Table 2.
Model | Feature | ICC (95% CI) | τ b (95% CI) | P K (95% CI) |
---|---|---|---|---|
GBDT with Huber loss | VGG | 0.91 [0.87, 0.93] | 0.78 [0.69, 0.79] | 0.90 [0.86, 0.91] |
ResNet | 0.91 [0.87, 0.93] | 0.77 [0.73, 0.81] | 0.90 [0.87, 0.91] | |
Inception | 0.87 [0.84, 0.90] | 0.71 [0.65, 0.76] | 0.86 [0.84, 0.89] | |
| ||||
GBDT with RankNet | VGG | 0.91 [0.88, 0.93] | 0.77 [0.72, 0.81] | 0.89 [0.87, 0.91] |
ResNet | 0.91 [0.88, 0.94] | 0.79 [0.75, 0.82] | 0.90 [0.88, 0.92] | |
Inception | 0.88 [0.85, 0.91] | 0.74 [0.70, 0.79] | 0.88 [0.86, 0.90] | |
| ||||
SVR | VGG | 0.94 [0.92, 0.95] | 0.80 [0.76, 0.84] | 0.91 [0.89, 0.93] |
ResNet | 0.95 [0.93, 0.96] | 0.83 [0.79, 0.86] | 0.93 [0.91, 0.94] | |
Inception | 0.89 [0.85, 0.92] | 0.74, [0.69, 0.79] | 0.88 [0.85, 0.90] | |
| ||||
Ranking SVM | VGG | 0.91 [0.88, 0.93] | 0.76 [0.71, 0.80] | 0.89 [0.87, 0.91] |
ResNet | 0.92 [0.89, 0.94] | 0.78 [0.73, 0.82] | 0.90 [0.88, 0.92] | |
Inception | 0.89 [0.86, 0.92] | 0.76 [0.71, 0.80] | 0.89 [0.86, 0.91] |
Bold indicates the best performance in terms of the corresponding metric.