
perimetry (Humphrey visual field analyzer,
Carl Zeiss Meditec). Patient written consent
was obtained in accordance with the Declara-
tion of Helsinki and approved by a Biomedical
Human Research Ethics Advisory Panel of the
University of New South Wales, Australia.

Age-related macular
degeneration

Early to intermediate AMD
A current clinical classification scale16 rec-
ommends subdividing AMD into three

stages: early, intermediate and late. Large
drusen (> 125 μm in diameter) and pigmen-
tary abnormalities define the intermediate
stage, while macular atrophy and/or neovas-
cularisation marks the conversion to late-
stage disease (Figure 1A). Using OCT, drusen
in intermediate AMD typically appear as
nodular elevations of the RPE/Bruch’s mem-
brane complex with medium internal reflec-
tivity.17 Pigmentary abnormalities, on the
other hand, usually coincide with hyper-
reflective foci in the outer retina and varia-
tions in RPE thickness.18,19 The overlying
outer nuclear layer and other photoreceptor
layers (external limiting membrane and the
ellipsoid zone) often exhibit associated
attenuation and thinning. Scrutiny of the
photoreceptor layers is important and may
be considered in conjunction with drusen
height, ultrastructure, area and volume as
predictive ‘biomarkers’ of disease
progression.20–22 For example, subretinal
drusenoid deposits confer a 2–6-fold higher
risk of progression to late AMD.23–25 Choroi-
dal thickness is also garnering increasing
interest and may hold prognostic value for
identifying patients who have or are at risk
of developing AMD-related macular atrophy
(particularly if the subfoveal choroidal thick-
ness is ≤ 124 μm).26 Using OCT-A, non-
neovascular AMD may present with large
areas of signal void and reduced flow signal
in the choriocapillaris (due to flow velocities
below the decorrelation threshold and/or
decreased choriocapillaris vessel calibre and
density).27,28

AMD-related macular atrophy
AMD-related macular atrophy (including
geographic atrophy), on structural OCT,
should span at least 250 μm and appears as
thinning or dropout of the outer nuclear
layer, ellipsoid zone and/or RPE with poste-
rior hyper-transmission.29 Incomplete and
complete variations, with variable degrees
of RPE loss and irregularity, have also been
recently described.29 Incomplete denotes
discontinuity in the findings, while complete
describes more absolute homogeneity. In
the junctional zones surrounding atrophy,
OCT and OCT-A provide an additional
means of predicting the rate of disease pro-
gression by showing outer retinal and RPE
alterations beyond the area of visible atro-
phy, much like fundus autofluorescence.27,30

Neovascular AMD
In neovascular AMD, OCT has been heralded
as indispensable with a sensitivity of at least
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90 per cent and high inter- and intra-
observer agreement.31,32 In suspecting neo-
vascular AMD, the clinician should carefully
evaluate the subretinal and sub-RPE space
for fluid or incommensurable hyper-reflective
material (blood or fibrovascular tissue). Any
intra-retinal fluid or cystic spaces are also
untoward and a screening strategy based on
a minimum inter-scan distance of 240 μm
using spectral domain or swept source OCT
(rather than time domain) is ideal for the
detection of treatment-relevant exudative
signs.33–35 Small pockets of subretinal fluid
inbetween adjacent drusen not exceeding
their peaks occurs in 11 per cent of eyes with
intermediate AMD36 and should be inter-
preted as a subclinical variation of choroidal
neovascularisation mandating close surveil-
lance or referral. The progression of interme-
diate AMD to advanced disease over time
may also be facilitated using OCT by combin-
ing a working background knowledge of
these key signs and their significance, with
careful simultaneous comparison of sequen-
tial B-scans (Figure 1B).
Advancement of neovascular AMD is typi-

fied by widespread morphological changes
in foveal contour, subretinal fluid, fibrosis,
pigment epithelial detachment and/or a dif-
fuse increase in retinal thickness
> 250 μm.37 Outer retinal (nuclear) tubula-
tion describes any round or ovoid hypo-
reflective space with hyper-reflective sur-
rounds in the outer nuclear layer, and
should be readily distinguished from intra-
retinal cysts.38 Outer retinal tubulation is
common although not specific to advanced
AMD and is often recalcitrant to anti-
vascular endothelial growth factor therapy,
while intra-retinal cysts indicate active dis-
ease requiring treatment.39

The emergence of OCT-A
The gold standard to date for the diagnosis
of neovascular AMD is fluorescein angiogra-
phy; however, a limitation of both fluores-
cein angiography and structural OCT is that
they enable only indirect visualisation of
choroidal neovascularisation-related signs
and do not allow visualisation of the mem-
brane itself.10–12 Dye studies are also inva-
sive and carry a rare, albeit not negligible,
risk of anaphylaxis. Using OCT-A, choroidal
neovascularisation can be visualised non-
invasively typically in the normally ‘avascu-
lar’ space between the outer border of
the outer plexiform layer and Bruch’s
membrane. The evolution of OCT-A has re-
invigorated the conversation regarding the sub-
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Figure 1. A: Optical coherence tomography (OCT) signs of age-related macular degen-
eration (AMD). Drusen or elevations of the retinal pigment epithelium (RPE)/Bruch’s
membrane complex, hyper-reflective foci in the outer retina and subretinal druse-
noid deposits are key risk factors for progression, typical of intermediate AMD, and
may be identified using OCT data acquired from a single patient attendance. In con-
trast, atrophy (in this instance, complete thinning of the outer nuclear layer and
dropout of the ellipsoid zone and RPE with and without outer retinal tubulation; yel-
low arrowhead), incommensurate sub- or intra-retinal fluid (appearing as optically
empty spaces) and subretinal hyper-reflective material represent OCT signs of
advanced AMD. B: Four eyes illustrating the clinical application of OCT for change
analysis in AMD. Each row shows a common sequence of events that precede pro-
gression to advanced disease: (i) the emergence of hyper-reflective foci overlying dru-
sen followed by pigment migration, (ii) confluence of drusen over time followed by
regression, (iii) emergence of hyper-reflective foci followed by the development of
nascent geographic atrophy, (iv) shallow drusenoid pigment epithelial detachment
with eventual development of drusen substructures and intra-retinal fluid; examina-
tion dates appear at the bottom of each image.
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group of conditions, known as quiescent, non-
exudative neovascular, or ‘subclinical’ choroidal
neovascularisation (Figure 2A).40–42 These cases
describe eyes with demonstrable choroidal neo-
vascularisation using fluorescein angiography,
indocyanine green angiography or OCT-A
without exudation that may be safely fol-
lowed without treatment. The inverse sce-
nario whereby choroidal neovascularisation
may not be visible on OCT-A despite the
presence of exudative signs is common and
may often be ascribed to projection arte-
facts, media opacities or a masquerading
condition of choroidal neovascularisation,
including other common causes of macular
oedema, such as central serous chorioreti-
nopathy, myopic maculopathy (haemor-
rhage in the absence of choroidal
neovascularisation) or DR.11

The connection between clinical
management and OCT signs
of AMD
Current clinical guidelines recommend mon-
itoring intermediate AMD and geographic
atrophy every 6–18 months.43,44 Modifiable
risk factors (such as smoking) should be
addressed and Age-Related Eye Disease
Study 2 nutritional supplements and Amsler
grid self-monitoring should also be recom-
mended. The defining features of at least
large drusen and pigmentary abnormalities
may be easily identified using OCT; how-
ever, both signs within themselves are non-
specific and occur in other macular dis-
eases. Subretinal drusenoid deposits on
OCT and/or macular atrophy may alert the
clinician to a higher-risk phenotype of AMD
but also occur, albeit rarely, in the absence
of AMD.45 Sub-retinal, intra-retinal, and sub-
RPE fluid as occurs in neovascular AMD
should be managed urgently and referred
to a specialist within two weeks.44 However,
as with the other signs, sub-retinal and sub-
RPE fluid can also occur in other self-
resolving presentations such as acute cen-
tral serous chorioretinopathy. In contrast,
once the diagnosis of AMD is established,
OCT provides an invaluable adjunct and
supplement to the core testing, particularly
for early detection and monitoring. Thus, a
multimodal approach to ocular assessment
in AMD, and mimicking disorders, is
recommended.

Limitations of OCT imaging
in AMD
The signs of AMD, especially neovascular
AMD, are commonly associated with OCT

segmentation or centration errors.46 Both
invalidate the automated thickness or vol-
ume measurements; the former does so by
mis-identifying either the inner or outer
boundary while the latter implies inaccurate
identification of the fovea and thus a mis-
placement of the calculation grid. These
errors are likely to be more significant in the
presence of low signal strength, advanced
disease or increased retinal thickness.47,48

Thickness values between instruments
should also not be compared, not least due
to limitations in agreement that may relate
to variations in the segmentation bound-
aries used and the segmentation error
rate.49 In the absence of errors, change in
macular thickness over time may inform
management decisions. Specific to AMD,
OCT software algorithms for the automated
measurement of drusen load in intermediate
disease (area and volume) and geographic
atrophy in late disease (area and proximity to
the foveal centre) may also be clinically mean-
ingful, particularly for disease monitoring;50–52

however, they are prone to the same decen-
tration and segmentation errors.
The signs of late AMD are often subtle

and ill-defined. To date, OCT-A for the detec-
tion of choroidal neovascularisation has
garnered interest but remains heavily user-
dependent, with sensitivities ranging
between 50–85 per cent.12 Early detection
using OCT still requires careful, systematic
scrutiny of multiple layers. Injudicious reli-
ance on global parameters, such as macular
thickness values (Figure 2B, C), is not recom-
mended, although other en face scans may
be useful in providing a holistic view of the
area and volume of involved regions. Signifi-
cant signs, such as drusen regression,53 dru-
sen subtypes54 or nascent geographic
atrophy55,56 may also be better identified
using other methods (Figure 3A, B). Finally,
the accurate interpretation and differentia-
tion of AMD from other mimicking disorders
often requires scrupulous inspection by
appropriately trained staff with a thorough
understanding of the pathophysiology, epi-
demiology and clinical characteristics of
each condition (Figure 3C).

Key points
• OCT may be usefully applied to identify

treatment-naïve cases at high risk of pro-
gression to late AMD.

• The OCT findings of cases suspected of
neovascular AMD should be carefully
examined for any sub-retinal, sub-RPE or
intra-retinal fluid using a minimum inter-

scan distance of 240 μm. OCT-A is a use-
ful adjunct for the detection of choroidal
neovascularisation; however, sensitivity
ranges between 50 and 85 per cent.

• Limitations: The signs of AMD are com-
monly associated with OCT segmentation
or centration errors. Certain significant
signs, including drusen regression, drusen
subtypes or nascent geographic atrophy,
are better identified using a multimodal
imaging approach than OCT alone.

Diabetic retinopathy (DR)

Clinically, DR is subdivided into non-
proliferative, proliferative, and diabetic mac-
ular oedema (DMO) which may occur at
either the non-proliferative or proliferative
stage. The non-proliferative sub-type is char-
acterised by specific ophthalmoscopic signs,
including microaneurysms, dot or blot intra-
retinal haemorrhages, intra-retinal micro-
vascular abnormalities (IRMA), venous cali-
bre abnormalities, cotton wool spots, and
hard exudates (intra-retinal lipid).57 Prolifer-
ative diabetic retinopathy is characterised
by neovascularisation on the optic disc or
elsewhere with or without pre-retinal or vit-
reous haemorrhage.58 The number and dis-
tribution of lesions form the basis for
current clinical classification systems.57,58

While dilated fundus examination is the
recommended method of grading DR using
classifications such as the International Clini-
cal Diabetic Retinopathy and Diabetic Macu-
lar Edema Disease Severity Scales,58 these
techniques are increasingly being supple-
mented by advanced en face and cross-
sectional imaging techniques such as
widefield scanning laser ophthalmoscopy
and OCT (Figure 4A). More recently, OCT-A
has demonstrated a number of potential
roles in DR diagnosis and management,
such as identifying areas of retinal non-
perfusion often invisible with funduscopy
and identifying potential biomarkers for dis-
ease severity (Figure 4B).
Microaneurysms are the earliest clinical

sign of DR and may be undetectable using
OCT, particularly if low-density or low-
resolution volume scans are acquired. If visi-
ble, they typically appear on OCT as small
round or oval lesions, usually within the
inner nuclear layer, fully or partially capsu-
lated in 56 per cent of cases.59 The majority
of microaneurysms have moderate to highly
hyper-reflective lumen (81.4 per cent of
cases)60 and are often located adjacent to
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A

Fundus photo Structural OCT OCT angiography

Eighty-year-old Caucasian female with quiescent or subclinical neovascular AMD in her right eye. The fundus photo and 
structural OCT show scattered drusen and a flat irregular pigment epithelial detachment with mixed internal reflectivity 
at the nasal fovea. The OCT-A image suggests a corresponding neovascular complex in the same location.

B 

Fundus photo Structural OCT B-scan
ILM-RPE

thickness map
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Top to bottom:

•  Complete RPE and outer retinal atrophy in an 86-year-old Caucasian female with heart disease and a 10-year 
    history of AMD

•  Neovascular AMD showing intra- and sub-retinal fluid, and atrophy in an 80-year-old Caucasian male on aspirin
•  Intermediate AMD in a 68-year-old Caucasian female with advanced AMD in the fellow eye

C

Case example whereby the Cirrus OCT scan of a 58-year-old Caucasian female revealed thickness measurements

outside normal limits in structurally healthy macula. 

OCT-A in neovascular AMD

Green disease (false negative) in AMD

Red disease (false positive)

Figure 2. A: Case images illustrating the emerging application of optical coherence tomography angiography (OCT-A) in age-
related macular degeneration (AMD). B: Examples of green disease (false negatives) that is cases where the internal limiting mem-
brane (ILM)-retinal pigment epithelium (RPE) thickness values fall within normal range despite the presence of significant AMD
signs, reflecting that the injudicious reliance on macular thickness measurements is not recommended. C: Case example of OCT-
rendered red disease (false positives) at the macula.
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A

B

Baseline
fundus photo

Fundus photo

Fundus photo Autofluorescence Infrared

Follow-up

Structural OCT

Autofluorescence Infrared Structural OCT

Right eye of a 74-year-old Caucasian female with a history of cataract surgery, heart disease, hypertension and a family history

of macular degeneration in her mother. Simultaneous comparison of the baseline and follow-up colour fundus photographs

show an area of drusen regression in the nasal macula (white arrowheads), coincident with nascent geographic atrophy

(incomplete RPE and outer retinal atrophy) revealed using other modalities.

Right eye of a 62-year-old Caucasian female with hypertension and a family history of AMD in her father, showing various drusen

subtypes, including reticular pseudodrusen (subretinal drusenoid deposits; yellow arrowheads) and calcified drusen (white 

arrowheads). The former indicates an additional 2-6 fold higher risk of progression to advanced AMD. Calcified drusen are

refractile deposits resistant to macrophage clearance and represent chronicity.

C

Fundus photo Autofluorescence Infrared Structural OCT

Sixty-year-old Caucasian female with intermediate AMD and vitelliform maculopathy. Best corrected visual acuity was 6/9 in 

the right eye. Retinal photography shows numerous intermediate to large, soft and confluent drusen, subretinal fluid centrally 

and an associated vitelliform deposit in the subretinal space with corresponding hyper-autofluoresence. There was no overlying 

haemorrhage or intraretinal oedema. Choroidal neovascularisation was also excluded using fluorescein angiography (images 

not shown). The location of each structural OCT B-scan is denoted by the outline colour and a corresponding arrow on the 

infrared image.

AMD coincident with other pathology

Drusen subtypes

Drusen regression

Figure 3. A: Drusen regression and B: drusen subtypes, especially reticular pseudodrusen or calcified drusen, represent significant
risk factors for progression in age-related macular degeneration (AMD) and are better followed using en face imaging methods
and a multimodal imaging approach. C: Mimicking disorders and mixed presentations of disease are also better identified using
an evidence-based, multimodal imaging approach.
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A

Microaneurysm

Cotton wool spot

AngioPlex - Retina

Cirrus 3 x 3 mm OCT-A; foveal
avascular zone enlargement and

acircularity; capillary dropout
(white arrowhead); IRMA (red
arrowhead); microaneurysm

(yellow arrowhead)

Cirrus 6 x 6 mm OCT-A of the
same patient; neovascularisation

(yellow arrowhead); capillary
non-perfusion (white arrowhead)

Cirrus 6 x 6 mm OCT-A of same
patient segmenting vitreoretinal

interface to highlight 
neovascularisation elsewhere 

(yellow arrowhead)

AngioPlex - Retina AngioPlex - VRI

Neovascularisation
elsewhere

Preretinal (white arrow-
head) and vitreous (yellow 
arrowhead) haemorrhage

Neovascularisation
at the disc

Hard exudate Blot haemorrhage

Cystoid (yellow arrow-
head) and subretinal
(white arrowhead) 
macular oedema

B

Cross-sectional data - OCT signs of DR

OCT-A signs of DR

Figure 4. A: Key signs of diabetic retinopathy (DR) as they appear using optical coherence tomography (OCT) data attained at a single visit.
Dilated fundus examination forms the basis of grading DR but is being increasingly supplemented by OCT to assist in differential diagnosis.
B: OCT-A (angiography) signs of DR. As pictured, microaneurysms may take on a range of shapes varying from nodular to earlobe-like.
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intra-retinal cystoid spaces. The hypo-
reflective variant occurs less commonly, in
18.6 per cent of cases. Microaneurysms are
less visible with OCT-A as compared to fluo-
rescein angiography; as few as 62 per cent
of microaneurysms detected with fluores-
cein angiography manifest within OCT-A
images, likely due to a lower rate of blood
flow or absence of flow within the
lesion.59–61 Within OCT-A images, microa-
neurysms take on a range of shapes includ-
ing nodular (65 per cent of cases), comma-
shaped, coil-shaped, semilunar, crescent
and earlobe-like62 and the majority of
microaneurysms are located within the
deep capillary plexus.60–62

Clinically, microaneurysms are difficult to
distinguish from intra-retinal dot/blot haemor-
rhages, although OCT imaging shows the lat-
ter is typically located deeper in the retina and
has a more amorphous shape.59 Hard exu-
dates are intra-retinal protein and/or lipid
deposits which tend to appear as numerous
hyper-reflective deposits in the outer retina
using OCT, often associated with intra-retinal
oedema. OCT imaging can also identify small
hyper-reflective foci that cannot be visualised
with fundus biomicroscopy but show similar
hyper-reflectivity to hard exudates; these may
represent precursors of hard exudates.63

OCT for early detection of
diabetic retinopathy and
diabetic macular oedema
Diabetic macular oedema, defined as thick-
ening of the macula due to accumulation of
fluid resulting from a breakdown of the
inner blood-retinal barrier, is the most com-
mon vision-threatening complication of
DR. It can present in a focal, diffuse or cystic
pattern of intra-retinal oedema which may
co-exist with subretinal oedema.64 OCT can
usefully show hypo-reflective spaces within
the inner and/or outer retinal layers or sub-
retinally when sufficient density scans are
used. Alternatively, a diffuse or focal
increase in retinal thickness may occur, bet-
ter appreciated in the retinal thickness
maps (Figure 5) or macular change analyses.
With OCT-A, pockets of intra-retinal fluid
may lead to decreased signal intensity or an
apparent complete absence of flow.65

Early detection is vital to the prevention of
vision loss and due to its high sensitivity
OCT, as an adjunct to fundus examination
for DR, is now widely regarded as indispens-
able for the detection of DMO and monitor-
ing response to treatment. The International
Council of Ophthalmology Guidelines for

Diabetic Eye Care, updated in 2017, empha-
sise that the definition and classification of
DMO should take into account OCT findings,
if available.66 However, the high costs and
training required preclude its use outside of
high-resource settings. There are also a num-
ber of proposed OCT-based classification sys-
tems for DMO, not yet widely adopted, which
in turn evaluate various parameters including
retinal thickness and/or volume, presence/
absence of hard exudates, location, morphol-
ogy, vitreomacular interface changes and
microstructural alterations.63,64,67–69

The term subclinical DMO was first
described using time domain OCT (Stratus,
Zeiss) by the Diabetic Retinopathy Clinical
Research Network (DRCR.net) as central reti-
nal thickness beyond 225 μm (not greater
than 299 μm) in the absence of centre-
involving macular oedema detectable using
slitlamp fundus examination.70 Of impor-
tance, 38 per cent of patients with these
subclinical findings progressed to DMO or
required treatment by two years. Subclinical
DMO was later redefined by Diabetic Reti-
nopathy Clinical Research Network using
spectral domain OCT (Cirrus, Zeiss) as reti-
nal thickness > 260 μm and < 290 μm in
women and > 275 μm and < 305 μm in
men.71 Directly comparing measurements
from different OCT imaging technologies is
problematic, due to differences in scan reso-
lution, speed of acquisition and algorithms
for locating the boundary of the outer ret-
ina, bringing into question the clinical use-
fulness of a numerical definition of DMO or
subclinical macular oedema for eye care
professionals in clinical practice.72 Neverthe-
less, increased central retinal thickness in
the absence of other structural abnormali-
ties may provide a biomarker for future pro-
gression to DMO.
Structural OCT has limited value in evalu-

ating signs of severe non-proliferative DR
such as venous calibre abnormalities and
intra-retinal microvascular abnormalities;
however, OCT may assist in the differential
diagnosis of cotton wool spots, seen as a
hyper-reflective thickening of the retinal
nerve fibre layer, as well as in confirming
the presence of neovascularisation and
determining the location of vitreous and
pre-retinal haemorrhage.73,74 Using OCT,
neovascularisation may appear as pre-
retinal hyper-reflective material on the
retinal surface or proliferating along the
posterior vitreous interface. Vitreous hae-
morrhage can be seen as hyper-reflective
dots within the vitreous cavity and pre-
retinal (or sub-hyaloid) haemorrhage may

present as an area of hyper-reflectivity
trapped between the internal limiting
membrane of the retina and the poste-
rior vitreous interface.74

The emerging role and
limitations of OCT in DR
OCT-A has shown promise as a non-invasive
method of ascertaining the morphology of
intraretinal microvascular abnormalities and
neovascularisation,61,75 but outside the pos-
terior pole the technique is limited by field
of view and difficulty in off-axis image acqui-
sition. Akiyama et al.76 used OCT and OCT-A
to demonstrate that persistent vitreous
attachment at the optic disc (that is absence
of posterior vitreous detachment) is essen-
tial to the growth of neovascularisation at
the optic disc, with neovascularisation prolif-
erating along both sides of the posterior vit-
reous interface, and that neovascularisation
arises from the neuroretinal rim or outside
the optic disc margin rather than from the
optic cup. Similarly, Vaz-Pereira et al.74 found
that 79 per cent of neovascularisation of the
retina involved proliferation along the outer
surface of the posterior vitreous interface, aris-
ing from areas of ischaemic retina with persis-
tent vitreous attachment. Within the posterior
pole, vitreous and pre-retinal haemorrhage
likely results from tractional forces and shear
stress exerted on the area of neovascularisa-
tion bound to the retinal circulation.74

Prior to the emergence of OCT-A, evaluation
of early retinal ischaemia in DR was limited to
ophthalmologists with access to fluorescein
angiography. Current generation OCT-A enables
rapid, non-invasive visualisation of areas of
reduced capillary perfusion, enlargement and
distortion of the foveal avascular zone (FAZ)
and pruning of the arteriolar branches
(Figure 4B). OCT-A has also shown capillary
impairment associated with intra-retinal micro-
vascular abnormalities, cotton wool spots or
anomalous vascular loops and thus may be
useful in staging disease severity.65 Areas of
capillary non-perfusion appear to be better
delineated on OCT-A than with fluorescein angi-
ography or clinical examination.61,73,77 Capillary
closure may occur in early stages of DR, wors-
ening as DR progresses; thus measurements
such as FAZ size could potentially represent bio-
markers for DR progression.61,77 Krawitz et al.78

found a strong correlation between acircularity
of the FAZ and the presence of DR.

Key points
• DR is characterised by a diverse series of

specific ophthalmoscopic signs. The
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appearance of these signs using OCT and
OCT-A has been well-described in the litera-
ture; however, the specific application of
OCT in eyes without DR on clinical examina-
tion has not been fully determined.

• OCT is an indispensable adjunct for the
detection and management of all sight-
threatening DMO.

• Limitations: OCT and OCT-A for the assess-
ment of intra-retinal microvascular abnor-
malities and neovascularisation is presently

limited by field of view. The application of
OCT and OCT-A to DR assessment in
treatment-naïve patients is evolving and
may, in the future, include routine evaluation
of the posterior vitreous interface and FAZ.

Glaucoma

The definition of glaucoma has evolved con-
siderably over the past few decades.79–81

Beginning in the early twentieth century
with a simple definition of observable char-
acteristic optic nerve head and retinal
nerve fibre layer changes with correspond-
ing visual field loss in the presence of ele-
vated intraocular pressure, the definition
has since developed into one that is multi-
faceted and complex.80 Recent definitions
have revisited the notion that structural
deficits characteristic for glaucoma must
be present,82–85 even in the absence of

A

Baseline 26 month follow-up

Fifty-seven-year-old Caucasian female with sub-optimally controlled type 2 diabetes on glicazide, metformin and exenatide.

Cirrus macular thickness maps shows the development of macular oedema over a 26-month period, most obvious in the
thickness ‘heat’ map (red arrowhead). Spectralis OCT line slices show a microaneurysm (yellow arrowhead) at baseline and 
development of cystoid macular oedema (white arrowhead) at follow-up. 

Forty-two-year-old Caucasian female with type 1 diabetes for 18 years. The Cirrus ILM-RPE normative thickness map is
classified as within normal limits however macular oedema approaching the centre of the macular is evident in the retinal 

photo, Cirrus OCT ‘heat’ map and Spectralis OCT line slices. 

B

ILM-RPE
thickness

ILM-RPE
thickness mapFundus photo Infrared Structural OCT

Progression data in diabetic macular oedema

Green disease (false negative) in diabetic macular oedema

Figure 5. A: Case images illustrating the application of optical coherence tomography (OCT) for change analysis in diabetic retinopa-
thy (DR). Note that the early detection of subtle cases such as these may be best appreciated using the retinal thickness maps. B:
Green disease whereby other imaging modalities reveal consistent evidence of diabetic macular oedema although the normative
analysis (left) using Cirrus OCT classifies all thickness values as within normal limits. Abbreviations: as with Figures 1–4.
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other clinical features such as visual field
deficits.86,87 In other words, there has been
a paradigm shift toward definitions with a
structural, rather than functional, empha-
sis, especially in light of structure–function
discordance and the stage of disease
known as ‘pre-perimetric glaucoma’
(Figure 6A).88–90

Using OCT signs in glaucoma for
clinical management
There are now several useful markers for
identifying glaucomatous change in OCT
results. Most commonly, optic nerve head
parameters (such as the disc and rim area,
cup-to-disc ratio, or cup volume), retinal
nerve fibre layer thickness values or gan-
glion cell layer thickness at the macula are
compared against normative data using
algorithms inbuilt to each device. The cli-
nician then uses those findings to guide
their clinical decision making. Asymmetry
in structural findings on OCT is another
key marker of early stage disease. Charac-
teristic structural defects in glaucoma
include ‘wedge’-like and ‘arcuate’-like reti-
nal nerve fibre layer defects that mimic
and correspond with visual field loss,
especially those in ‘classically’ affected
anatomical areas (Figure 6A, B).91–96 These
characteristic OCT structural changes are
assumed to be surrogate measurements
of the anatomical changes that underpin
glaucoma. However, this has been chal-
lenged by studies examining the patho-
physiology of glaucoma describing cellular
changes of the retinal ganglion cells which
may not be adequately captured by con-
ventional OCT instruments which measure
the optical properties to infer thickness
values.97–99

One of the key advantages of OCT is the
quantification of structural information,
which is invaluable for longitudinal analy-
sis.91,100,101 As glaucoma is typically progres-
sive, and since progression rate is critical for
treatment titration,102,103 this information is
useful for guiding management decisions
(Figure 6B). Longitudinal analysis is also
dependent upon the fidelity of the measure-
ment: in this case, this includes correct reg-
istration of the scan to account for subtle
differences in optic nerve head position
between visits and scans.104 With advancing
disease, this registration may become diffi-
cult due to the loss of neuronal tissue and
the neuroretinal rim at the optic nerve
head.105

Non-traditional indicators of
glaucoma using OCT
Ocular perfusion (both at the optic disc and
peripapillary retina) may be visualised and
measured using OCT-A. The technology has
recently garnered significant interest,106,107

because alteration in vascular perfusion has
also been suggested as a potential pathway
to glaucoma.108–110 However, the technique
has met with limited success due to the sig-
nificant overlap between normal and glau-
coma subjects and the non-specificity of
disease signs (Figure 7A).111–113

Another opportunity presented by OCT is
that it makes some clinically ‘invisible’ struc-
tures visible. Two examples are the delinea-
tion of the anatomically true disc
margin114,115 and the lamina cribrosa using
a volume scan approach.116,117 Given the
importance of optic disc size on describing
optic nerve head parameters relevant for
glaucoma,118 accurate delineation of the
disc margin is critical to clinical decision
making.119–121 The lamina cribrosa has also
been hypothesised to play a role in the
pathogenesis of the disease.122 New, high-
resolution OCT has been able to visualise
the lamina cribrosa, describing parameters
such as pore size and deformity.123 The sig-
nificance of both of these parameters is still
not fully known, but provides an exciting
area for future study.
Aside from the optic nerve head, OCT is

also used for assessment of the anterior
segment.124,125 Anterior segment OCT has
shown promise in identifying abnormalities
in key features within the anterior chamber
angle by highlighting eyes that can develop
angle closure and glaucoma, particularly in
high-risk populations (Figure 7B).126–128

However, there remains a significant num-
ber of limitations in anterior segment OCT,
including resolution, feature identification,
obstructing structures and static viewing, for
example, in comparison to methods such as
ultrasound biomicroscopy and
gonioscopy.129–132 Therefore, similar to
examination of the posterior segment, ante-
rior segment OCT remains an adjunct to
gonioscopy, the current gold standard of
anterior chamber angle assessment.133

OCT therefore appears to be an attractive
option for visualising structural changes in a
rapid manner, reinforced by recent studies
that have provided precise visualisation of
structural loss preceding significant visual
field defects.134–136 It is not surprising that

OCT has become indispensible for clinical

glaucoma assessment, especially when its

speed, precision and relative objectivity con-

trasts so heavily with the arduous, subjec-

tive and variable task of automated

perimetry.137,138

Limitations of OCT imaging in
glaucoma
Given these advantages, is there still a place
for tests aside from OCT for assessing glau-
comatous damage? As mentioned already,
there are a number of key limitations with
using OCT imaging in glaucoma. OCT arte-
facts in glaucoma assessment139 may con-
tribute to the manifestation of red-green
disease (for example, Figure 7C, D),140,141 as
determination of the statistical significance
of structural loss is contingent upon the
underlying normative database.142,143 This is
particularly relevant in cases of patient
demographics that are not well-represented
by the normative database (for example,
high myopia; Figure 8A). There has been
interest in developing normative data for
these demographics but there remain chal-
lenges associated with the determination of
normality in such patients.144

Another critical limitation of OCT is the
instrument measurement floor in advanced
disease.145–147 Remaining non-neuronal
cells or retinal vasculature produce a resul-
tant thickness measurement that is not
indicative of actual neuronal change rele-
vant in glaucoma.105,148 In such cases, visual
field results may be more reliable and infor-
mative. This has given rise to the idea of dif-
ferent utility of OCT and visual fields in
different stages of glaucoma.149 More
recent studies have clarified the discordance
in early glaucoma by using different peri-
metric stimuli.150–153 However, the issue
with current OCT results providing only lim-
ited dimensional information of optic nerve
head structure remains. This is an inherent
limitation of an optical impression of ocular
structure that does not truly represent the
underlying anatomy.
Unlike in AMD and DR, OCT imaging of

treatment-naïve eyes with glaucoma does
not necessarily yield ‘classic’ signs, and
instead displays significant overlap with
other disorders affecting the optic nerve
head, such as retinal vascular occlusions
and ischaemic optic neuropathies
(Figure 8B–D).154,155 This further rein-
forces the idea of glaucoma as a disease
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Pattern deviation map OCT thickness map
OCT clock hour

thicknessFundus photo

Baseline 1 Baseline 2 Exam 3 Exam 4 Exam 5 Exam 6 Exam 7 Exam 8

Thickness and deviation map progression

Regression line of thickness values Superimposed TSNIT graphs

A

B

A case of a patient with pre-perimetric glaucoma. The black arrows indicate areas of RNFL thinning which, though difficult to 

see on a fundus photography, are clearly visible on the OCT thickness map. However, the normative comparisons seen on the 
HFA pattern deviation map (black box) and on the OCT clock hour thicknesses are borderline and do not meet conventional

criteria for being outside normal limits.
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Rate of change: -3.62 +/- 1.59 µm/year

Progression data for the same patient over a five-year period. Comparison of the thickness and deviation map shows 

reduction in RNFL thickness (red boxes). Specifically, there appears to be a deepening and widening of the “wedge”-like
defect that classically affects the inferotemporal region. The regression line of thickness values in the inferior quadrant shows 

a significant downward trend (dashed red arrow). The superimposed RNFL thickness profiles (“TSNIT” graphs) across time
comparing baseline 1 and 2 (B_1 and B_2) results with current (C) data shows a relative decrease in thickness in the 

inferior quadrant. There was no evidence of a glaucomatous type visual field defect at any of the eight visits. 

Cross-sectional data - pre-perimetric glaucoma

Progression data - pre-perimetric glaucoma

Figure 6. A: Cross-sectional and B: progression data acquired using Cirrus HD-OCT (optical coherence tomography) in a case of
pre-perimetric glaucoma. Abbreviations: as with Figures 1–5; HFA, Humphrey visual field analyser; RNFL, retinal nerve fibre layer;
TSNIT, temporal superior nasal inferior temporal.
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A

B

C

Fundus photo

Van Herick gonioscopy AS-OCT angle-to-angle Anterior photo Gonioscopy AS-OCT angle-to-angle

HFA pattern
deviation map

OCT RNFL
thickness map

OCT RNFL
deviation map

OCT GCIPL
deviation map

OCT-A superficial
density map

Sixty-two-year-old Asian female whereby fundus examination and OCT showed a loss of RNFL reflectivity at the superotemporal

region (black arrows) with corresponding inferonasal visual field loss (black box). OCT-A shows a non-specific reduction in

perfusion at the corresponding location (yellow arrowheads).

Van Herick of the temporal quadrant in this 55-year-
old Asian female shows an almost closed angle 

(approximately 0.1). Gonioscopy shows only anterior
trabecular meshwork temporally. AS-OCT shows a very

narrow but unclosed angle. 

Green disease in a 58-year-old Caucasian female. Fundus examination shows a clear wedge-like RNFL defect extending to the 

optic disc superotemporally (black arrow) with a corresponding cluster of depression inferonasally on the HFA pattern 
deviation map. However, the OCT RNFL thickness, deviation and clock hour thickness maps show no statistically significant

reductions in thickness. The OCT tomograph shows areas where the instrument has been confounded by prominent retinal 

vasculature (yellow arrowheads). 

Red disease in a 62-year-old Caucasian male. Fundus examination shows clear presence of RNFL reflectivity, which has been
divided into two discrete bundles (split bundles) of thick and prominent RNFL (black arrows). However, the instrument has

flagged the split between bundles as having reduced RNFL thickness (black boxes).

Fifty-four-year-old Caucasian female in which anterior photography
shows a raise pinguecula on the nasal bulbar conjunctiva. 

Gonioscopy shows an angle open to the ciliary body band. However, 
the AS-OCT scan was interrupted by the presence of the pinguecula, 

limiting visualisation of the angle (yellow box). 

Fundus photo
HFA pattern

deviation map
OCT RNFL

thickness map
OCT RNFL

deviation map OCT tomogram
OCT RNFL
clock hour
thickness

D

Fundus photo
HFA pattern

deviation map
OCT RNFL

thickness map
OCT RNFL

deviation map OCT tomogram

OCT RNFL
clock hour
thickness

OCT-A in optic nerve head assessment

AS-OCT in narrow angles without and with pinguecula

Green disease (false negative) in optic nerve head assessment

Red disease (false positive) in optic nerve head assessment

Figure 7. A: Optical coherence tomography angiography (OCT-A) for evaluating anomalies in vascular perfusion, and B: anterior
segment (AS) OCT for adjunctive assessment of the angle. C, D: Examples of glaucoma-related green and red disease (false nega-
tives and false positives), respectively. Abbreviations: as with Figures 1–6; GCIPL, ganglion cell inner plexiform layer.
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A

Fundus photo
HFA pattern

deviation map
OCT RNFL

deviation map
GCIPL

thickness map
OCT line scan showing

peripapillary retinoschisis

A 68-year-old Asian female with concurrent high myopia and glaucoma. The fundus photo shows a highly myopic disc with

marked conus. HFA showed an enlarged blind spot and inferonasal step. The RNFL analysis is complicated by the disc
configuration and data loss (black arrow) due to staphyloma. The GCIPL map is also difficult to interpret due to segmentation

errors from peripapillary retinoschisis as seen in the line scan (yellow arrowheads).

B

Fundus photo
HFA pattern

deviation map
OCT RNFL

deviation map
OCT GCIPL

deviation map
OCT line scan through area of

chorioretinal atrophy

Fifty-seven-year-old Hispanic male with previous retinal vein occlusion and laser scars. The fundus photo shows chorioretinal 

atrophy (laser scans; black box) with a matching centrocaecal scotoma on the HFA map. The OCT RNFL and GCIPL deviation

maps highlight a “wedge”-like and “arcuate”-like structural loss (black arrows). A line scan highlights the area of chorioretinal 

atrophy attributable to a cause other than glaucoma (yellow arrowheads).

C

Fundus photo
HFA pattern

deviation map
OCT RNFL

deviation map
OCT GCIPL

deviation map
OCT line scan through area of

previous periphlebitis

A 40-year-old Caucasian female with previous optic neuritis, signified by temporal disc pallor (black arrowheads). HFA showed 

an inferior depression. The OCT RNFL map shows a large “wedge”-like defect extending towards the papillomacular bundle

(black arrow). The round and generalised depression on the GCIPL map suggests a diagnosis other than glaucoma, confirmed

by a line scan through a nearby bloody vessel showing previous periphlebitis. 

D

Fundus photo
HFA pattern

deviation map
OCT RNFL

deviation map
OCT GCIPL

deviation map
OCT line scan through 

optic disc pit

A 40-year-old Asian male with an acquired optic disc pit. Fundus examination showed a tilted, myopic disc with temporal

peripapillary atrophy. The HFA shows a possible superior nasal step. The OCT RNFL deviation map shows a region of apparent

RNFL loss inferiorly, which seems to correspond to the “arcuate”-like loss on the GCIPL map. An inferior line scan shows a focal
optic disc pit, which has resulted in apparent RNFL loss. 

High myopia and glaucoma

Previous retinal vein occlusion with laser scars

Previous optic neuritis

Acquired optic disc pit

Figure 8. Case images illustrating the usefulness of optical coherence tomography (OCT) for differential diagnoses relating to
glaucoma, including A: high myopia, B: retinal vascular occlusions, C: optic neuritis, and D: acquired optic disc pit. Abbreviations:
as with Figures 1–7.
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of statistical abnormality (for example,
statistically depressed visual field or OCT
results).145 As alluded to above, other
optic nerve head appearances or varia-
tions may mimic glaucomatous damage,
and provide a false impression of patho-
logical changes that may be better
assessed using alternative clinical tech-
niques (for example, tilted disc syndrome
or myopic optic discs).156,157 OCT in isola-
tion, therefore, does not clearly provide a
conclusive diagnosis of glaucoma.

Key points
• There exist a number of useful OCT

markers for diagnosing glaucoma, particu-
larly in early stages, including structural
asymmetry, characteristic ‘wedge’-like and
‘arcuate’-like defects, and change over time.

• The measurement of optic disc and peri-
papillary perfusion using OCT-A, structural
OCT imaging of the lamina cribrosa, and
anterior segment OCT applied for visuali-
sation of the anterior chamber angle may
be helpful in separating eyes with glau-
coma from suspects.

• Limitations: Glaucoma is a disease of sta-
tistical abnormality and thus, OCT in iso-
lation cannot provide a conclusive
diagnosis of glaucoma. The usefulness
of OCT in advanced glaucoma is limited
by the instrument measurement floor.

Future directions

Like retinal photography before it, OCT is
now set to become a mainstay of primary
eye care in developed nations. Already we
are seeing the relegation of scan acquisition
to non-specialised personnel and injudicious
use of the technology for disease screening
rather than diagnostic purposes. Described
thus far, there may be an immediate practi-
cal benefit to the identification of high-risk
AMD cases if the specific OCT signs are care-
fully predetermined and identified. Similarly,
the diagnosis of early DMO using OCT may
provide a stimulus for improved glycaemic
control, thus imparting other benefits with
regard to other systemic complications of
diabetes, as well as prompting early referral
to an ophthalmologist for closer monitoring.
In glaucoma, an ideal screening test has
remained elusive, but OCT purportedly
offers several advantages over previously
suggested screening methods such as
intraocular pressure, cup-disc ratio and

screening visual field paradigms.158–160 But
results for the use of OCT as a screening
device in glaucoma have been mixed.161–166

As described above, there are no clear diag-
nostic ‘signs’ of glaucoma identifiable using
OCT. Screening protocols are also contingent
upon normative comparisons, which in turn
are dependent upon a reference standard.
A corollary question is whether screening

with OCT is analogous to lead-time bias in
diseases such as cancer, that is, is there a
benefit in early case identification where
the outcome may actually be the
same?167,168 Major clinical trials have
highlighted the benefits of treatment in
early glaucoma,169–172 but these have not
necessarily used or reported imaging tech-
nologies such as OCT in the case identifica-
tion process. Several recent studies88,89

have highlighted the benefits of treating pre-
perimetric glaucoma, but these again have
focused on traditional methods of structural
examination, for example, fundus photogra-
phy. Integration of OCT into such clinical tri-
als would be further informative, specifically
for determining its suitability as a potential
endpoint. Thus, while OCT is a powerful tech-
nique for visualising structures in ocular dis-
ease and shows great promise as a potential
screening tool in primary care settings,173

there are a significant number of limitations
that relegate it to an adjunctive tool. From a
pool of 10,000 patients and assuming a glau-
coma prevalence of 3.4 per cent, 340 will
have glaucoma. Assuming 80 per cent sensi-
tivity and 95 per cent specificity (the average
across four studies),161–164 272 cases and
9,177 normal patients will be correctly identi-
fied. Yet, 483 normal patients will be falsely
identified as glaucoma and 68 cases with
glaucoma will be missed. Hence, screening
for ocular disease using OCT alone is not
recommended and the interpretation of OCT
needs to be performed in conjunction with
other clinical data (for example, in glaucoma,
stereoscopic optic nerve head, fundus pho-
tography, intraocular pressure, visual fields,
gonioscopy, pachymetry et cetera).

OCT as a diagnostic rather than
a screening tool
The sensitivity for neovascular AMD and
DMO may be higher than in glaucoma but is
similarly not infallible. When using OCT
alone and without knowing what to look for,
neovascular AMD may be difficult to distin-
guish from other presentations, such as
subretinal fibrosis, acquired vitelliform
lesions or sub-RPE haemorrhage, such as

arising from polypoidal choroidal vasculopa-
thy. Macular oedema and retinal nerve fibre
layer loss can also arise from several
causes, not just DR or glaucoma. A multi-
modal, evidence-based imaging approach is
therefore more informative and minimises
the likelihood of diagnostic error. Although
time-consuming, numerous automated and
semi-automated strategies are evolving to
make this process easier and more accessi-
ble in routine clinical practice (Figure 9).174

Machine learning in conjunction with
OCT and other clinical data have been pos-
ited as a potential means to address chal-
lenges in chronic disease eye care, such as
increasing prevalence, under-diagnosis and
workforce consumption.175–177 Intriguingly,
machine and deep learning can provide a
method for the interpretation of OCT by
rapidly analysing aspects of the scan
beyond that typically examined by human
clinicians, such as volumetric A-scan data.
Deep learning algorithms are already able
to automatically identify intra-retinal and
subretinal fluid.178 Given the importance of
these signs, we are likely to see automated
detection techniques incorporated to
enhance the functionality of existing OCT
devices in the near future. Automatic inter-
pretation of OCT results and their combina-
tion with other aspects of the clinical
examination provides another potential test in
chronic eye disease.179,180 Could screening
with OCT alongside at least fundus photogra-
phy therefore provide a means to address the
problem of under-diagnosis while simulta-
neously reducing the manpower required to
detect disease? One of the biggest factors con-
tributing to resistance to this technology is the
‘black box’ nature of the algorithm: the
method by which the machine ‘learns’ and
‘interprets’ the results to come up with the
confidence of diagnosis is unknown.181,182

While human assessors are able to provide
feedback regarding the decision-making pro-
cess, artificial intelligence systems may still be
treated with some level of suspicion due to
the number of hidden layers that underpin
their decision-making matrix. For the time
being, clinicians using OCT should be able to
apply the instrument judiciously and to trans-
late their clinical observations into an appro-
priate management plan for the benefit of
their patients.183 A number of resources
are available to facilitate this translation,
including printed education materials (https://
centreforeyehealth.com.au/chairside-references/).
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Conclusion

It could be argued that we are at a cross-
roads regarding the use of OCT in clinical
practice. It may be applied en masse, that is
for the indiscriminate, opportunistic screen-
ing of all patients presenting for an eye
examination, or alternatively in a more judi-
cious, targeted manner as a supplementary,
diagnostic procedure. The discourse above
illustrates the myriad of signs and consider-
ations in just three ocular conditions, AMD,
DR and glaucoma, let alone the innumera-
ble number of others that may present
during routine primary care. Ultimately,
our role as clinicians is to prevent or mini-
mise vision-related disability and improve
vision-related quality of life. The time taken
to accurately interpret OCT, particularly the

most recent iteration, OCT-A, is not insignif-
icant. Consequently, the time, costs, com-
plexity and risks involved in applying OCT
should be weighed carefully against the
benefits. The decision of when to use OCT
should and must be evidence-based.
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