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Abstract

Background: Emerging evidence suggests a potential association between ambient air pollution 

and risk of gestational diabetes mellitus (GDM), but results have been inconsistent. Accordingly, 

we assessed the associations between ambient fine particulate matter (PM2.5) and nitrogen dioxide 

(NO2) levels with risk of GDM.

Methods: Using linked data from birth certificates, hospital discharge diagnoses, and air 

pollution estimates informed by the New York City Community Air Survey, we fit conditional 

logistic regression models to evaluate the association between residential levels of PM2.5 and NO2 

with risk of GDM among 256,372 singleton live births of non-smoking mothers in New York City 

born 2008 – 2010, adjusting for sociodemographic factors and stratified on zip code of maternal 

address.

Results: GDM was identified in 17,065 women, yielding a risk of GDM in the study sample of 

67 per 1,000 deliveries. In single pollutant models, 1st and 2nd trimester PM2.5 was associated with 

a lower and higher risk of GDM, respectively. In models mutually adjusting for PM2.5 levels in 

both trimesters, GDM was associated with PM2.5 levels in the 2nd trimester (OR: 1.06, 95% CI: 

1.02, 1.10 per interquartile range increase in PM2.5), but not the 1st trimester (OR: 0.99, 95% CI: 

0.96, 1.02). Conversely, GDM was associated with NO2 during the 1st trimester (OR: 1.05, 95% 

CI: 1.01, 1.09), but not the 2nd trimester (OR: 1.02, 95% CI: 0.98, 1.06). The positive associations 

between pollutants and GDM were robust to different model specifications. PM2.5 in the 2nd 

trimester was more strongly associated with GDM among mothers who were aged < 35 years and 

not Medicaid recipients. NO2 in the 1st trimester was more strongly associated with GDM among 

overweight and parous women.
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Conclusions: In this large cohort of singleton births in New York City, NO2 in the 1st trimester 

and PM2.5 in the 2nd trimester were associated with higher odds of GDM, while 1st trimester 

PM2.5 was weakly and inconsistently associated with lower odds of GDM.
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1. Introduction

Gestational diabetes mellitus (GDM) is defined as diabetes that develops in women for the 

first time during pregnancy (ACOG, 2018). The prevalence of GDM in the US population is 

approximately 6–7% (or 240,000 of 4 million US births), but varies from 1 to 25% 

depending on race, ethnicity, and other patient demographics (Moyer, 2014). The prevalence 

of GDM has increased substantially between the late 1980s and early 2000s, reflecting or 

contributing to the current patterns of increasing diabetes and obesity (Ferrara, 2007)

GDM is associated with higher risk of adverse health outcomes in both the mother and child. 

Specifically, GDM is associated with higher risk of perinatal complications such as 

preeclampsia, macrosomia, organomegaly (abnormal enlargement of fetal organs), dystocia 

(obstructed labor with prolonged head-to-body delivery time), Cesarean delivery, and 

neonatal respiratory distress syndrome (Fung et al., 2014; Naylor et al., 1996; Wendland et 

al., 2012); higher risk of the mother subsequently developing type 2 diabetes and 

cardiovascular disease (Mirghani Dirar and Doupis, 2017); and higher risk of the child 

developing obesity, autism, and metabolic syndrome later in life (Hammoud et al., 2018; 

Xiang et al., 2015). Although treatment may be effective in partially mitigating some of 

these adverse effects, prevention of GDM through the modification of risk factors remains 

the central strategy for avoiding the potential short- and long-term adverse health effects 

associated with GDM (O’Reilly, 2014).

Some environmental exposures have been associated with impaired glucose homeostasis 

and/or higher risk of GDM, including endocrine disrupting chemicals and heavy metals 

(Ehrlich et al., 2016; Rahman et al., 2016). Epidemiological studies suggest that ambient air 

pollution may be associated with impaired glucose tolerance (Fleisch et al., 2014; Lu et al., 

2017) or higher risk of GDM (Malmqvist et al., 2013; Robledo et al., 2015). Although the 

pathophysiologic mechanisms by which ambient air pollution might increase the risk of 

GDM remain unknown, there is some evidence that air pollution-induced changes in 

endothelial function, oxidative stress, and inflammation could lead to insulin resistance 

(Finch and Conklin, 2016). However, results from epidemiologic studies have been 

heterogeneous (Fleisch et al., 2016; Pedersen et al., 2017; Shen et al., 2017; van den Hooven 

et al., 2009) suggesting a need for additional studies with large sample sizes and across a 

variety of populations.

Accordingly, we evaluated the associations between ambient fine particulate matter (PM2.5) 

and nitrogen dioxide (NO2) levels with risk of GDM, leveraging data from a unique urban 

air monitoring program designed to assess intra-urban variation in air pollution exposures, 

and to draw on a combination of birth certificate and hospital discharge diagnoses for a 
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large, diverse population of pregnant women across New York City. Previous analysis of 

data from this study found that residential ambient levels of these two pollutants were 

associated with a small decrement in birth weight (Savitz et al., 2014), but not with risk of 

spontaneous preterm delivery or risk of hypertensive disorders of pregnancy (Johnson et al., 

2016; Savitz et al., 2015).

2. Materials and methods

2.1. Study population

Birth records of 348,585 live births to residents of New York City occurring in New York 

City hospitals between 2008 and 2010 were available for analysis, excluding the estimated 

4% of live births to New York residents that occurred at hospitals outside New York City, as 

previously described (Savitz et al., 2014; Savitz et al., 2015). Briefly, we linked birth 

certificate files to hospital discharge data provided by the New York State Department of 

Health Statewide Planning and Research Cooperative System to verify medical conditions 

before and during pregnancy. We excluded non-singleton births (n = 10,804, 3.6%), mothers 

reporting smoking during pregnancy (n = 7,615, 2.6%; to minimize the potential for residual 

confounding by smoking), and mothers with pre-existing diabetes (n = 3,541, 1.0%). To 

obtain unbiased estimates of seasonal health effects (Strand et al., 2011), we excluded 

43,736 (12.5%) births with an estimated date of conception before July 31, 2007 (> 22 

weeks before January 1, 2008) or after March 12, 2010 (< 42 weeks before December 31, 

2010). We additionally excluded deliveries missing data on residential address needed for 

estimating exposure (n = 7, < 0.1%), deliveries with implausible birth weights (<500 or 

>5,000 g) (n = 399, 0.1%), and those missing outcome (n = 6,183, 2.2%) or covariate 

information (n = 5,660, 2.0%). The study population was further restricted to exclude 5,220 

(1.9%) of deliveries at hospitals with <10 GDM diagnoses per hospital to protect patient 

privacy. The final analytic sample included 256,372 births delivered at 41 hospitals. These 

analyses are based on a de-identified dataset and thus did not require review or approval 

from the Institutional Review Board of Brown University.

2.2. Exposure assessment

We estimated PM2.5 and NO2 at the maternal home address as noted on the birth certificate 

at the time of delivery, as previously described (Savitz et al., 2014; Savitz et al., 2015). 

Briefly, as part of the New York City Community Air Survey (NYCCAS), integrated air 

pollution samples were collected at 150 monitoring sites in each of the four seasons for one 

2-week session and in every 2-week period at five reference locations to track city-wide 

temporal variation (Matte et al., 2013). The 2-week average concentrations at street level 

(~3–4 m off the ground) of several pollutants, including PM2.5 and NO2, were measured for 

the period December 2008 to December 2010 (Clougherty et al., 2013; Matte et al., 2013). 

The annual average estimates for Year 1 (December 2008 to November 2009) were used to 

fit spatial models for each pollutant, and annual average estimates from Year 2 of the 

sampling campaign (December 2009 to November 2010) were used for validation of the 

spatiotemporal model (Ross et al., 2013). We used these models to estimate average 

pollutant concentrations within 300 m of each maternal address. Exposure estimates were 

computed for three distinct trimesters of each birth. Women may have moved during the 
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course of pregnancy and/or spent substantial time at locations other than their residence 

(Bell et al., 2018; Bell and Belanger, 2012). In a validation, the R2 values for predictions of 

2-week average concentrations of PM2.5 and NO2 against actual concentrations measured 

during Year 2 at the 150 NYCCAS distributed sites were 0.83 and 0.79, respectively.

2.3. Assessment of Outcome and Covariates

We assessed GDM based on the presence of discharge diagnoses indicating GDM (ICD-9-

CM: 648.8), excluding deliveries where discharge diagnoses indicated preexisting diabetes 

(250.xx) or background diabetic retinopathy (362.01). Although there is no available 

information regarding if, when, or how GDM was screened for, the use of diagnostic codes 

to identify women with GDM has been previously shown to be both sensitive and specific 

(Lydon-Rochelle et al., 2005).

We assessed the following covariates potentially associated with either air pollution 

exposures or GDM based on previous evidence (Landon and Gabbe, 2011; Solomon et al., 

1997; Zhang et al., 2016): maternal age (<20, 20–24, 25–29, 30–34, 35–39, ≥40), race/

ethnicity (non-Hispanic white, black, Hispanic, Asian, or other/unknown), education (<9, 9–

11, 12, 13–15, 16, or >16 years), reported pre-pregnancy body mass index (BMI), parity (0, 

1, or ≥2), working during pregnancy (yes, no), conception year, and Medicaid beneficiary 

(the publicly-funded health insurance system for the poor, classified as yes or no). We did 

not consider gestational weight in our analyses because considerable weight gain typically 

occurs during the 2nd and 3rd trimester of pregnancy and potentially after the diagnosis of 

GDM (ACOG, 2013). To address potential confounding by neighborhood socioeconomic 

status (NSES), we applied a previously developed social deprivation index to the study 

sample, as described elsewhere (Shmool et al., 2015). Briefly, the index was developed to 

summarize the following seven contextual variables: proportion of residents with a college 

degree, proportion unemployed, proportion in a management or professional occupation, 

proportion residential crowding, proportion living below 200% of the federal poverty line, 

proportion receiving public assistance, and proportion non-white race.

2.4. Statistical analysis

We used directed acyclic graphs (DAGs) to encode our assumptions regarding the 

relationships among study variables and identify potential confounders (Supplemental Fig. 

1). We adjusted all models for potential confounding by maternal age, race/ethnicity, 

education, BMI, parity, working during pregnancy, NSES, conception year, and Medicaid 

recipient. We quantified the Pearson correlation between each pair of air pollutants across 

trimesters. We used conditional logistic regression stratified on zip code to assess the 

univariable (unadjusted) association between key covariates and the log odds of GDM and 

subsequently fit multivariable conditional logistic regression models to estimate the 

associations of PM2.5 and NO2 with GDM, adjusting for these covariates. All models were 

stratified on zip code (184 strata) of maternal address to minimize potential residual 

confounding by geographically clustered characteristics such as income level and features of 

the built environment. This approach to minimizing confounding by unmeasured 

neighborhood factors has been previously developed (Brumback et al., 2012; Neuhaus and 

McCulloch, 2006) and applied across a variety of settings (Filleul et al., 2005; Yi et al., 
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2017). Given the very large sample size of this study, we still had an average of 1,393 births 

per strata. Because stratification on zip code may represent over-adjustment via reduced 

variation in exposure within each zip code and/or reduce the precision of our estimates (Kuo 

et al., 2018) we repeated our main analyses using generalized mixed models with a random 

zip code intercept rather than conditional logistic regression stratified on zip code. Because 

the results from the two approaches were very similar with only minor differences in the 

width of the confidence intervals, we present only the results from the conditional logistic 

regression models.

In our main analyses, we considered pollutant levels in the 1st trimester (weeks 1–12) and 

2nd trimester (weeks 13–26) in separate models. Gestational age was estimated based on the 

birth attendant’s final estimate of gestation using all perinatal factors and assessments 

including ultrasound taken early in pregnancy (preferred), the infant’s date of birth, and the 

date of the mother’s last menstrual period which is considered week 0 (Health, 2009; 

Hygiene, 2010). We did not consider 3rd trimester exposures since GDM is typically 

screened for and, when present, diagnosed at the end of the 2nd trimester. We initially 

modeled each pollutant as quartiles and subsequently considered each pollutant as a linear 

continuous function with results expressed as an odds ratio (OR) per interquartile range 

(IQR)-increase in PM2.5 (3.23 μg/m3) or in NO2 (7.96 ppb). We used generalized additive 

models with non-parametric smoothing splines to further assess the shape of the exposure-

response curve between each air pollutant and GDM.

We conducted sensitivity analyses to assess the robustness of our findings. First, because the 

pollutants’ association with GDM may come from either temporal or spatial components of 

exposure, we separately considered exposure derived from the city-wide temporal variation 

alone (the average pollutant concentrations from regulatory monitors during each trimester) 

and exposure derived from spatial variation only (the estimated annual average pollutant 

concentrations from the NYCCAS spatial model based on the 300-m buffer from maternal 

address). Second, we used two-pollutant models to estimate the independent association of 

each pollutant adjusted for the other, recognizing that the degree of measurement error and 

temporal versus spatial contributions may differ for PM2.5 and NO2. Third, we repeated 

analyses for a given pollutant adjusting for the same pollutant in the other trimester. Finally, 

we performed analyses additionally adjusted for season of conception to account for 

seasonality. We evaluated whether the associations between air pollution and odds of GDM 

varied across strata of BMI, maternal age, ethnicity, parity, NSES, and season of conception. 

We conducted all the analyses in R (R Version 3.2.1). Due to the large sample size, we used 

the bife (Version 0.5) package to fit the conditional logistic regression models.

3. Results

There were 17,065 women identified as having GDM among 256,372 births, yielding a risk 

of GDM in the study sample of 67 per 1,000 deliveries. The odds of GDM were higher in 

women who were older, overweight or obese, multiparous, non-white, Medicaid recipients, 

who had <9 years of education, or who lived in neighborhoods with higher levels of the 

deprivation index (Table 1). Average levels of PM2.5 were 12.0±2.5 (mean ± standard 

deviation) μg/m3 in the 1st trimester and 11.9±2.4 μg/m3 in the 2nd trimester. For NO2, mean 
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levels were 27.9±6.3 ppb and 27.9±6.3 ppb in the 1st and 2nd trimesters, respectively. The 

correlation coefficients for pairs of air pollutants ranged between 0.27 and 0.69 

(Supplemental Fig. 2).

In unadjusted models, odds of GDM were negatively associated with PM2.5 in the 1st 

trimester and positively associated with PM2.5 in the 2nd trimester (Supplemental Table 1). 

Results were similar in models adjusted for a range of demographic and clinical covariates, 

and individual and neighborhood level markers of socioeconomic status (Figure 1). 

Specifically, in fully adjusted models 2nd trimester PM2.5 was associated with higher odds of 

GDM, with an OR of 1.10 (95% confidence intervals (CI): 1.03, 1.18) comparing the highest 

versus lowest quartiles of exposures, and an OR of 1.06 (95% CI: 1.03, 1.10) per IQR-

increase in PM2.5 (3.23 μg/m3). The association between 1st trimester PM2.5 and GDM was 

close to null. PM2.5 in the 1st trimester was associated with lower odds of GDM, with an OR 

of 0.97 (95% CI: 0.94, 1.00) per IQR-increase.

For NO2, in both unadjusted (Supplemental Table 1) and adjusted (Figure 1) models, GDM 

was associated with 1st trimester NO2 levels only, with an OR of 1.05 (95% CI: 0.98, 1.13) 

comparing the highest versus lowest quartile of NO2, and an OR of 1.05 (95% CI: 1.01, 

1.09) per IQR-increase (7.96 ppb) in NO2. NO2 nd in the 2nd trimester was not associated 

with the odds of GDM. For the positive associations of 2nd trimester PM2.5 and 1st trimester 

NO2 with GDM, we found no evidence of important deviations from linearity (Figure 2).

We performed sensitivity analyses to assess the robustness of these findings (Table 2). For 

2nd trimester PM2.5, results were qualitatively similar (although the magnitude of the point 

estimate and width of the confidence intervals varied) when we considered: 1) only the 

temporal component of exposure variation, 2) two-pollutant models (additional adjustment 

for NO2 in the same trimester), 3) two-trimester models (additional adjustment for PM2.5 in 

the opposite trimester), and 4) adjustment for season of conception. PM2.5 in 1st trimester 

showed consistently lower relative odds of GDM except when adjusted for PM2.5 in the 2nd 

trimester. The time-invariant spatial component of PM2.5 was associated with an OR of 

GDM of 1.06 (95% CI: 0.94, 1.19) per IQR-increase in PM2.5, comparable to the spatial-

temporal (primary analysis) and temporal-only estimates for the 2nd trimester. In contrast, 

the results for NO2 were generally consistent with only modest differences in the magnitude 

and precision of effect estimates depending on the analytic approach.

We evaluated whether the associations between 2nd trimester PM2.5 or 1st trimester NO2 and 

odds of GDM varied across strata of sociodemographic variables and season of conception, 

adjusted for all other covariates (Table 3). PM2.5 in the 2nd trimester was more strongly 

associated with the relative odds of GDM among women who were younger and not 

Medicaid recipients while the association between 1st trimester NO2 and GDM was more 

pronounced in overweight and parous women.

4. Discussion

In this large, urban population, we evaluated the association between PM2.5 and NO2 in the 

first two trimesters of pregnancy and the odds of GDM. We found that higher levels of 
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PM2.5 in the 2nd trimester and higher levels of NO2 in the 1st trimester were associated with 

higher odds of GDM, with or without adjusting for a broad suite of potential confounders 

and across a number of sensitivity analyses. We also found a negative association between 

1st trimester PM2.5 and GDM, but this association was weak and sensitive to the modeling 

approach.

Despite some evidence that air pollutants can impact glucose homeostasis during pregnancy 

(Lu et al., 2017; Madhloum et al., 2017), prior studies evaluating the association between air 

pollution or air pollution sources and risk of GDM have had mixed results. For example, 

positive associations between PM2.5 and GDM have been reported in Florida (Hu et al., 

2015), Rhode Island (Choe et al., 2018), and Taiwan (Shen et al., 2017). On the other hand, 

null or negative associations between PM2.5 and GDM were reported in California (Wu et 

al., 2016) and Massachusetts (Fleisch et al., 2016), as well as among births in the US 

Consortium on Safe Labor (Robledo et al., 2015). Results have been similarly inconsistent 

for nitrogen oxides (NOx), with positive associations reported in Los Angeles County (Wu et 

al., 2016), southern Sweden (Malmqvist et al., 2013) and Taiwan (Pan et al., 2017), but not 

across California (Wu et al., 2016) or in a different study in Taiwan (Shen et al., 2017). In 

the Danish National Birth Cohort, NO2 was not associated with GDM in the primary 

analyses, but was positively associated in secondary analyses using a different definition of 

GDM that could be applied only to a subset of patients (Pedersen et al., 2017). Residential 

proximity to major roads, often used as an imperfect marker of long-term exposure to traffic 

pollution, was not associated with risk of GDM in Japan (Yorifuji et al., 2015). The current 

study adds to this emerging literature by leveraging a large dataset from a large, dense, and 

diverse metropolitan area including more than 256,000 deliveries (of which more than 

17,000 were identified as having GDM), a spatial-temporal model for PM2.5 and NO2 based 

on an intensive air pollution monitoring campaign, and diagnostic and covariate information 

derived from both clinical and birth certificate data.

We note that our results are comparable in magnitude to those from some previous studies 

reporting a positive association. For example, our estimate of the association between 2nd 

trimester PM2.5 and GDM (OR: 1.10, 95% CI: 1.05, 1.16 per 5 μg/m3 increase in PM2.5) 

was similar to the results of a study of 410,267 births in Florida (OR: 1.15, 95% CI: 1.10, 

1.20 per 5 μg/m3 increase in PM2.5) (Hu et al., 2015). Similarly, our estimated association 

between 1st trimester NO2 and GDM (OR: 1.07, 95% CI: 1.01, 1.12 per 10.8 ppb increase in 

NO2) was similar to that from an analysis of births in Los Angeles County (OR: 1.05, 95% 

CI: 1.02, 1.09 per 10.8 ppb increase in NO2 (Wu et al., 2016). Differences in approaches to 

exposure assessment or analyses, or differences in population characteristics, medical care, 

or pollution mixtures likely contribute to some heterogeneity across studies.

We performed a number of sensitivity analyses to assess the robustness of the findings from 

our main analyses and to gain further insights into the impacts of spatial versus temporal 

variation in pollutant levels. Based on the results of the sensitivity analyses, we noted that 

only 2nd trimester PM2.5 is associated with GDM in models simultaneously considering 

PM2.5 in both trimesters. This suggests that the negative association we observed between 

1st trimester PM2.5 and GDM in the main analysis may be due to the correlation structure 
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between PM2.5 across trimesters, a pattern previously documented by others (Gryparis et al., 

2007; Wilson et al., 2017).

Our observation that PM2.5 and NO2 were each positively associated with GDM in different 

trimesters was unexpected. Some prior studies in the Northeastern United States similarly 

reported finding a positive association only with 2nd trimester PM2.5 (Choe et al., 2018; 

Fleisch et al., 2016). However, in Taiwan, GDM was positively associated with PM2.5 in 

both the 1st and 2nd trimesters (Shen et al., 2017). A Danish study found that NO2 in both 

the 1st and 2nd trimesters were associated with GDM (Pedersen et al., 2017). It remains 

unclear whether these differences in timing reflect true differences in the etiology of disease 

versus random variation between studies, lack of information on the timing of GDM 

screening or diagnosis, differences in medical practice across locations or other differences 

between studies.

We found that the association between air pollution and GDM varied somewhat across 

subgroups of the population, with modestly stronger associations among women who were 

younger, not receiving Medicaid (2nd trimester PM2.5), overweight, or multiparous (1st 

trimester NO2). These results are consistent with the limited previous studies available 

which have reported stronger associations between air pollution and GDM in younger 

women (Fleisch et al., 2016) and those with higher pre-pregnancy BMI (Pedersen et al., 

2017). In some areas, younger mothers may be more likely to live in neighborhoods with 

higher levels of air pollution or less green space, or have less access to high quality prenatal 

care (Fleisch et al., 2016). However, in our study population average pollutant levels tended 

to be lower rather than higher in younger mothers. Since there is yet limited evidence 

regarding possible effect modification by other environmental and biological factors, 

whether the observed differences actually reflect meaningful, consistent differences in 

individual susceptibilities remains an open question.

The potential mechanisms by which air pollution could increase the risk of GDM remains 

unknown. Experimental studies have suggested that suppression of vascular insulin signaling 

by PM2.5 may lead to systemic insulin resistance (Haberzettl et al., 2016; Sun et al., 2009). 

Clearly additional research is needed to better understand the potential mechanisms 

underlying these associations.

We have previously shown in this same population that residential ambient levels of PM2.5 

and NO2 were not associated with risk of hypertensive disorders of pregnancy (Savitz et al., 

2015). Given the very different etiologies, established risk factors, and clinical management 

between GDM and hypertensive disorders of pregnancy, it is not particularly surprising that 

we would find air pollution associated with one condition but not the other.

Of note, we used conditional logistic regression stratified on zip code of residence in order 

to minimize residual confounding by neighborhood factors (Brumback et al., 2012; Neuhaus 

and McCulloch, 2006). We acknowledge that stratification on zip code may represent over-

adjustment via reduced variation in exposure within each zip code and/or reduce the 

precision of our estimates (Kuo et al., 2018). To evaluate this possibility, we repeated the 

analyses using generalized mixed models with a random zip code intercept rather than 
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conditional logistic regression stratified on zip code and the results from the two approaches 

were very similar, revealing only minor differences in the width of the confidence intervals.

Our study has several potential limitations. First, some degree of exposure misclassification 

is likely since we estimated pollutant levels based on the residential address provided at the 

time of delivery, which may differ from the residential address during pregnancy (Bell et al., 

2018; Bell and Belanger, 2012). Unfortunately, data on residential address during the course 

of pregnancy are not available. Additional potential sources of exposure misclassification 

include varying amounts of time spent at home, use of air conditioning and other factors 

affecting penetration of ambient air pollution to indoor spaces, and failure to account for 

building height in exposure models. We expect this exposure measurement error to be non-

differential with respect to the outcome and thus, on average, bias our results towards the 

null. Second, although hospital discharge diagnoses have been found to be reasonably 

sensitive and specific for assessment of GDM (a sensitivity of 0.8 to 0.9 and a specificity of 

> 0.9 (Lydon-Rochelle et al., 2005)), some residual misclassification of the outcome is 

inevitable given variation in clinical practice across study hospitals and access to prenatal 

care across study participants. However, we expect that universal screening of pregnant 

women for GDM would have been widely practiced during the study period (2008–2010) 

(Janevic et al., 2018; Thorpe et al., 2005). Third, we could not evaluate the independent or 

joint effects of other ambient pollutants of interest such as NO, CO, black carbon, ozone, or 

SO2 as spatial-temporal estimates of residential ambient levels of these pollutants are not 

currently available to us. Similarly, estimates of pre-pregnancy air pollution levels or air 

pollution levels in shorter averaging periods were not available, precluding us from more 

fully characterizing the temporal pattern of the association between exposures and GDM. 

Fourth, we cannot exclude the possibility of residual confounding by unmeasured factors, 

particularly other features of the physical and built environment such as traffic-related noise 

or access to green space. Finally, these results may not be generalizable to populations with 

different characteristics or locations characterized by different pollution mixtures, lifestyle 

patterns, access to prenatal care or other potentially modifying factors.

On the other hand, this study has several notable strengths, including a large sample size, 

spatial-temporal pollutant estimates derived from an extensive urban air monitoring program 

designed to assess intra-urban variation in population exposures, an usually rich dataset 

combining birth certificate and hospital discharge data, and a diverse population of pregnant 

women.

5. Conclusions

In this large, urban, diverse population, we found that 2nd trimester PM2.5 and 1st trimester 

NO2 were associated with higher risk of GDM. These results were robust to a number of 

sensitivity analyses. Although we also found that 1st trimester PM2.5 was negatively 

associated with GDM in some analyses, these results were weaker and sensitive to modeling 

choices. This study adds to the emerging evidence suggesting the presence of a positive 

association between air pollution and risk of GDM. Further resolving whether maternal 

exposure to ambient air pollution increases the risk of GDM would inform future cost-

benefit analyses of air pollution mitigation efforts and provide valuable information for 

Choe et al. Page 9

Environ Res. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



clinicians and patients alike. Given that there are still relatively few large studies published 

on this topic, additional studies leveraging routinely available markers of air pollution and 

indicators of GDM would continue to add meaningfully to the evidence base. Furthermore, 

studies that can examine air pollution in relation to more refined indicators of glucose 

homeostasis during pregnancy would bring new insights to the topic, regardless of the 

findings.
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Refer to Web version on PubMed Central for supplementary material.
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• We investigated the associations between ambient fine particulate matter 

(PM2.5) and nitrogen dioxide (NO2) levels with odds of gestational diabetes 

mellitus (GDM) using a large, diverse population of pregnant women across 

New York City.

• PM2.5 in the 2nd trimester and NO2 in the 1st trimester were associated with 

higher odds of GDM. These positive associations were robust to different 

model specifications.

• The association between 2nd trimester PM2.5 and GDM was more pronounced 

in women who were overweight or obese, younger, and not on Medicaid 

assistance.

Choe et al. Page 13

Environ Res. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Association of quartiles of PM2.5 and NO2 with odds ratio (95% confidence interval) of 

gestational diabetes among 256,372 deliveries to non-smoking women in New York City, 

2008 – 2010. All models are adjusted for maternal age, ethnicity, education, Medicaid status, 

parity, working status during pregnancy, conception year, deprivation index, and BMI, 

conditional on zip code of residence. P values are calculated for linear trend of quartile-

specific odds ratios.
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Figure 2. 
Association between 2nd trimester PM2.5 (A.) and 1st trimester NO2 (B.) with odds of 

gestational diabetes. Models were fit using generalized additive models with the same 

covariates as in Figure 1.
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Table 1.

Characteristics of 256,372 deliveries and their univariate associations with odds of gestational diabetes, New 

York City, 2008–2010.

Characteristics

All Pregnancies (n=256,372) Gestational Diabetes (n=17,065)

n (%) OR (95% CI)

Maternal Age (years)

 <20 16,994 (6.6) 0.26 (0.23, 0.29)

 20–24 52,988 (20.7) 0.53 (0.50, 0.56)

 25–29 67,667 (26.4) 1.00

 30–34 67,849 (26.5) 1.44 (1.38, 1.50)

 35–39 39,476 (15.4) 1.87 (1.78, 1.95)

 ≥40 11,398 (4.4) 2.56 (2.40, 2.72)

Maternal Ethnicity

 Non-Hispanic white 70,884 (27.6) 1.00

 Black 55,635 (21.7) 1.67 (1.59, 1.76)

 Hispanic 86435 (33.7) 1.68 (1.60, 1.76)

 Asian 37,948 (14.8) 3.48 (3.31, 3.65)

 Unknown/Other 5,470 (2.1) 2.19 (1.98, 2.43)

Maternal Education (years)

 <9 20,494 (8.0) 1.51 (1.43, 1.60)

 9–11 45,130 (17.6) 0.97 (0.92, 1.02)

 12 61,256 (23.9) 1.00

 13–15 56,501 (22.0) 1.05 (1.00, 1.10)

 16 41,639 (16.2) 0.97 (0.92, 1.02)

 >16 31,352 (12.2) 0.83 (0.78, 0.88)

Medicaid beneficiary 156,318 (61.0) 1.23 (1.19, 1.27)

Parity

 0 119,645 (46.7) 1.00

 1 75,445 (29.4) 1.32 (1.28, 1.37)

 ≥2 195,090 (23.9) 1.57 (1.51, 1.63)

Working during pregnancy 103,913 (46.7) 0.84 (0.81, 0.86)

Conception Year

 2007 42,554 (16.6) 1.00

 2008 98,977 (38.6) 0.94 (0.90, 0.99)

 2009 95,542 (37.3) 0.99 (0.95, 1.04)

 2010 19,299 (7.5) 1.07 (1.00, 1.15)

Deprivation index 0.36 (−0.46, 1.04)
b

1.16 (1.13, 1. 19)
c

BMI (kg/m2)

 Underweight (<18.5) 14,225 (2.5) 0.73 (0.66, 0.80)

 Normal (18.5 to <25) 138,867 (54.2) 1.00

 Overweight (25 to <30) 60,922 (23.8) 1.76 (1.69, 1.82)

 Obese (≥30) 42,358 (16.5) 2.68 (2.57, 2.78)
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OR, odds ratio; CI, Confidence Interval; BMI, body mass index.

a
n (%),

b
Median (Q1, Q3),

c
OR per interquartile-range increase in deprivation index
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