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+is article focuses on the numerical analysis and simulation of the stochastic diabetes mellitus model with additive noise. +e
existence and uniqueness theorem of the solution under some appropriate assumptions is established. And, the mean square
stability and convergence of numerical solutions are proposed, too. +e practical use of these theorems is demonstrated in the
numerical computations of the stochastic diabetes mellitus model and the value for the forecast of the tendency of diabetes
mellitus in a given time.

1. Introduction

At present, with the development of the society and the
increment of the economy, diabetes mellitus is becoming
more and more popular in the world. In fact, diabetes
mellitus is the name given to a group of different conditions
in which there is not the right amount of insulin to stabilize
the amount of sugar in the body. As we know, there exist two
forms of diabetes mellitus. Type I diabetes mellitus, which
depends on insulin, most often occurs in young people,
while type II diabetes mellitus, which does not depend on
insulin, usually develops in the aged.

It is well known that there are many finished works
which utilize two methods to investigate the diabetes mel-
litus in the view of mathematical model. One pays attention
to microscopic action of the nosogenesis of diabetes mellitus
and forms many mathematical models such as ordinary
differential equations and partial differential equation (refer
[1] and the references therein). Another takes account of the
macroscopic case of the size of population of diabetes
mellitus in a given time.+is leads to insight into the control
of diabetes mellitus, and with the current alarming increase
in the incidence of the disease of a given considered region,
this area has gained increased interest and importance.

However, due to many uncertainties or random in-
fluences, where these uncertainties come from the influence
of diet, physical activity level, and the age dynamical dis-
tribution of population, noises should be taken into account.
+e existing deterministic mathematical models of diabetes
mellitus [2] need to be revised so that it can simulate the fact
more really. +erefore, we expand it to the case of stochastic
differential equations (SDEs), whose applications describe
many natural phenomena in meteorology, biology, and so
on [3, 4]. As far as we know, till now, there has been little
investigation of the diabetes mellitus mathematical model in
the view of SDEs in the literature. Stochastic numerical
analysis is still an interesting method of studying epidemic
disease tendency of diabetes mellitus.

+e main motivations of this work are twofold. On one
side of the coin, the classical results about the deterministic
mathematical model of diabetes mellitus are the base of this
research. A variety of mathematical models have been used
for different aspects of diabetes mellitus, and many im-
portant results, which can reveal the facts of diabetes mel-
litus, are obtained (refer [2, 5–9] and the references therein).
On the other hand, it has been attracted by some random
phenomena which often appear in the population dynamics
of diabetes mellitus. +ese need numerical simulations to
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direct the control policy of diabetes mellitus. Furthermore, it
is the fact that there exists our earlier work [10, 11] on
stability analysis and numerical simulation of SDEs. For
example, there are some work on numerical analysis of SDEs
[11–15] and numerical simulation of SDEs [10]. +ese carry
out the foundation of numerical analysis [16].

In this work, we first prove the existence and uniqueness
theorem of the solution of the stochastic diabetes mellitus
model under some assumptions. +en, the mean square
stability and convergence are proposed. And, numerical
examples are shown to illustrate the possibility of the sto-
chastic mathematical model of diabetes mellitus and the
value in the forecast of the tendency of diabetes mellitus in
a given time. +ese results show that, under some appro-
priate conditions, SDEs can simulate the epidemic disease
tendency of diabetes mellitus more accurately, whose value
can be well estimated by the numerical approximative
solution.

A more detailed outline of this paper is as follows.
Section 2 shows some relevant concepts and norms which
will be utilized later. Section 3 is devoted to the theoretical
analysis of the stochastic diabetes mellitus model, that is, the
existence of the solution, mean square stability, and con-
vergence. Section 4 presents numerical experiments of the
stochastic diabetes mellitus model in some given areas. Il-
lustrative numerical results for the main theorem are in-
cluded. Section 5 is addressed to the conclusions of this
article.

2. Preliminaries

2.1. Generated Differential Equation Model. Here, we con-
sider a stochastic model which can describe the dynamic
behaviour of diabetes mellitus.

Let (Ω,F,P) be a canonical Wiener space, Ft􏼈 􏼉t∈R+ be
its natural normal filtration, and W(t)(t ∈ R+) be a standard
one-dimensional Brownian motion defined on the space
(Ω,F,P). We assume that Ω ≔ ω ∈ C(R+,R) : ω(0) � 0{ }

endowed with the compact-open topology. In the re-
alization, Wt(ω) ≔ ω(t), where ω(·) ∈ Ω, which means that
the elements of Ω can be identified with the paths of the
Wiener process. Based on the conclusions of deterministic
ordinary differential equations about diabetes mellitus in
[1, 2], we consider a class of Itô SDEs in the form of

dC(t) � (−(λ(t) + θ(t))C(t) + λ(t)N(t))dt + g1(t)dWt,

dN(t) � (I(t)−(](t) + δ(t))C(t) − μ(t)N(t))dt + g2(t)dWt,
􏼨

(1)

where t ∈ R+; the quantity of diabetes mellitus which has
complications in a special research region at time t is written
as C(t)(C(t) ∈ R+), and C(0) � C0; N(t) is on behalf of the
scale of the population which has diabetes mellitus in
a special research region at time t, namely, N(t) �

C(t) + D(t). Here, D(t)(D(t) ∈ R+) presents the quantity
of diabetes mellitus which has no complications in a special
research region at time t; the morbidity of diabetes mellitus
in a special research region at time t is represented as I(t);
μ(t) stands for the mortality rate, the chance of a diabetes

mellitus person who is developing a complication is written
as λ(t), the proportion whose complications are mended is
shown as c(t), the parameter ](t) presents the rate at which
diabetic patients with complication become severely dis-
able, the parameter δ(t) shows the mortality rate due to
complications, θ(t) ≔ c(t) + μ(t) + ](t) + δ(t) denotes the
sum of the above parameters, and g1(t) andg2(t) are
functions with respect to t, which denote the uncertain
influences [2].

2.2. Basic Notations and Assumptions. We make use of the
following notations which is similar to [11]:

(i) Let L2(Ω,P) be the space of all square-integrable
random variables x : Ω⟶ Rd.

(ii) +e norm of a random variable x � (x1, x2, . . . , xd)

∈ L2(Ω,P) is defined as

‖x‖2 � 􏽚
Ω

x1(ω)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ x2(ω)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
+, . . . , + xd(ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
dP(ω)􏽨 􏽩􏼔 􏼕

1/2

<∞.

(2)

(iii) +e norm of a stochastic process x(t,ω) is defined
as ||x(t,ω)||2 � supt∈R+ ‖xt(ω)‖2<∞, where
xt(ω) ∈ L2(Ω,P) and t ∈ R+.

(iv) We define the norm of random matrix AL2(Ω,P) �

[E(|A|2)]1/2, where A is a random matrix and | · | is
the operator norm.

(v) Unless otherwise stated, the norms ‖ · ‖2 and
‖ · ‖L2(Ω,P) are usually denoted as ‖ · ‖ in sequels.

In this paper, we also make the following assumptions
which are used for the theoretical analysis [11].

Hypothesis 2.1

(i) +e initial values C0 and D0 are bounded; that is,

max C0
����

����, D0
����

����􏽮 􏽯≤K1, (3)

for K1 > 0
(ii) Assume that the function λ : R⟶ R is continu-

ous, measurable function and the function
θ : R⟶ R is continuous, too

(iii) +e functions λ and θ are globally bounded with
respect to t. +at is, there exists a positive constant J
such that

max
t

|θ(t)|, |λ(t)|{ }≤ J, (4)

holds for t ∈ R+

(iv) +e functions g1(t) and g2(t) are globally bounded.
+at is, there exists a constant K2 > 0 such that
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max
t

g1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, g2(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽮 􏽯≤K2, (5)

holds for t ∈ R+

2.3. Equivalent Form. SDE (1) can be rewritten in the ma-
trix-vector form as follows:

dX � b(X, t)dt + B(X, t)dWt, (6)

where

X(t) �
C(t)

N(t)
􏼠 􏼡,

X0 �
C0

N0
􏼠 􏼡,

B(X, t) �
g1(t)

g2(t)
􏼠 􏼡,

(7)

b(X, t) �
−(λ(t) + θ(t))C(t) + λ(t)N(t)

I(t)−(](t) + δ(t))C(t)− μ(t)N(t)
􏼠 􏼡. (8)

We define

θ : (−∞, +∞) ×Ω⟶Ω, θtω(s) � ω(t + s)−ω(t). (9)

and Δ ≔ (s, t) ∈ R2, s≤ t􏼈 􏼉. By the conclusions in [3], SDE
(1) generates a stochastic flow φ : Δ × R2 ×Ω⟶ R2 when
the solution of SDE (1) exists uniquely, which is usually
written as φ(s, t, x0,ω) ≔ φ(s, t,ω)x0 on the metric dy-
namical systems (Ω,F,P, θt). +e stochastic flow φ is given
by

φ(s, t,ω)X0 � X0 + 􏽚
t

s
b φ(s, r,ω)X0, r( 􏼁dr

+ 􏽚
t

s
B φ(s, r,ω)X0, r( 􏼁dWr, t≥ s.

(10)

3. Theoretical Results

3.1. Existence of Equation (1)’s Solutions. +e following result
guarantees the existence of solutions for SDEs and is a direct
consequence of +eorem 3.2.4 in [17].

Lemma 3.1. Suppose that b : R2 × [0, T]⟶ R2 and
B : R2 × [0, T]⟶ M2 are continuous and satisfy the fol-
lowing conditions for some constant L:

(i) ‖b(X, t)− b( 􏽢X, t)‖≤ L‖X− 􏽢X‖, ‖B(X, t)−B( 􏽢X, t)‖

≤ L‖X− 􏽢X‖ for all 0≤ t≤T and X, 􏽢X ∈ R2

(ii) ‖b(X, t)‖≤L(1 + ‖X‖), ‖B(X, t)‖≤L(1 + ‖X‖) for
all 0≤ t≤T and X ∈ R2

(iii) Let X0 be any R2-valued random variable such that
E(|X0|

2)<∞ and X0 is independent of F0

>en, there exists a unique solution X ∈ L2(Ω,P) of the
stochastic differential equation:

dX � b(X, t)dt + B(X, t)dWt, (0≤ t≤T),

X(0) � X0.
􏼨 (11)

By the conclusions of Lemmas 3.1, we obtain the following
theorem:

Theorem 3.2. Suppose that SDE (1) satisfies Hypothesis 2.1
and the initial conditions are given in Section 2.1.

>en, SDE (1) has a uniqueness solution X(t) �

(C(t), N(t)) for all 0≤ t≤T.

Proof. In order to utilize Lemma 3.1 to this problem, we only
need to check that the conditions of this theorem satisfy its
three hypotheses.

First and foremost, Hypothesis (iii) obviously holds.
Secondly, by the assumptions of SDE (1), we obtain that

‖b(X, t)− b( 􏽢X, t)‖ �
−(λ(t) + θ(t))(C(t)− 􏽢C(t)) + λ(t)(N(t) − 􏽢N(t))

−(](t) + δ(t))(C(t)− 􏽢C(t))− μ(t)(N(t)− 􏽢N(t))

���������

���������

�
−(λ(t) + θ(t)), λ(t)

−(](t) + δ(t)),−μ(t)
􏼠 􏼡

C(t)− 􏽢C(t)

N(t)− 􏽢N(t)
⎛⎝ ⎞⎠

����������

����������

≤
−(λ(t) + θ(t)), λ(t)

−(](t) + δ(t)),−μ(t)
􏼠 􏼡

���������

���������
· ‖X− 􏽢X‖≤ ‖A(t)‖ · ‖X− 􏽢X‖,

(12)

where

A(t) �
−(λ(t) + θ(t)), λ(t)

−(](t) + δ(t)), −μ(t)
􏼠 􏼡. (13)

It follows from the definition of random matrix and
Hypothesis 2.1(ii) that we obtain

‖b(X, t)− b( 􏽢X, t)‖≤ L · ‖X− 􏽢X‖, (14)

where
‖A‖≤ max

t∈[0,T]
E (λ(t) + θ(t))

2
+ λ2(t) +(](t) + δ(t))

2
+ μ2(t)􏽨 􏽩􏽨 􏽩

1/2

≤
�
7

√
J ≔ L.

(15)
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By the similar way, we can prove that

‖B(X, t)−B( 􏽢X, t)‖ �
g1(t)(C(t) − 􏽢C(t))

g2(t)(C(t) − 􏽢C(t))

⎛⎝ ⎞⎠

����������

����������

�
g1(t)

g2(t)
􏼠 􏼡 · (X− 􏽢X)

���������

���������
.

(16)

It follows from the definition of random matrix and
Hypothesis 2.1 (iii) that we obtain

||B(X, t)−B( 􏽢X, t)||≤K2‖X− 􏽢X‖. (17)

+is completes the check of the first hypothesis. Last but
not least, it follows from Hypothesis 2.1 (iv) that

‖b(X, t)‖ �
−(λ(t) + θ(t))C(t) + λ(t)N(t)

−(](t) + δ(t))C(t) − μ(t)N(t)

���������

���������

�
−(λ(t) + θ(t)), λ(t)

−(](t) + δ(t)),−μ(t)
􏼠 􏼡

C(t)

N(t)
􏼠 􏼡

���������

���������

≤ ‖A‖ · ‖X‖≤L‖X‖≤L(1 +‖X‖).

(18)

By the same way, we can obtain that

‖B(X, t)‖ �
g1(t)

g2(t)
􏼠 􏼡

���������

���������
≤K2 ≤L≤L(1 +‖X‖). (19)

+is completes the check of the second hypothesis.
+erefore, the conclusion of +eorem 3.2 follows from

Lemma 3.1. +e proof is finished. □

3.2. Mean-Square Asymptotical Stability. In this section, we
investigate the mean-square uniformly asymptotic stability
of the solution φ(s, t,ω)X0 of SDE (1). +e pullback method
is a powerful tool to the proof of uniformly asymptotic
stability. To be precise, let us introduce some related defi-
nition [18].

Definition 3.1. +e solution φ(s, t,ω)X0 of SDE (1) is said to
be mean-square asymptotically stable if, for any given ϵ> 0,
every other solution φ(s, t,ω) 􏽢X0 of SDE (1) satisfies

lim
t⟶+∞

φ(s, t,ω)X0 −φ(s, t,ω) 􏽢X0
����

���� � 0, (20)

for any bounded Fs-measurable bounded initial values X0
and 􏽢X0, respectively, where ‖X0 − 􏽢X0‖< ε.

Theorem 3.3. Assume that for any initial values X0 and
􏽢X0 ∈ L2(Ω,P), the coefficients of SDE (1) satisfy>eorem 3.2,
then the solution φ(t− τ, t, θ−τω)X0 of SDE (1) is mean-
square asymptotically stable.

Proof. First and foremost, let φ(t− τ, t, θ−τω) 􏽢X0 be another
solution of SDE (1) and ϵ> 0 be an arbitrary constant. If
‖X0 − 􏽢X0‖≤ ϵ, it follows from (9) and the method which is
used to estimate [10] that

E φ t− τ, t, θ−τω( 􏼁X0 −φ t− τ, t, θ−τω( 􏼁 􏽢X0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 ≤ I1 + I2 + I3,

(21)

I1 � 3E X0 − 􏽢X0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
,

I2 � 3E
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏽚

t

t−τ
b φ t− τ, t, θ−τω( 􏼁X0, r( 􏼁

− b φ t− τ, t, θ−τω( 􏼁 􏽢X0, r􏼐 􏼑dr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

, (22)

I3 � 3E
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏽚

t

t−τ
B φ t− τ, t, θ−τω( 􏼁X0, r( 􏼁

−B φ t− τ, t, θ−τω( 􏼁 􏽢X0, r􏼐 􏼑dWr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

.

(23)

It follows from the Cauchy–Schwarz inequality and the
Lipschitz condition of the function b that we have

I2 ≤ 3τ 􏽚
t

t−τ
E b φ t− τ, t, θ−τω( 􏼁X0, r( 􏼁− b φ t− τ, t, θ−τω( 􏼁 􏽢X0, r􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dr

≤ 3τ · L
2

􏽚
t

t−τ
E φ t− τ, t, θ−τω( 􏼁X0 −φ t− τ, t, θ−τω( 􏼁 􏽢X0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
dr.

(24)

+e Itô isometry and the global Lipschitz condition of
the function B imply that

I3 ≤ 3􏽚
t

t−τ
E b φ t− τ, t, θ−τω( 􏼁X0, r( 􏼁−B φ t− τ, t, θ−τω( 􏼁 􏽢X0, r􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dr

≤ 3L
2

􏽚
t

t−τ
E φ t− τ, t, θ−τω( 􏼁X0 −φ t− τ, t, θ−τω( 􏼁 􏽢X0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
dr.

(25)

By the Gronwall inequality, there exists a number M1
such that

φ t− τ, t, θ−τω( 􏼁X0 −φ t− τ, t, θ−τω( 􏼁 􏽢X0
����

����≤M1, (26)

where

M1 �
�
3

√
X0 − 􏽢X0

����
����

�������������

3(τ + 1)L2expτ
􏽱

. (27)

+erefore, by the fact that M1⟶ 0 as τ⟶−∞, we
obtain that

lim
t⟶+∞

φ t− τ, t, θ−τω( 􏼁X0 −φ t− τ, t, θ−τω( 􏼁 􏽢X0
����

���� � 0.

(28)

+en, by Definition 3.1, it is mean-square asymptotically
stable.

+is completes the proof. □

3.3.Mean-SquareConvergence. +e finite time interval [0, t]

is divided into N subintervals with the length Δt. +e exact
solution of SDE (1) in [0, t] has the form

X(t,ω) � X0 + 􏽚
NΔt

0
b X0, r( 􏼁dr + 􏽚

NΔt

0
B X0, r( 􏼁dWr.

(29)
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+e Euler–Maruyama scheme is applied to SDE (6), and
we have the following form

Xk+1 � Xk + b Xk, tk( 􏼁Δtk + B Xk, tk( 􏼁ΔWk, (30)

where tk � kΔt, k � 0, 1, 2, . . . , N and ΔWk � Wk+1 −Wk.
+e Milstein scheme is applied to SDE (6), and we have

the following form

Xk+1 � Xk + b Xk, tk( 􏼁Δtk + B Xk, tk( 􏼁ΔWk

+
1
2

B Xk, tk( 􏼁
zB Xk, tk( 􏼁

zX
ΔWk( 􏼁

2 −Δtk􏼐 􏼑.

(31)

+e following result shows that the numerical approxi-
mation Xk to the solution of SDE (1) is mean-square con-
vergent to the exact solution of SDE (1) under some conditions.

Theorem 3.4. Assume that, for any initial value
X0 ∈ L2(Ω,P), the coefficients of SDE (1) satisfy>eorem 3.3;
then, the numerical approximation Xk to the solution of SDE
(1) by Euler–Maruyama scheme and Milstein scheme is
mean-square convergent, and the convergence order is 0.5.

Proof. We are interested in the mean square convergence to
zero of the error

ek � Xk −X tk,ω( 􏼁, (32)

where X(tk,ω) denotes the theoretical solution of SDE (1) at
the time tk. From the expression of X(t,ω), we obtain

X tk+1,ω( 􏼁 � X tk,ω( 􏼁 + 􏽚
(k+1)Δt

kΔt
b X tk,ω( 􏼁, r( 􏼁dr

+ 􏽚
(k+1)Δt

kΔt
B X tk,ω( 􏼁, tk( 􏼁dWr.

(33)

+en, it implies that

E Xk+1 −X tk+1,ω( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 ≤ I4 + I5 + I6, (34)

where

I4 � 3E Xk −X tk,ω( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
,

I5 � 3E b Xk, tk( 􏼁Δtk − 􏽚
(k+1)Δt

kΔt
b X tk,ω( 􏼁, r( 􏼁dr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

,
(35)

I6 � 3E B Xk, tk( 􏼁Δwk − 􏽚
(k+1)Δt

kΔt
B X tk,ω( 􏼁, r( 􏼁dWr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

.

(36)

We notice from the Cauchy–Schwarz inequality and the
global Lipschitz condition of function b that we can obtain

I5 ≤ 3E 􏽚
(k+1)Δt

kΔt
b Xk, r( 􏼁dr− 􏽚

(k+1)Δt

kΔt
b X tk,ω( 􏼁, r( 􏼁dr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

≤ 3ΔtkL
2

􏽚
(k+1)Δt

kΔt
E Xk −X tk,ω( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
dr.

(37)

+en, the Itô isometry and the global Lipschitz condition
of the function B imply that

I6 ≤ 3E 􏽚
(k+1)Δt

kΔt
B Xk, r( 􏼁dWr − 􏽚

(k+1)Δt

kΔt
B X tk,ω( 􏼁, r( 􏼁dWr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

≤ 3L
2

􏽚
(k+1)Δt

kΔt
E Xk −X tk,ω( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
dr.

(38)

It follows from the Gronwall inequality that there exists
a number M2 such that

E Xk+1 −X tk+1,ω( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 ≤M2, (39)

where

M2 � 3E Xk −X tk,ω( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

· 3 Δtk + 1( 􏼁L
2 exp Δtk. (40)

By the fact that M2 tends to zero as Δtk⟶ 0, that is,

lim
Δtk⟶0

M2 � 0, (41)

we obtain

lim
Δtk⟶0

ek+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � lim
N⟶+∞

Xk+1 −X tk+1,ω( 􏼁
����

���� � 0. (42)

+erefore, it is mean-square convergent, and the con-
vergence order is 0.5. We have established the theorem. □

4. Numerical Experiments

4.1. Experimental Preparation. Based on the sampling sta-
tistical data from Fujian Province, PR China, shown in
Table 1, we consider the following stochastic differential
equations of diabetes mellitus:

dC(t) � (−0.03tC(t) + 0.02tN(t))dt + K3 sin tdWt,

dN(t) � (0.05t− 0.007tC(t) − 0.002tN(t))dt + K3 cos tdWt.
􏼨

(43)

+at is,

λ(t) � 0.02t,

θ(t) � 0.01t,

I(t) � 0.05t,

](t) + δ(t) � 0.007t,

μ(t) � 0.002t,

(44)

g1(t) � K3sin t,

g2(t) � K3cos t,
(45)

which are obtained by the fitting method in a one-di-
mensional space of real numbers. And, due to the ran-
domness of sampling data and the periodic property of the
considered noise, the sine and cosine functions are used to
control the intensity of the added noise.

It follows from+eorem 3.2 that there exist solutions of
SDE (43). As shown in [10], in order to obtain the
Brownian trajectory, we can construct the positive time
path and reflect it against point zero. We select the meshes
as follows [14, 19]:
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t � 500,

Δt � 0.01,

N + 1 � 501.

(46)

Brownian trajectories are generated by the following
method:

W0 � 0,

W(i+1)Δt � WiΔt + ψi+1,
(47)

where

ψi � N(0,
��
Δt

√
), i � 1, 2, . . . , N + 1. (48)

Utilizing +eorem 3.2 and the one-step numerical
scheme (EM scheme [19]) to solve SDE (43) with the initial
value X0, we obtain

Ck+1(t) � Ck(t) + −0.03tkCk(t) + 0.02tkNk(t)( 􏼁Δtk

+ K3 sin tkΔWk,

Nk+1(t) � Nk(t) + 0.05tk − 0.007tkCk(t)− 0.002tkNk(t)( 􏼁Δtk

+ K3 cos tkΔWk.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(49)

+en, we obtain a numerically computed solution of SDE
(43).

And, we obtain the graphs for numerical approximations
to the solutions in the time interval [0, 500] as shown in
Figure 1.

As we see, there exist random phenomena with dif-
ferent starting points X0 � 0.65 and X0 � 0.1 at time t � 0.
And, it shows the fact that the numerical results can match
the reality very well, where the reality means the real

statistic data of diabetes mellitus in Fujian Province, PR
China.

4.2. Numerical Results. To begin with, in order to check the
convergence of numerical approximations, we plot the
curves from different starting points at the time t � 0 in the
same graph. In Figures 2 and 3, their starting points (X0, Y0)

are (0.70, 0.10) and (0.65, 0.11), respectively. As time goes
on, the trajectories tend to be more and more close and the
difference of two numerical solutions becomes zero, too.
+is presents the fact that whatever starting points we select,
two numerical solutions arrive at the same trajectory when
time goes forward. +at is to say, the solution of SDE (49) is
a stochastic process which is different for every ω ∈ Ω. +ese
confirm the fact that the numerical results are close to the
epidemic disease tendency of diabetes mellitus in Fujian
Province, PR China.

Secondly, to check the stability of the true solution, we
plot the curves from different starting points at time t � 0 in
the same graph in a long time, such as 40 years. As we see
from Figures 4 and 5, the starting points (X0, Y0) are
(0.70, 0.10), (0.65, 0.11), and (0.79, 0.09), respectively. As
time progresses, the trajectories become close in a given
small neighbourhood of one orbit. +is also reflects the fact
that if the starting points we choose are in a given region, as
we move forward in time, numerical solutions arrive at the
tolerant neighbourhood of one orbit which depend on
different ω ∈ Ω. In other words, the solution of SDE (49) is
not sensitive to the change of the initial value.

4.3. Control Policy and Its Practical Use. As we can see, the
graph of N(t) shows that the total number of diabetes

Table 1: Sampling statistical data from Fujian Province, PR China, in five years (2012–2016).

Years λ(t) θ(t) I(t) ](t) + δ(t) μ(t)

2012 0.0211 0.0089 0.0573 0.00526 0.00191
2013 0.0401 0.0101 0.1010 0.00611 0.00081
2014 0.0612 0.0293 0.1536 0.00650 0.00118
2015 0.0812 0.0387 0.2006 0.00706 0.00157
2016 0.0991 0.0591 0.2436 0.00664 0.00198
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Figure 1: Numerical solutions C(t) and N(t) with corresponding different starting points X0 � 0.65 and X0 � 0.1 and K3 � 5.0.
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mellitus oscillates at the beginning and increases later.
However, the graph of C(t) shows that the number of
diabetes mellitus with complication decreases at first and
then increases, too. Moreover, Figures 4 and 5 also present
the fact that N(t) and C(t) both can exist random periodic
phenomenon with the period of approximately 10 years.
+erefore, efforts should be taken to move the situation out
of the current endemic case. +at is, we need to employ
proper measure, such as nutrition supplement, gene
therapy, physical activity and health education, and the
number of incidence of diabetes mellitus will not exacer-
bate at least.

5. Conclusion

+e main result of this article is the numerical simulation of
stochastic diabetes mellitus model. +e results show that the
methods are effective and the numerical results can match
the results of theoretical analysis and reality. Although some
progresses are made, more simple and practical models and
methods will be shown in our future work.

Data Availability

+e data used to support the findings of this study is real and
reliable.
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Figure 2: Convergence of the numerical solution C(t) with different starting points.
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Figure 3: Convergence of the numerical solution N(t) with different starting points.
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Figure 4: Stability of the numerical solution C(t) in 40 years.
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Figure 5: Stability of the numerical solution N(t) in 40 years.
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