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Abstract

Many DNA-processing enzymes have been shown to contain a [4Fe4S] cluster, a common redox 

cofactor in biology. We find using DNA electrochemistry that binding of the DNA polyanion 

promotes a negative shift in [4Fe4S] cluster potential, which corresponds thermodynamically to ~ 

500-fold increase in DNA binding affinity for the oxidized [4Fe4S]3+ cluster versus the reduced 

[4Fe4S]2+ cluster. This redox switch can be activated from a distance using DNA charge transport 

chemistry. DNA-processing proteins containing the [4Fe4S] cluster are enumerated with possible 

roles for the redox switch, highlighted. A model is described where repair proteins may signal one 

another using DNA-mediated charge transport as a first step in their search for lesions. The redox 

switch in eukaryotic DNA primases appears to regulate polymerase handoff, and in DNA 

polymerase δ, the redox switch provides a means to modulate replication in response to oxidative 

stress. Thus we describe redox signaling interactions of DNA-processing [4Fe4S] enzymes as well 

as the most interesting potential players to consider in delineating new DNA-mediated redox 

signaling networks.
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I. Introduction

Iron sulfur clusters are modular, tunable metal cofactors found in all domains of life that 

serve as one-electron carriers operating over a wide range of physiological potentials, from 

approximately −500 mV vs. NHE to 300 mV vs. NHE (1–3). Cytosolic and membrane-

bound proteins have been found to coordinate a cubane [4Fe4S] cluster at a range of redox 

potentials that vary depending on the local protein environment and solvent exposure (Figure 

1) (4, 5). Found in the [4Fe4S]2+ resting state, high potential [4Fe4S] clusters, like those in 

high potential iron (HiPIP) proteins, can be oxidized to the [4Fe4S]3+ state and lower 

potential clusters, like those in ferredoxins, can be reduced to the [4Fe4S]+ state (6). These 

cofactors commonly mediate redox reactions in nitrogen fixation, photosynthesis, and 

respiration (7–9), often acting in a chain of metal cofactors within an otherwise insulating 

protein matrix (10, 11).
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Thirty years ago, these [4Fe4S] clusters were found also to be associated with a protein 

involved in DNA repair (12), and over time, more and more proteins involved in DNA 

processing were found to contain [4Fe4S] clusters. What were their roles? Were they 

structural factors or perhaps ancestral relics? As described here, we are finding that these 

[4Fe4S] clusters carry out redox reactions in DNA-processing proteins, serving as redox 

switches to regulate binding to the DNA polyanion.

[4Fe4S] Cluster Biogenesis and Loading to Target Proteins

After decades of progress, it is now understood that the incorporation of [4Fe4S] cofactors 

occurs through a highly regulated and coordinated series of metabolically expensive steps by 

a network of iron sulfur cluster biogenesis proteins (13–19). General biogenesis is carried 

out by the ISC pathway (Figure 2), where free iron and reduced sulfide (S2-, derived from 

free cysteine) are scaffolded onto components of biogenesis machinery, delivered, and 

loaded to apo-protein targets in a process facilitated by chaperone proteins and driven by 

ATP hydrolysis. In prokaryotes, this entire process occurs within the cytosol. In eukaryotes, 

biogenesis begins in the mitochondria, and for cytoplasmic and nuclear-bound cluster 

proteins (which include repair and replication enzymes), is completed in the cytoplasm by 

the cytosolic iron sulfur assembly (CIA) machinery (16). At present, specialized biogenesis 

components have not been identified for [4Fe4S] repair proteins in prokaryotes. However, 

prokaryotic biogenesis has been linked to pathogenesis and antibiotic resistance (20). Future 

studies will likely be quite informative for uncovering new regulatory roles for FeS 

biogenesis in all domains of life.

Mechanisms of protein target recognition by biogenesis machinery have been brought to the 

forefront recently. Bioinformatic signatures of the coordinating cysteines in repair and 

replication proteins are surprisingly weak (21); however, newly discovered target sequences 

recognized by biogenesis machinery, which include an LYR motif and a KKX6–10KK 

sequence, have been found to be essential for association with an ISC co-chaperone in yeast 

(13). Continued investigation of recognition motifs will be important for understanding 

cluster biogenesis, unraveling new facets in iron metabolism, and identifying new cluster 

proteins, such as those involved in DNA processes.

DNA-Processing [4Fe4S] Enzymes

The surprising discovery of a [4Fe4S] cluster in the base excision repair (BER) glycosylase 

Endonuclease III (EndoIII) from Escherichia coli (E. coli) in 1989 (12) soon led to the 

discovery of [4Fe4S] clusters in MutY (an EndoIII paralog) and Uracil DNA Glycosylase in 

Archaeoglobus fulgidus (AfUDG) (22, 23). Over the following decades, nucleic acid 

processing enzymes across several pathways were shown to contain [4Fe4S] cofactors 

(Table 1) (24–30). In most cases, discovery of the [4Fe4S] cluster occurred years after the 

first isolation of the gene products (27). As predictive tools and protein isolation methods 

become more and more sophisticated, we and others expect that even more [4Fe4S] clusters 

will be observed in essential DNA processing enzymes (27, 31).

The question of what role the [4Fe4S] clusters played, however, was less straightforward to 

answer, as early studies demonstrated that the clusters were isolated in the electron 
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paramagnetic resonance (EPR) silent [4Fe4S]2+ state and resistant to powerful chemical 

oxidants and reductants (12, 23, 32). Moreover, the spectroscopic signature of coordinating 

cysteines was unchanged upon binding a damaged substrate, leading to the initial conclusion 

that the cluster had a structural role (12, 33, 34). MutY, however, could be denatured and 

refolded in the apo form, challenging this early conclusion (35). A substrate-sensing role 

was proposed for the cluster in light of this result, but a general, chemical function for the 

cofactor eluded observation.

II. Characterizing the Fundamental Properties of DNA-Mediated Charge 

Transport

In addition to the metabolic expense undertaken by cells to load a cluster into a target 

protein, placing an iron-containing cofactor in a DNA-binding enzyme can put the bound 

nucleic acid at risk of damage. A labile ferrous iron from the cofactor can undergo Fenton 

chemistry, creating reactive oxygen species and damaging nearby DNA bases (Figure 1) 

(36). Why then does Nature spend the requisite energy incorporating a redox-active 

inorganic cofactor into a DNA-processing enzyme?

At the same time that these proteins involved in DNA processing were being found to 

contain [4Fe4S] clusters, experiments were being conducted to characterize DNA charge 

transport chemistry (DNA CT), where electrons rapidly migrate through well stacked duplex 

DNA (37). The native substrate of these [4Fe4S] enzymes, double stranded DNA (dsDNA), 

was initially predicted to conduct charge in the dry, solid state (38), as the π -stacked DNA 

bases resemble the structure of graphite, a conductive material (Figure 3). To assess whether 

DNA conducted charge in biologically relevant aqueous conditions, new platforms were 

developed to examine this chemistry. Two important characteristics of this chemistry 

emerged: (i) DNA CT can occur over long molecular distances with shallow distance 

dependence, and (ii) DNA CT is exquisitely sensitive to perturbations in π-stacking of the 

bases.

A range of studies using DNA-bound electron donors and acceptors were used to 

characterize DNA CT chemistry. In an early photophysical study, a DNA oligomer was 

prepared containing a tethered luminescent ruthenium intercalator at one end and an 

intercalating rhodium oxidant at the other. While the tethered, DNA-bound ruthenium 

complex luminesced in the absence of the rhodium complex, in its presence, the 

luminescence of the ruthenium complex was quenched by electron transfer, remarkably over 

a distance > 40 Å (39). In a subsequent experiment using ethidium as the luminescent donor, 

electron transfer quenching was also evident but was attenuated in the presence of a single 

base mismatch intervening between the bound ethidium and rhodium (40). Long-range CT 

through a 63 bp duplex DNA substrate has been observed with DNA-intercalating 

photooxidants, where the DNA-bound photooxidant can promote oxidative damage at 

guanine residues from a distance. A covalent rhodium photooxidant at one end of a DNA 

duplex, for example, oxidizes guanine bases at the 5′- guanine of a guanine doublet, the site 

of low oxidation potential, through DNA CT, generating 7,8-dihydro-8-oxo-2′-

deoxyguanosine lesions 200 Å from the site of intercalation (41). Experiments monitoring 
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base-base CT utilizing 2-aminopurine furthermore showed that these DNA CT reactions can 

occur on the picosecond timescale, gated by the motions of the bases (42), and moving 10 

times the single-step tunneling distance through protein in a miniscule fraction of the time 

(10, 11, 37, 43, 44)!

Again, however, perturbations in base stacking, as occur with base mismatches or kinks in 

the DNA, turn off this long range CT chemistry. In fact, proteins that bind and kink the 

DNA, such as TATA-binding protein, can be used to turn off DNA CT. In contrast, proteins 

that bind DNA without affecting DNA base stacking, as with histones, do not alter DNA CT 

(45–47).

We also explored DNA CT in the ground state using DNA electrochemistry. Here, as with 

the photophysical studies, we observe long range CT as long as the DNA is well stacked. 

Indeed, ground state CT through DNA was observed over 100 base pairs to a tethered, 

intercalating redox probe, methylene blue, using DNA-modified gold electrodes, but a single 

base mismatch in the 100-mer was sufficient to attenuate the redox signal severely (48).

III. Measuring Redox Potentials of [4Fe4S] Enzymes Bound to DNA

For our early electrochemistry studies, we had used proteins to modulate DNA CT to a small 

DNA-bound redox probe (46), but we considered that DNA electrochemistry could be used 

also to examine DNA CT to a redox cofactor within a DNA-bound protein. Could a DNA-

binding protein containing a redox cofactor carry out DNA CT chemistry? If so, DNA CT 

experiments could be used to characterize the redox centers of DNA-binding proteins and to 

determine their DNA-bound potentials.

DNA-Mediated Electrochemistry

DNA-modified Au electrodes have become a useful platform for assessing whether a DNA-

processing, [4Fe4S] enzyme is redox-active in solution under physiologically relevant 

conditions (Figure 4). Gold surfaces are functionalized with alkanethiol-modified DNA 

duplexes through formation of a thiol-gold bond. The Au can be used as the working 

electrode in a three-electrode cell after surface washing and passivation (48–50). DNA-

bound redox potentials of [4Fe4S] proteins can be measured with this method, where charge 

flows from the electrode through the DNA to the cluster. In this platform, the DNA, 

functionalized onto an electrode surface, is biologically accessible; restriction enzymes, for 

example, can cut the DNA on the electrode with sequence specificity, as in solution. 

Electrochemical studies on these platforms have been central to the prediction and discovery 

of redox signaling between DNA-bound [4Fe4S] enzymes across different repair pathways 

(51–53).

We first examined MutY, EndoIII, and AfUDG, the three base excision repair proteins found 

to contain [4Fe4S] clusters (32). Earlier studies using strong chemical oxidants and 

reductants had suggested that the clusters were redox-inactive at physiological potentials, 

but these studies had been conducted in the absence of DNA. It was reasonable to consider 

that binding the DNA polyanion might change the potential of the cluster within the protein. 

Our studies showed first that a reversible signal was detectable at ~80 mV versus NHE, 
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within the physiological window, for each of these proteins bound to the DNA-modified 

electrode. The potentials were consistent with those found for the clusters in HiPIP proteins 

and were at equal potentials for all of the repair proteins examined. Moreover, the presence 

of an abasic site on the DNA intervening between the bound protein and the electrode 

surface served to attenuate the signal from the cluster. This result established two important 

points: (i) we were measuring the DNA-bound potential of the protein and (ii) we were 

observing DNA-mediated CT between the electrode and the cluster within the protein. Many 

repair and replication proteins have now been studied using this DNA electrochemistry 

platform, and in each case we have observed reversible, redox signals in the physiological 

potential range, near ~80 mV vs. NHE, corresponding to cycling between the [4Fe4S]2+ and 

[4Fe4S]3+ oxidation states (28, 32, 51, 52, 54–57).

It is noteworthy that the most recent generation of DNA-modified electrodes utilizes a 

multiplexed chip so multiple experimental conditions can be examined in parallel (Figure 4) 

(48–50). Patterned, silicon chips with sixteen independently addressable Au electrodes 

uniform in area can be physically divided into four quadrants and used to monitor the redox 

activity of a single protein on as many as four different DNA substrates on the same surface. 

The platform can also be used to compare CT efficiency of WT and mutant protein on the 

same chip. All of the experiments described can moreover be carried out under strictly 

anaerobic conditions.

Graphite Electrochemistry to Compare DNA-bound and DNA-free [4Fe4S] Cluster 
Potentials

We became interested in monitoring directly the shift in potential for [4Fe4S] repair proteins 

associated with binding DNA, and that required measuring the protein potential both in the 

absence and presence of DNA. DNA electrochemistry on Au electrode surfaces is amenable 

to measuring physiological potentials ranging from −200 mV to +500 mV vs. NHE (28, 50–

59). However, scanning beyond this range is necessary to observe a redox signal from a 

protein in the absence of DNA, which has a higher (more reductive) midpoint potential due 

to the absence of the DNA polyanion (51, 53, 56, 60, 61). In order to measure the DNA-free 

and DNA-bound redox potentials of EndoIII, highly oriented pyrolytic graphite (HOPG) 

electrodes were used (60). Bare surfaces or surfaces modified with pyrene-functionalized 

duplex DNA (which creates a DNA monolayer through π stacking between pyrene and 

graphite) facilitated direct comparison of DNA-free and DNA-bound EndoIII [4Fe4S] 

cluster redox potentials. A negative shift of approximately 200 mV was observed for the 

DNA-bound EndoIII relative to DNA-free EndoIII. Given that protein binding importantly 

does not lead to a large conformational change in the protein or DNA, this shift in redox 

potential for the [4Fe4S] cluster thermodynamically reflects a roughly 500-fold tighter DNA 

binding affinity for the oxidized [4Fe4S]3+ state, relative to the reduced [4Fe4S]2+ state, 

based on the Nernst equation (Figure 5). Oxidation of the [4Fe4S]2+ cluster to the [4Fe4S]3+ 

state thus should serve as a redox switch for DNA binding.

Spectroscopic Observation of [4Fe4S] Cluster Redox Activity in DNA-Processing Proteins

Electrochemical observations of the [4Fe4S] clusters in DNA-processing enzymes was also 

complemented by spectroscopic analysis. EPR spectroscopy requires chemical or 
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electrochemical conversion of the resting, diamagnetic [4Fe4S]2+ enzymes to the 

paramagnetic oxidized [4Fe4S]3+ or reduced [4Fe4S]+ redox states, and thus was used to 

establish the resting state for the DNA-bound repair protein as [4Fe4S]2+ (28, 62–65). We 

also demonstrated that the DNA-bound protein can be oxidized photochemically, from a 

distance, using DNA CT from a distantly tethered intercalating photooxidant (32, 51). 

Importantly, we were also able to demonstrate spectroscopically that the cluster could be 

oxidized by guanine radicals, generated using flash-quench experiments monitored by 

transient absorption spectroscopy (66). Indeed, these studies highlight how the oxidized 

[4Fe4S]3+ cluster could be generated within the cell, from a distance using DNA CT from 

guanine radicals under conditions of oxidative stress, and in so doing, activating the DNA 

repair machinery.

IV. A Shift in Cluster Potential Reflects a Redox Switch in DNA Binding

While we had seen several examples of DNA binding yielding a shift in redox potential for 

the clusters within the repair proteins, from which one can infer a difference in DNA binding 

affinity for the protein with a [4Fe4S]3+ cluster versus a [4Fe4S]2+ cluster, we were not at 

first able to measure this difference directly. In the absence of DNA, the [4Fe4S]3+ cluster 

degrades further to a [3Fe4S]+ cluster, which affects protein binding. As a result, binding 

affinities for the [4Fe4S]3+/2+ clusters needed to be determined anaerobically.

Recently we found that microscale thermophoresis could be used under anaerobic conditions 

to carry out DNA binding experiments for the [4Fe4S] proteins in the two oxidation states. 

EndoIII containing the [4Fe4S]3+ cluster was first generated on DNA-modified electrodes 

and then, under strictly anaerobic conditions, the thermophoresis experiments were 

conducted (53). Consistent with the shift in potential associated with DNA binding, oxidized 

EndoIII with the [4Fe4S]3+ cluster was indeed found to bind >500 times more tightly to 

dsDNA than the reduced EndoIII with the [4Fe4S]2+ cluster (Figure 5). This difference in 

binding affinity is understandable based simply on electrostatic considerations. In fact, 

calculations based upon the distance of the cluster to the DNA polyanion and the intervening 

protein dielectric well reflect the change in binding affinity that we see. It is interesting in 

that context that we find similar shifts in potential for all of the DNA repair proteins 

examined, and the clusters generally appear to be ~ 20 Å from the polyanionic DNA 

backbone. Based upon these results, then, we can consider that binding of these repair 

proteins to the DNA polyanion serves to tune the potential of the cluster by altering the 

electrostatic environment, activating the cluster toward oxidation and lowering the 

[4Fe4S]3+/2+ couple into a physiologically accessible potential range.

V. [4Fe4S] Proteins in Nucleic Acid Processing and Repair

Thousands of DNA damage sites are generated by endogenous and exogenous agents in each 

cell daily (67, 68). An arsenal of DNA repair pathways have evolved to address the 

structurally and chemically diverse lesions, though a comprehensive understanding of how 

repair pathways efficiently identify and remove damaged bases has remained elusive (69, 

70). In the case of the repair proteins that contain [4Fe4S] clusters, what they share is a low 

copy number within the cell and a moderate specificity in binding their target lesion versus 
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unmodified DNA. But with few players and not a high specificity in targeting, how do they 

effectively find all the lesions within the cell on a timescale appropriate to the organism?

We have considered that DNA charge transport chemistry might provide a first step in 

localizing repair proteins that contain these clusters in the vicinity of lesions, essentially 

redistributing the proteins to regions of damage, irrespective of the actual lesion 

characteristics as long as the damage interferes with DNA CT. We had actually found earlier 

that many common base lesions interfere with DNA CT (71). Moreover, the fact that these 

proteins share a similar redox potential means that essentially they can work together, 

transferring electrons from one to another to carry out a first scan of the genome.

A Model for Scanning the Genome Utilizing DNA CT Chemistry

To describe how DNA-mediated CT chemistry could be utilized for more efficient lesion 

detection, we developed a model for redox signaling among a network of [4Fe4S] repair 

proteins (Figure 6) (32). Upon association of freely-diffusing protein in the [4Fe4S]2+ state 

onto duplex DNA, the protein is activated toward oxidation and can reduce a distally bound 

protein from the [4Fe4S]3+ state to the more weakly binding [4Fe4S]2+ state (Figure 5, top). 

Alternatively, guanine radicals (G.+), a product of oxidative stress, can generate the 

[4Fe4S]3+ species by DNA CT over long molecular distances (41, 66, 72). Iterations of this 

scanning can occur throughout the cell. However, if there is an intervening region of dsDNA 

containing a lesion that attenuates CT, redox signaling between the cluster proteins is 

interrupted. Both proteins in the tightly-binding [4Fe4S]3+ state persist on the DNA and can 

then localize to the precise site of damage (Figure 5, bottom).

We have, by now, found many types of DNA repair proteins containing [4Fe4S] clusters that 

are involved in redox signaling on DNA, and we have probed how these redox signaling 

networks work cooperatively utilizing DNA CT through their [4Fe4S] clusters. We have also 

found CT deficiencies in mutated proteins strongly linked to disease. In the context of redox 

signaling, included below is an overview of the major repair protein families that coordinate 

a [4Fe4S] cluster, and illustrations of how they may utilize redox signaling.

Glycosylases

Glycosylases are key players in BER, a highly conserved pathway responsible for 

recognizing and removing single-base lesions generated by spontaneous deamination, 

alkylating agents, and oxidative stress, among other sources of damage (Figure 7) (73, 74). 

For EndoIII, MutY, and AfUDG, biochemical studies have very elegantly demonstrated that 

mutations at coordinating cysteines or in the cluster binding domain can affect protein 

expression, enzymatic function, and DNA binding, even though the cluster is located 

remotely from the glycosylase active site and there is not a large conformational change 

associated with the binding to DNA (34, 75–77). Specific to mammalian BER, a connection 

has been established between the glycosylases, NTHL1 and MUTYH, and multiple cancers, 

most notably MUTYH-associated polyposis (MAP). These syndromes are characterized by 

increased risk of aggressive, early-onset colorectal cancer (68, 74, 78).

As described above, several BER glycosylases were demonstrated to participate in DNA-

mediated CT chemistry (32). Further examination of the available structures of EndoIII in 
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the free and DNA-bound forms revealed a pathway of aromatic residues between the cluster 

and the DNA, separated by 15-20 Å, and predicted to provide a CT pathway (10, 11, 79, 80). 

Informed by these crystal structures, several key mutants of EndoIII have been generated 

and characterized, including a CT deficient/enzymatically proficient mutant Y82A, a 

complementary CT proficient but enzymatically deficient mutant D138A, and charge-flipped 

mutants to explore the electrostatics near the cluster (61, 79, 80). Unique to the HiPIP-like 

[4Fe4S] repair proteins, the DNA polyanion is the governing factor that shifts the potential 

and stabilizes the cluster in the [4Fe4S]3+ state (5, 61). Furthermore, redox sensing of base 

stacking perturbations on DNA-modified gold electrodes containing a lesion has been 

observed, even when that lesion is not a substrate for the glycosylase (32, 80).

Superfamily 2 (SF2) 5' → 3' Helicases

SF2 helicases were the second family of enzymes discovered to coordinate a [4Fe4S] cluster 

(65). SF2 helicases are NTP-dependent proteins that directionally translocate and unwind 

duplexes (81). Distinct from the glycosylase family, the FeS helicases are involved in several 

repair pathways (Figure 7). These pathways respond to stress from multiple sources, and 

there are many examples of extensive crosstalk and cooperativity among a complex network 

of repair pathways that include SF2 helicases with [4Fe4S] clusters (27). As might be 

expected, mutations in SF2 helicases containing [4Fe4S] clusters are associated with a host 

of genetic disorders and cancers and are being targeted for cancer therapies (82, 83).

A common theme with SF2 helicases is the multifunctional nature of their activities within 

the cell (Figure 7). In bacteria, DinG resolves R-loops, RNA:DNA hybrids formed at 

collisions between replication and transcription machinery; DinG has also been shown to be 

active on D-loops (displacement loops, triple stranded DNA) (64, 84). Notably, cysteine 

mutants of DinG are more susceptible to proteolytic degradation in vitro (64). A new, well-

conserved bacterial protein YoaA, was identified in a genetics screen to be involved in 

coordinating repair and replication machinery at blocked replication forks. Based on 

sequence similarity to DinG, YoaA was predicted to be a [4Fe4S] protein (85).

The first archaeal/eukaryotic [4Fe4S] SF2 helicase discovered, XPD, is part of the 

transcription factor II H (TFIIH) complex and is involved in both nucleotide excision repair 

(NER) and transcription initiation (65). In NER, helicase activity is critical for removing 

damaged oligomers, which can be disrupted by mutating coordinating cysteines. In contrast, 

only the association of XPD with TFIIH is needed to initiate transcription, which is thought 

to aid assembly of other proteins with TFIIH. Many other facets of the XPD have also been 

studied, including regulation of XPD by other proteins, the timing of cluster insertion 

relative to XPD incorporation with TFIIH, how XPD is involved in cell cycle control, and a 

role for XPD in preventing oxidative damage in the mitochondria (86).

Both XPD and DinG can participate in DNA CT chemistry with a shared DNA-bound redox 

potential of approximately 80 mV vs. NHE and sense signal attenuating lesions (54, 59). 

Further probing of the CT activity found that upon addition of ATP, the signal for XPD and 

DinG quite stunningly increases in a concentration-dependent manner without any shift in 

the midpoint potential. Helicase activity thus increases the electrochemical signal through 

better coupling of the cluster to the π-stacked DNA bases, essentially signaling the helicase 
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activity through DNA CT. The increased coupling upon cofactor binding appears to be an 

important feature of the SF2 helicase family that helps coordinate repair and replication, and 

signaling from a distance that the helicase is active.

Another eukaryotic SF2 helicase, FANCJ has a role in several pathways; compromised 

FANCJ function, which can result from mutations in the cluster binding domain, has been 

linked to several cancers, and FANCJ upregulation has been found in many tumor types 

(87). FANCJ is known to act on many substrates, including duplex substrates, D-loops and 

G4 quadruplexes (87). FANCJ association with numerous other proteins, including BRCA1, 

can depend on the timing of the damage response and the type of lesions generated. 

Furthermore, FANCJ activity has been observed to alleviate replication stress through 

resolution of stalled replication forks, and particularly at telomeres rich in G4 quadruplexes. 

Two other SF2 helicases that coordinate a [4Fe4S] cluster, RTEL1 and Chlr1, resolve several 

different types of structures in the process of facilitating replication (83, 88). Both RTEL1 

and Chlr1 have been also found to associate with various replication proteins. Mutations in 

these enzymes are similarly associated with an array of diseases (88, 89). Electrochemical 

studies of these proteins have not yet been conducted, but studying these proteins in the 

context of redox signaling will likely illuminate how these multifunctional enzymes may 

coordinate their activities.

Helicase-Nucleases

In 2009, the first helicase-nuclease containing a [4Fe4S] cluster identified was AddB, part of 

the AddAB heterodimer found in gram positive bacteria and some proteobacteria (90, 91). 

Helicase-nuclease activity is involved in double strand break (DSB) repair, which can be 

caused by several factors, including collapsed replication forks. Located in the C-terminal 

nuclease domain of AddB, the cluster was found to be essential for binding of DNA 

substrates, but not essential for complexation with AddA or for maintaining structure, 

though a stabilizing role of the cluster was suggested. The crystal structure of the AddAB in 

complex with a DNA substrate revealed a DNA binding loop supported by the cluster 

domain, providing explanation of why mutating coordinating cysteines abolished substrate 

binding (92). A homologous [4Fe4S] helicase-nuclease, Dna2, was later found in eukaryotes 

(vide infra).

Excision Nucleases

UvrC, an excision nuclease from E. coli, was reported in 2018 to be a [4Fe4S] protein (28). 

Only found in bacterial and some archaeal NER pathways, UvrC (in complex with another 

NER protein, UvrB) uniquely catalyzes incisions in the phosphodiester backbone both 5′- 

and 3′- to damaged substrates (93). Distinct from the other known [4Fe4S] repair proteins in 

bacteria, UvrC was found to coordinate an O2-sensitive [4Fe4S] cluster, causing protein 

aggregation upon oxidative degradation. Mutation of coordinating cysteines to alanine led to 

aggregation or severely reduced overexpression, the latter of which has been reported before 

for MutY (94). Additionally, UvrC in its holo form binds to duplex DNA without lesions, 

enabling demonstration that UvrC participates in DNA CT chemistry. UvrC shares a DNA-

bound midpoint potential with EndoIII, MutY, and DinG. UvrC has been noted in several 

reports to be unstable in vitro and the scarce in vivo (~10 copies/cell), so continued 
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investigation should provide insights as to how chemically and structurally diverse lesions 

are detected by UvrC in its holo form.

Monitoring Redox Signaling Between Repair Proteins and Repair Pathways

Given the multitude of these clusters, their similarity in redox potential and their diversity in 

lesions targeted, we became interested in examining how the proteins might cooperate in 

searching for DNA lesions. To study cooperative, redox communication between [4Fe4S] 

proteins, a series of in vitro and in vivo assays were developed to monitor signaling 

networks. In vitro, atomic force microscopy (AFM) has facilitated visualization of [4Fe4S] 

repair protein distribution on well-matched (WM) DNA versus duplex DNA containing a 

single base mismatch (MM) (53, 55, 59, 79, 80). Though strands containing a single, 

engineered C:A mismatch are not native substrates for any of these repair enzymes studied, 

preferential binding to the 3.8 kb long MM strands, expressed as a binding density ratio of 

1.5 (Figure 8), has been seen for all CT-proficient repair proteins. Mixtures of [4Fe4S] 

proteins from different repair pathways, and, remarkably, mixtures of cluster proteins from 

distinct organisms also signal cooperatively one to another, localizing to damaged strands.

Two factors have been found to affect the efficiency of the damage search: (i) the CT 

proficiency of a protein and (ii) the extent to which the protein population is oxidized. 

Mixing CT-proficient and CT-deficient proteins (eg. EndoIII and Y82A) impairs localization 

to MM strands; the binding density ratio is 1. Protein samples that are 99% oxidized 

generated anaerobically using DNA electrochemistry also do not redistribute to MM strands, 

likely due to the >500-fold increase in binding affinity. Redistribution of oxidized EndoIII, 

however, can be restored with addition of reduced DinG. The same phenomenon was seen in 

the reciprocal experiment with oxidized DinG and reduced EndoIII. These data underscore 

that long-range redox signaling between [4Fe4S] enzymes is dependent on the shared DNA-

bound redox potential and CT proficiency of the protein. Furthermore, these experiments 

highlight the ability of the proteins to signal one another over kilobase distances.

Complementary genetics assays were developed using strains of E. coli that depend on the 

repair activity of MutY, DinG, or UvrC for growth. Putative redox signaling networks can be 

disrupted by genetically knocking out a signaling partner (57, 59, 79). Limited growth in the 

knocked out strains therefore points to diminished repair activity occurring, owing to limited 

availability of signaling partners (Figure 9). Complementation plasmids for EndoIII, which 

include WT enzyme, Y82A, and D138A have been used to monitor how rescue with wild 

type and EndoIII mutants can restore survival. With this genetic approach, evidence of 

signaling among BER enzymes, DinG, and UvrC has been found to be necessary for repair 

activity and growth of cells (57, 59, 79). Rescue with the CT competent but enzymatically 

deficient D138A but not the CT deficient but enzymatically competent Y82A restores 

growth in EndoIII knockouts, demonstrating that CT proficiency and not enzymatic activity 

is needed for redox signaling and efficient repair activity in other pathways.

Diseases and Cancers Related to Mutations in [4Fe4S] Proteins

Mutations linking cancer with compromised repair activity by human [4Fe4S] proteins have 

been reported (24, 58). Investigations into the redox chemistry of mutant proteins has helped 
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illuminate how impaired redox signaling capacity could contribute to disease. For example, 

the CT-deficient EndoIII Y82A mutant corresponds the Y166 of the human homolog, 

MUTYH. This Y166S mutation has been known to be associated with MAP colorectal 

cancers (95). Within the context of DNA CT chemistry, a mutation which compromises the 

CT proficiency of one repair protein could understandably lead to compromised crosstalk of 

[4Fe4S] repair pathways across the genome.

A novel MUTYH germline variant, C306W, was recently found in a patient with colonic 

polyposis and a family history of early-onset colon cancer (58). Mutation of C306 does not 

fully abolish cluster loading or DNA-bound redox activity, but is destabilizing, leading to 

rapid oxidative degradation of the [4Fe4S] cluster to the [3Fe-4S]+ species on a DNA 

electrode. Degradation of the cluster results in diminished binding to DNA substrates and 

enzymatic function. The C306W mutant is a powerful example of how cluster degradation 

disrupts enzymatic activity and redox signaling, emphasizing the critical role of the cluster 

in preventing the onset of disease. Moreover this degradation occurs only with oxidation, 

underscoring the important role of the cluster in carrying out redox chemistry.

Mutations in XPD have also been linked to disease, in particular, to three distinct but related 

disorders with extreme photosensitivity: trichothiodystrophy (TTD), Cockayne syndrome 

(CS), and xeroderma pigmentosum (XP) (27, 86). Crystal structures of XPD have helped 

illuminate how common mutations in different domains of XPD lead to specific disorders 

(96, 97). For example, the L325V mutation (L461 in human XPD), specifically associated 

with XP and TTD, is CT-deficient relative to the WT enzyme, with diminished ability to 

distinguish well-matched versus mismatched strands in our AFM assay (55). Another 

mutation, G34R (G47R in human XPD), is associated with loss of ATP binding and helicase 

activity. Consistent with this data, the G34R mutant did not exhibit enhanced electronic 

coupling upon addition of ATP on DNA-modified electrodes (54). Thus, these disease-

relevant mutations not only impair enzymatic activity, but also diminish redox signaling 

capacity.

The study of the redox chemistry and cooperative signaling between disease-relevant 

mutants has exemplified intimate connections between cluster stability, enzymatic activity, 

redox activity, and CT proficiency (27). Mutations in other [4Fe4S] proteins may also affect 

enzymatic or redox signaling activity, and we expect that many heretofore uncharacterized 

clinically relevant mutations will be linked to compromised redox signaling. The cluster 

within these proteins thus represents an intriguing new therapeutic target.

Redox-Mediated Catalysis by [4Fe4S] Radical SAM Enzymes

For all of the proteins described thus far, the [4Fe4S] cluster has been involved in redox 

chemistry but not directly in the enzymatic reaction carried out by the protein. This, 

however, is not the case for more than 13,500 known radical S-adenosyl-L-methionine 

(SAM) enzymes (98, 99). Radical SAM enzymes employ the tunable, versatile [4Fe4S] 

cluster cofactor to catalyze essential biochemical reactions, acting on a variety of substrates 

in multiple metabolic pathways, including repair of UV-induced DNA damage and 

modification of tRNAs (30, 98, 100–102). These repair proteins, unlike those that carry out 

redox signaling, contain ferredoxin-like clusters coordinated by three cysteines, which cycle 
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between the [4Fe4S]+ and [4Fe4S]2+ states during activity. The primary reaction catalyzed 

by the redox function of the cluster is the generation of a 5’-deoxyadenosyl radical, a 

powerful, aliphatic oxidant which then catalyzes further biochemical reactions.

One example of repair by a radical SAM enzyme is cleavage of a methylene bridge in a UV-

induced DNA lesion by the spore photoproduct lyase (SP lyase), which is responsible for 

repairing (5R)-5-(α-thyminyl)-5,6-dihydrothymidine, or the spore photoproduct, (30). SP 

lyase has been structurally and biochemically characterized, though chemical properties of 

the DNA-bound protein are less understood. SP lyase binds a polyanionic substrate that 

could electrostatically alter the environment and potential of the cluster (103). Comparison 

of the redox potentials for the [4Fe4S]2+/+ couple in the presence and absence of a nucleic 

acid substrate has not yet been explored but will be interesting to consider regarding the 

chemistry driving catalysis.

VI. [4Fe4S] Enzymes in Eukaryotic DNA Replication

Diverse, specialized replication enzymes, many of which contain [4Fe4S] clusters, duplicate 

large eukaryotic genomes with high fidelity (104, 105). DNA primase, B-family 

polymerases α, δ, and ε, the helicase-nuclease Dna2, and the translesion DNA polymerase ζ 
all contain the [4Fe4S] cofactor (62, 63, 106, 107). These multisubunit enzymes, along with 

the replicative helicase (CMG), processivity factors such as proliferating cell nuclear antigen 

(PCNA), replication factor C (RFC), and single-stranded binding protein Replication Protein 

A (RPA), work together to coordinate replication (108–113).

Before polymerases can synthesize new DNA, replication origin sites in the genome must be 

recognized and licensed through binding of the hexameric origin recognition complex 

(ORC), followed by Cdc6, Cdt4, and the Mcm2-7 helicase (114–116). Loading of additional 

proteins, including DNA polymerase ε, subsequently forms the pre-initiation complex (113, 

114). GINS and Cdc45 associate with Mcm 2-7 and form the active CMG helicase (117–

119). The replicative helicase anneals AT-rich DNA at origin sites, beginning bidirectional 

replication on the two parent strands of genomic DNA. Phosphorylation by cyclin dependent 

kinase and the Dbf4-dependent kinase spatiotemporally regulates these steps. After 

annealing and origin firing, polymerases begin DNA synthesis.

DNA Polymerase-α-Primase Begins Replication through Coordinated Binding and 
Dissociation Events

DNA polymerase-α-primase (pol-prim) is the heterotetrameric complex responsible for 

synthesizing an RNA-DNA primer which begins DNA synthesis on a template (120). 

Primase consists of an RNA polymerase subunit p48 and a regulatory subunit p58, and 

synthesizes an 8-14nt RNA primer on ssDNA (121–123). Polymerase α consists of a 

catalytic subunit p180 and an auxiliary subunit p70 and synthesizes a ~10-30nt DNA 

segment downstream of the RNA primer. The C-terminal domain of the primase auxiliary 

subunit (p58C), and putatively the C-terminal domain of the polymerase α catalytic subunit 

(p180), coordinate [4Fe4S] cofactors (62, 63, 124). To synthesize RNA/DNA primers, 

primase first binds ssDNA and two nucleotide triphosphates (NTPs). After substrate binding 

and synthesis of a phosphodiester bond between NTPs, primase is converted to the active 
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form. Primase then rapidly elongates the primer, and finally truncates synthesis, handing off 

the template to polymerase α (121–123, 125). After this transfer step, polymerase α binds 

the RNA/DNA template and deoxynucleotide triphosphates (dNTPs), polymerizing ~10-30 

dNTPs downstream of the RNA primer. After this sequence is completed, DNA polymerases 

ε and δ can take over replication.

Primase and polymerase α contain [4Fe4S] clusters but are otherwise structurally and 

functionally distinct from polymerases δ and ε (120, 122). Primase and polymerase α are 

heterodimers containing catalytic and regulatory subunits. These low-fidelity enzymes lack a 

proofreading exonuclease domain and have error rates of ~10−2 (121–123) and ~10−4-10−5 

(120) respectively, and unlike polymerases ε and δ, polymerase α and primase also do not 

interact with PCNA. Primase [4Fe4S] cluster assembly and fidelity are, moreover, negatively 

affected by oxidative stress conditions in the cell (126), suggesting cluster sensitivity to the 

redox environment.

Primase has a Redox Switch

The [4Fe4S] cluster of DNA primase was recently discovered to function as a redox switch, 

regulating DNA binding and signaling (52). The [4Fe4S] domain of primase, p58C, can bind 

DNA, independently of the primase enzyme (126, 127). On a DNA-modified electrode, this 

protein was anaerobically oxidized or reduced using bulk electrolysis. Subsequent CV scans 

showed that the oxidized [4Fe4S]3+ protein was redox-active on DNA, while the reduced 

[4Fe4S]2+ form could not be detected (52). The oxidized protein was bound to the DNA-

modified electrode, while the reduced form was only loosely associated. This 

electrochemically controlled switch is mediated by conserved tyrosines between the cluster 

and the DNA binding interface (52, 126). Mutation of these tyrosines to phenylalanine or 

leucine attenuates redox activity on DNA electrodes and compromises primase initiation on 

ssDNA but not catalytic activity. Moreover, primase truncation is gated by DNA CT in vitro; 

a single base mismatch in a nascent primer abrogates truncation.

In a proposed model of primase-polymerase α handoff (Figure 10), oxidized, tightly bound 

[4Fe4S]3+ primase, coupled into the RNA/DNA duplex, synthesizes the RNA primer. When 

a reduced [4Fe4S]2+ polymerase α cluster contacts the RNA/DNA duplex, polymerase α is 

oxidized by primase through DNA CT. Our results with human DNA primase indicated that 

a mismatch formed in the growing DNA/RNA hybrid inhibited this handoff, consistent with 

the idea that DNA CT facilitates this rapid, long range signaling. Through CT, polymerase α 
becomes tightly bound in the [4Fe4S]3+ form, and primase is reduced to the [4Fe4S]2+ form. 

Primase dissociates from the substrate, allowing polymerase α to bind and synthesize DNA 

on the template (Figure 10). Redox switching driven by the [4Fe4S] cofactor thus may 

coordinate these binding and dissociation events.

We recently observed that the redox-driven DNA binding switch is conserved in yeast as 

well as human primase (128). On DNA electrodes, oxidized [4Fe4S]3+ p58C is tightly 

bound and redox-active, whereas reduced [4Fe4S]2+ p58C is loosely associated with DNA 

and redox-inert in yeast and human systems. Yeast and human redox switches, moreover, are 

mediated by conserved tyrosines positioned between the p58C DNA binding interface and 

[4Fe4S] cluster. Remarkably the tyrosines are positioned differently but mediate the same 
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chemistry in yeast and human primase. Mutations at Y397 in yeast primase moreover cause 

partial loss of redox signaling and lead to oxidative degradation to a [3Fe4S]+ species on 

DNA. This effect is severe enough to cause lethality in yeast for the p58C Y397L mutation, 

underscoring the importance of this redox signaling chemistry in essential replication 

processes.

DNA Polymerases ε and δ Divide Labor between Leading and Lagging Strands

Polymerases ε and δ are the larger, high-fidelity polymerases responsible for DNA synthesis 

on the leading and lagging strands, with proofreading 3’→5’ exonuclease domains and with 

mutation rates of ~105-10−6 and ~10−4-10−6, respectively (120, 129). PCNA binding 

moreover enhances the intrinsic processivity of both enzymes. The high intrinsic fidelity is 

necessary for these enzymes, as their products remain in the daughter DNA copy. Pol-prim 

products, on the other hand, are removed during Okazaki fragment maturation.

The division of replicative labor has been extensively debated and investigated (130–133). 

Error-prone polymerase studies monitoring ribonucleotide or mispaired base incorporation 

in an RnaseH knockout cell line by error-prone polymerase ε or δ mutants has illuminated 

the distribution of DNA synthesis. A polymerase ε variant, pol2M644G, caused 

ribonucleotide incorporation on the leading strand (130, 131). A low-fidelity polymerase δ 
variant, pol3L612M, conversely caused an increase in replication errors, localized on the 

lagging strand (132). Although polymerase δ can replicate the leading strand templates 

under certain conditions, polymerase ε putatively synthesizes the leading strand and 

polymerase δ, the lagging strand under normal conditions (133).

The four-subunit polymerase ε holoenzyme has a large polymerase subunit, Pol2, which 

contains two [4Fe4S] clusters. The first cluster, located within the active polymerase 

domain, is essential for polymerase activity but dispensable for exonuclease activity (134). 

The second [4Fe4S] cluster is ligated in the Pol2 C-terminal domain, further from the active 

polymerase site, and is stabilized by coordination with Dpb2 (124). The Dpb2 subunit of 

polymerase ε is associated with the C-terminus of Pol2 and is essential for replisome 

assembly and checkpoint activation (120). The noncatalytic Dpb3 and Dpb4 subunits likely 

enhance polymerase ε processivity. Characterizing the putative [4Fe4S] clusters in 

polymerase ε will illuminate new roles for DNA-mediated redox signaling in replication in 

the context of a complex, multisubunit enzyme.

The three-subunit polymerase δ coordinates a [4Fe4S] cluster in the Pol3 subunit catalytic 

domain. Polymerase δ auxiliary subunit Pol31 associates with Pol3 to stabilize the cluster 

(124) and the subunit, Pol32 (120, 129). After replication factor C loads PCNA onto DNA, 

polymerase δ coordinates with PCNA to extend the Okazaki fragments begun by pol-prim 

(135, 136). PCNA binding greatly enhances polymerase δ processivity, and biochemical 

evidence suggests that a conformational switch may occur during polymerase δ PCNA 

binding and activity. (129). Polymerase δ moreover is uniquely capable of strand 

displacement synthesis (120), consistent with its role in Okazaki fragment maturation, 

interacting with protein partners like Dna2. DNA polymerase δ is additionally stabilized in 

the presence of stalled forks during replication stress and may play a role in response to 

changes in the environment as with oxidative stress (137).
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Polymerase δ has been demonstrated electrochemically to be redox-active on DNA, with a 

midpoint potential near 100 mV vs. NHE in the presence of PCNA (51). With PCNA bound, 

polymerase δ already binds very tightly to DNA, so it is difficult to consider the cluster 

oxidation to function as a redox switch for binding. Instead what we observe is that 

oxidation to the [4Fe4S]3+ state slows polymerase activity in vitro, an effect which can be 

electrochemically reversed by reducing the protein back to the [4Fe4S]2+ state. These results 

inspired a model where PCNA-bound, reduced [4Fe4S]2+ polymerase δ processively 

synthesizes DNA. Under oxidizing conditions, the cluster is converted to the [4Fe4S]3+ 

form, inducing tighter DNA binding, so tight as to stall activity. Polymerase δ then remains 

stalled in the oxidized form, consistent with the stalling of polymerase δ found under 

conditions of oxidative stress. While repair proteins then may be activated with cluster 

oxidation under conditions of oxidative stress, replication would be inhibited. However, the 

polymerase can be reduced and restored to the processive form after DNA damage 

resolution, potentially through long range signaling using DNA CT from repair proteins 

(Figure 11). Clearly, this signaling needs still to be established, though the electrochemistry 

and biochemistry show that this long range signaling is possible.

More [4Fe4S] Proteins in DNA Processing

In addition to the primary replicative eukaryotic DNA polymerases, several other enzymes 

have now been discovered to contain [4Fe4S] cofactors (29, 107, 124). Dna2 is a [4Fe4S] 

helicase-nuclease enzyme important in double strand break repair, Okazaki fragment 

maturation, and processing stalled replication forks (138). The cluster in Dna2 is located in 

the nuclease domain, approximately 10 A from the bound ssDNA substrate. Dna2 5′ → 3′ 
endonuclease activity is primarily associated with long flap processing during Okazaki 

fragment maturation (120). Dna2 also plays a role in preventing regression of stalled 

replication forks, however, and the enzyme has weak ATP-dependent helicase activity (139, 

140). Dna2 function, especially helicase and nuclease coordination, is still unclear; [4Fe4S] 

redox signaling may be important for regulating the multiple cellular roles for Dna2 and its 

interaction with other [4Fe4S] enzymes, such as polymerase δ.

The translesion polymerase ζ also contains a [4Fe4S] cluster, coordinated in the Rev3 

catalytic subunit (112, 124), which is homologous to other B-family polymerase catalytic 

subunits. This enzyme also contains a subunit Rev7, and two subunits found in polymerase 

δ, Pol31 and Pol32, but lacks an exonuclease domain. Interacting with PCNA and many 

other replication factors, polymerase ζ catalyzes mutagenic polymerase activity in the 

presence of lesions that stall replication fork progression (112). Finally RNA polymerase II, 

which synthesizes RNA during transcription, has been demonstrated to contain a [4Fe4S] 

cluster. (29, 112, 141).These proteins may use redox signaling on DNA to coordinate 

activity in cells, and investigation of their [4Fe4S] redox properties will illuminate important 

biochemical features of the proteins and their pathways.

VII. Summary and Perspectives

Long-range, DNA-mediated redox signaling provides a means to coordinate replication and 

repair activity across the nucleus. The redox switching driven by a change in cluster 

Barton et al. Page 15

Annu Rev Biochem. Author manuscript; available in PMC 2019 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



oxidation state regulates DNA association and dissociation with the protein and this redox 

switch can function rapidly and from a distance without a change in structure of the 

intervening DNA. This capacity is integral to the DNA CT-driven lesion search in [4Fe4S] 

repair proteins, in polymerase handoff and in the oxidative stress response. The change in 

cluster redox potential upon binding the DNA polyanion, the capacity of these DNA-bound 

proteins to cycle reversibly between [4Fe4S]2+ and [4Fe4S]3+ redox states, and the ability to 

promote reactions on DNA from a distance using DNA CT offer powerful chemistry of 

which to take advantage. DNA CT thus offers a means of rapid communication across the 

genome among DNA-processing proteins to activate a response, and the [4Fe4S] cluster 

provides the essential cofactor to carry out this chemistry. As more DNA processing proteins 

are discovered to contain [4Fe4S] clusters, questions to explore include: (i) which proteins 

are signaling partners with one another; (ii) how are their redox properties modulating 

protein activities; and (iii) when protein mutations lead to defects in DNA CT, can we begin 

to target these defects therapeutically? Certainly, continued investigation of DNA-processing 

[4Fe4S] enzymes will illuminate the rich and important functional roles of this redox 

chemistry in the genome.
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Figure 1. [4Fe4S] Clusters.
(Above, left) Schematic of the cubane [4Fe4S] cluster, with Fe in red and S in yellow. 

(Above, right) Cofactors containing iron can react with cellular oxidants leading to Fenton 

chemistry and DNA damage by the hydroxyl radical. (Below) The potential of the [4Fe4S] 

cluster cofactor is tunable over a wide range of physiological redox potential values. 

Ferredoxins access the [4Fe4S]2+/1+ couple, upon reduction from the resting [4Fe4S]2+ state. 

(yellow). High potential iron proteins (HiPIPs) access the [4Fe4S]3+/2+ couple upon 

oxidation to the [4Fe4S]3+ state from the resting [4Fe4S]2+ state (red). DNA-processing 

enzymes with [4Fe4S] cofactors have DNA-bound redox potentials which fall within the 

HiPIP [4Fe4S]3+/2+ potential range, at approximately ~65-150mV vs. NHE (blue). The 

solvent accessibility and hydrogen bonding/electrostatic environment of the cluster all 

contribute to tuning the redox potential of the cofactor (4,5).
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Figure 2. [4Fe4S] cluster biogenesis and loading into prokaryotic (above) and eukaryotic (below) 
target proteins.
Scaffold proteins, together with cysteine desulfurases and ferrous iron sources, assemble the 

cluster and bind chaperone machinery to then transport the cofactor first to machinery 

responsible for cluster delivery, then finally to target proteins. This process is not identical in 

bacteria and eukaryotes. However each process requires the concerted action of several 

specialized proteins and requires significant metabolic expense for the cell (13-19).
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Figure 3. The structure of DNA facilitates long-range, rapid electron transfer.
(Top, left) Side view of DNA. The aromatic bases at the center of the DNA helix are 

oriented so that the π orbitals of adjacent bases overlap with one another in the duplex. This 

structural property suggests that charge could pass through the π-stacked base pairs of DNA. 

(Top, right) View down the helical axis of aromatic base pairs (blue) stacked in 3.4 Å layers 

at the center of DNA. (Bottom) Time scale and length scale of various electron transfer 

pathways through biomolecules (10, 11,41,43). PDB ID 3BSE.
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Figure 4. Measuring the redox potential of DNA-bound [4Fe4S] enzymes.
(Top) DNA electrochemistry on Au electrodes, where DNA duplexes containing a tethered 

alkanethiol are attached to a gold electrode passivated with β-mercaptohexanol, can be used 

to assess redox signals from DNA-bound, [4Fe4S] proteins (yellow, left). Signals are 

attenuated when base lesions (red, center) in the duplex are present, or when the redox 

pathway within the [4Fe4S] protein, as for Y82A (gray, right) is deficient in CT. Cyclic 

voltammetry (below, left) scanning can be used to measure the DNA-mediated redox signal 

from CT-proficient proteins (WT EndoIII, blue) and CT-deficient proteins (EndoIII Y82A, 

red). A multiplexed chip platform (below, right) has now been adapted to measure [4Fe4S] 

protein signals on 16 separate DNA-modified electrodes, with replicates on a single surface 

(32, 48-50).

Barton et al. Page 26

Annu Rev Biochem. Author manuscript; available in PMC 2019 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. DNA binding shifts the potential of [4Fe4S] cluster enzymes.
Endonuclease III has a redox potential of approximately 80mV vs. NHE for the [4Fe4S]3+/2+ 

couple measured on a DNA-modified Au electrode. (Above, left) This potential is a negative 

shift from the ~130mV vs. NHE potential for this couple when the protein is not bound to 

DNA. This shift corresponds thermodynamically to a stabilization of the oxidized [4Fe4S]3+ 

state upon binding the DNA polyanion (right). Microscale thermophoresis on 

electrochemically oxidized and native reduced Endonuclease III (below, left) indicates that a 

~550-fold increase in DNA binding affinity is associated with the conversion from 

[4Fe4S]2+ to the [4Fe4S]3+ state, (53) consistent with this negative shift in potential.
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Figure 6. A model for DNA-mediated redox signaling between repair proteins.
Enzymes with the cluster in the native [4Fe4S]2+ state first bind DNA, causing the cluster to 

become activated toward oxidation. Oxidative stress initiates the damage search when highly 

reactive species such as the guanine radical cation are formed; these can oxidize DNA-

bound proteins in their vicinity. Oxidation of the cluster to the [4Fe4S]3+ state leads to a > 

500-fold increase in DNA binding affinity, so oxidized proteins remain bound and diffuse 

along the DNA. Another [4Fe4S]2+ protein bound at a distant site can reduce the oxidized 

protein, effectively scanning the intervening DNA for lesions through DNA-mediated CT. At 

this point, on damage-free DNA (above) the reduced protein binds less tightly to DNA and 

can diffuse away, while the newly oxidized protein continues the damage search. This 

process of redox exchange continues until a segment of DNA containing a lesion is 

approached. Since even subtle lesions can disrupt base stacking (below), CT is attenuated 

and any nearby oxidized proteins remain bound. Thus, DNA CT allows repair proteins to 

scan large sections of the genome and redistribute to areas containing damage (24, 37).
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Figure 7. Reactions and Substrates for DNA repair enzymes containing [4Fe4S] clusters.
(Top, left) Glycosylases remove a number of single-base lesions caused by endogenous and 

exogenous agents. (Middle, left) The helicase-nuclease AddAB processes double strand 

breaks. (Bottom, left) The UvrBC complex cleaves the phosphodiester backbone around the 

damaged strand of DNA. (Right) Superfamily 2 5′→3′ helicases participate in a number of 

pathways and are involved in unwinding very diverse substrates. The substrate specificity is 

overlapping for many of the helicases (ex. FANCJ and RTEL1), though genome location (ex. 

telomeres) and cell cycle phase (ex. replication in the S phase) appear to be factors in 

activity (73, 77, 81, 82, 87, 91,93).
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Figure 8. Visualization of Protein Localization on Damaged DNA by Atomic Force Microscopy 
(AFM).
In the AFM redistribution assay, [4Fe4S] protein or protein mixtures are incubated with 

DNA substrates which contain either long, well matched DNA strands (3.8 kb) or strands 

containing a single C:A mismatch in the 3.8 kb duplex along with short, undamaged DNA 

strands (1.6 and 2.2 kb). Images are collected and proteins bound to long strands of DNA are 

counted, normalized to the proteins bound to the short strands, and expressed as a binding 

density ratio (right). As shown at right (top), a greater density of proteins is found on the 

strands containing a mismatch (C:A) compared to the well-matched (T:A) strand, even 

though the repair proteins do not bind the C:A mismatch as a substrate. If the protein is 

defective in carrying out DNA CT, however, the binding density is the same on the 

mismatched and matched strands (bottom right) (55, 59, 79, 80).
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Figure 9. Genetic Assays for Detection of DNACT Signaling Among E. coli [4Fe4S] Repair 
Proteins.
(Top left) E. coli parent (blue) and EndoIII knockout (KO, gray) strains that report on the 

repair protein activity have been used to monitor DNA-mediated communication between 

putative signaling partners in vivo. Complementation plasmids expressing CT-proficient 

(D138A) or CT-deficient (Y82A) versions of EndoIII are introduced to EndoIII KO strains 

to evaluate if the parent phenotype can be rescued (bottom left). Rescue can only be 

achieved with a CT-proficient enzyme (blue bar, gray outline), strongly indicating that DNA-

mediated redox signaling is necessary for efficient repair. (Right) The redox signaling 

network in E. coli includes BER, loop repair, and NER (57, 59, 79, 80).

Barton et al. Page 31

Annu Rev Biochem. Author manuscript; available in PMC 2019 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. Model for primase-polymerase α handoff through redox switching.
(52) Oxidized [4Fe4S]3+ primase is bound to the RNA/DNA primer during primer synthesis. 

Polymerase α is DNA-dissociated and reduced but flexibly tethered to primase (Top). When 

the RNA primer reaches appropriate length, polymerase α orients in a manner coupling the 

[4Fe4S] cluster into the RNA/DNA substrate and can be oxidized by DNA CT through this 

segment, sending an electron through the primed template to reduce DNA primase (Middle). 

Reduced primase dissociates from the RNA-primed DNA, and oxidized polymerase α can 

then synthesize DNA downstream of the primase product (Bottom).
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Figure 11. [4Fe4S] enzymes in eukaryotic repair and replication.
B-family polymerases, DNA primase, Dna2 helicase-nuclease, BER/NER enzymes such as 

MUTYH, NTHL1, and XPD, all coordinate a [4Fe4S] cluster cofactor. Several of these 

proteins have been demonstrated to participate in DNA-mediated redox signaling; 

characterization of their redox roles is ongoing. (Below) Under oxidative stress conditions, 

polymerase δ may be converted to the [4Fe4S]3+ state as a means to stall synthesis under 

poor cellular conditions. Polymerase δ can be reversibly oxidized and reduced through DNA 

CT, which may regulate polymerase activity on the lagging strand.

Barton et al. Page 33

Annu Rev Biochem. Author manuscript; available in PMC 2019 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Barton et al. Page 34

Ta
b

le
 1

.
D

N
A

-p
ro

ce
ss

in
g,

 [
4F

e4
S]

 e
nz

ym
es

 a
re

 fo
un

d 
in

 p
ro

ka
ry

ot
es

, a
rc

ha
ea

, a
nd

 e
uk

ar
yo

te
s.

T
he

se
 e

nz
ym

es
 a

re
 f

ou
nd

 in
 d

if
fe

re
nt

 p
at

hw
ay

s,
 s

uc
h 

as
 r

ep
ai

r, 
re

pl
ic

at
io

n,
 a

nd
 tr

an
sc

ri
pt

io
n,

 a
nd

 p
er

fo
rm

 s
pe

ci
al

iz
ed

, d
is

tin
ct

 ta
sk

s 
in

 c
el

ls
.

[4
F

e4
S]

 P
ro

te
in

P
at

hw
ay

F
un

ct
io

n
R

ef
er

en
ce

B
ac

te
ri

a
A

rc
ha

ea
E

uk
ar

ya

E
nd

on
uc

le
as

eI
II

N
T

H
L

1,
 N

tg
2

B
as

e 
E

xc
is

io
n 

R
ep

ai
r

B
if

un
ct

io
na

l g
ly

co
sy

la
se

, r
em

ov
al

 o
f 

ox
id

iz
ed

 p
yr

im
id

in
e 

ba
se

s
12

,2
4

M
ut

Y
M

U
T

Y
H

B
as

e 
E

xc
is

io
n 

R
ep

ai
r

G
ly

co
sy

la
se

, r
em

ov
es

 a
de

ni
ne

s 
m

is
pa

ir
ed

 w
ith

 8
-o

xo
-g

ua
ni

ne
22

,2
4,

58

X
PD

X
PD

, R
ad

3
N

uc
le

ot
id

eE
xc

is
io

n 
R

ep
ai

r
5'

-3
' h

el
ic

as
e,

 u
nw

in
ds

 D
N

A
 s

ur
ro

un
di

ng
 T

T
 d

im
er

s
65

,9
7

D
in

G
R

ep
lic

at
io

n-
C

ou
pl

ed
 R

ep
ai

r
H

el
ic

as
e,

 u
nw

in
ds

 R
-l

oo
p 

st
ru

ct
ur

es
64

FA
N

C
J

R
ep

lic
at

io
n-

C
ou

pl
ed

 R
ep

ai
r

5'
-3

' h
el

ic
as

e,
 g

en
er

at
es

 s
sD

N
A

 o
ve

rh
an

gs
 f

or
 h

om
ol

og
ou

s 
re

co
m

bi
na

tio
n

65

R
te

l1
, C

hl
1

Te
lo

m
er

e 
pr

oc
es

si
ng

, m
ei

ot
ic

 
cr

os
so

ve
r

5'
-3

' h
el

ic
as

e,
 u

nw
in

ds
 s

pe
ci

al
iz

ed
 D

N
A

 s
tr

uc
tu

re
s

83
,8

9

A
dd

A
B

R
ep

lic
at

io
n-

C
ou

pl
ed

 R
ep

ai
r

H
el

ic
as

e-
nu

cl
ea

se
 w

ith
 5

'-3
' n

uc
le

as
e 

ac
tiv

ity
, g

en
er

at
es

 3
'-s

sD
N

A
 

ov
er

ha
ng

s
90

D
na

2
R

ep
lic

at
io

n-
C

ou
pl

ed
 R

ep
ai

r
H

el
ic

as
e-

nu
cl

ea
se

, s
sD

N
A

-d
ep

en
de

nt
 A

T
Pa

se
, O

ka
za

ki
 f

ra
gm

en
t 

pr
oc

es
si

ng
/d

ou
bl

e-
st

ra
nd

 b
re

ak
 r

ep
ai

r
10

7

D
N

A
 P

ri
m

as
e

R
ep

lic
at

io
n

D
N

A
-d

ep
en

de
nt

 R
N

A
 p

ol
ym

er
as

e,
 s

yn
th

es
iz

es
 8

-1
4n

t R
N

A
 p

ri
m

er
 o

n 
ss

D
N

A
62

,6
3

D
N

A
Po

ly
m

er
as

e 
α

R
ep

lic
at

io
n

E
xt

en
ds

 R
N

A
 p

ri
m

er
 b

y 
10

-2
0n

t
10

6

D
N

A
Po

ly
m

er
as

e 
δ

R
ep

lic
at

io
n

L
ag

gi
ng

 S
tr

an
d 

D
N

A
 p

ol
ym

er
as

e,
 3

'-5
' e

xo
nu

cl
ea

se
10

6

D
N

A
 P

ol
ym

er
as

e 
ε

R
ep

lic
at

io
n

L
ea

di
ng

 S
tr

an
d 

D
N

A
 p

ol
ym

er
as

e,
 3

'-5
' e

xo
nu

cl
ea

se
10

6,
 1

24

D
N

A
Po

ly
m

er
as

e 
ζ

R
ep

lic
at

io
n

T
ra

ns
le

si
on

 s
yn

th
es

is
 p

ol
ym

er
as

e
10

6,
 1

24
, 1

34

R
N

A
 P

ol
ym

er
as

e
E

lp
3

T
ra

ns
cr

ip
tio

n
Te

m
pl

at
e-

di
re

ct
ed

 R
N

A
 s

yn
th

es
is

24
,2

9

C
as

4
C

R
IS

PR
 a

da
pt

iv
e 

im
m

un
ity

5'
- 

3'
 e

xo
nu

cl
ea

se
26

Ph
rB

Ph
ot

or
ea

ct
iv

at
io

n 
D

N
A

 r
ep

ai
r

R
ep

ai
r 

of
 U

V
-i

nd
uc

ed
 c

yc
lo

py
ri

m
id

in
e 

di
m

er
s

25

U
vr

C
N

uc
le

ot
id

e 
E

xc
is

io
n 

R
ep

ai
r

5'
-,

 3
'- 

en
do

nu
cl

ea
se

28

Sp
or

e 
Ph

ot
op

ro
du

ct
 L

ya
se

D
N

A
 R

ep
ai

r 
(U

V
-i

nd
uc

ed
 

le
si

on
s)

(5
R

)-
5-

(α
-t

hy
m

in
yl

)-
5,

6-
di

hy
dr

ot
hy

m
id

in
e 

le
si

on
 r

ep
ai

r
30

Annu Rev Biochem. Author manuscript; available in PMC 2019 June 24.


	Abstract
	Introduction
	[4Fe4S] Cluster Biogenesis and Loading to Target Proteins
	DNA-Processing [4Fe4S] Enzymes

	Characterizing the Fundamental Properties of DNA-Mediated Charge Transport
	Measuring Redox Potentials of [4Fe4S] Enzymes Bound to DNA
	DNA-Mediated Electrochemistry
	Graphite Electrochemistry to Compare DNA-bound and DNA-free [4Fe4S] Cluster Potentials
	Spectroscopic Observation of [4Fe4S] Cluster Redox Activity in DNA-Processing Proteins

	A Shift in Cluster Potential Reflects a Redox Switch in DNA Binding
	[4Fe4S] Proteins in Nucleic Acid Processing and Repair
	A Model for Scanning the Genome Utilizing DNA CT Chemistry
	Glycosylases
	Superfamily 2 (SF2) 5' → 3' Helicases
	Helicase-Nucleases
	Excision Nucleases
	Monitoring Redox Signaling Between Repair Proteins and Repair Pathways
	Diseases and Cancers Related to Mutations in [4Fe4S] Proteins
	Redox-Mediated Catalysis by [4Fe4S] Radical SAM Enzymes

	[4Fe4S] Enzymes in Eukaryotic DNA Replication
	DNA Polymerase-α-Primase Begins Replication through Coordinated Binding and Dissociation Events
	Primase has a Redox Switch
	DNA Polymerases ε and δ Divide Labor between Leading and Lagging Strands
	More [4Fe4S] Proteins in DNA Processing

	Summary and Perspectives
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Figure 9.
	Figure 10.
	Figure 11.
	Table 1.

