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ABSTRACT

Traditionally, precision medicine involves classifying patients to identify subpopulations
that respond favorably to specific therapeutics. We pose precision medicine as a dynamic
feedback control problem, where treatment administered to a patient is guided by measure-
ments taken during the course of treatment. We consider sepsis, a life-threatening condition
in which dysregulation of the immune system causes tissue damage. We leverage an existing
simulation of the innate immune response to infection and apply deep reinforcement
learning (DRL) to discover an adaptive personalized treatment policy that specifies effective
multicytokine therapy to simulated sepsis patients based on systemic measurements. The
learned policy achieves a dramatic reduction in mortality rate over a set of 500 simulated
patients relative to standalone antibiotic therapy. Advantages of our approach are threefold:
(1) the use of simulation allows exploring therapeutic strategies beyond clinical practice and
available data, (2) advances in DRL accommodate learning complex therapeutic strategies
for complex biological systems, and (3) optimized treatments respond to a patient’s indi-
vidual disease progression over time, therefore, capturing both differences across patients
and the inherent randomness of disease progression within a single patient. We hope that
this work motivates both considering adaptive personalized multicytokine mediation ther-
apy for sepsis and exploiting simulation with DRL for precision medicine more broadly.
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1. INTRODUCTION

Precision medicine, as defined by the National Research Council, refers to the ‘‘ability to classify

individuals into subpopulations that differ in their susceptibility to a particular disease, in the biology

and/or prognosis of those diseases they may develop, or in their response to a specific treatment.’’ Given a

specific patient’s class, ‘‘preventive or therapeutic interventions can then be concentrated on those who will

benefit, sparing expense and side effects for those who will not’’ (National Research Council, 2011). In this

work, we pose precision medicine as a dynamic feedback control problem, in which patient measurements
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during the course of treatment are used to inform future treatment. From a computational standpoint, this

changes the problem formulation from classification to optimal control.

We apply the optimal control perspective to sepsis. Sepsis is a life-threatening condition in which the body’s

immune response to infection becomes dysregulated leading to tissue damage and organ failure. Approximately

one million people per year are diagnosed with sepsis in the United States (Singer et al., 2016), with a

mortality rate of 28%–50% (Wood and Angus, 2004).

Although operational care process improvements in the past 20 years have led to reduction in mortality

rate (Angus et al., 2015), therapeutic options for sepsis are limited to variations of antimicrobial and

physiological support dating back nearly a quarter century. There remains no FDA-approved biologically

targeted therapeutic for the treatment of sepsis, despite >30,000 patients enrolled across various clinical

trials (Marshall, 2000; Opal et al., 2014).

Attempts to discover biologically targeted therapies for sepsis have thus far focused on manipulating

a single mediator/cytokine, generally administered with either a single dose or for a very short course

(<72 hours) (Marshall, 2000; Opal et al., 2014). Plausible explanations for their failures include inap-

propriate timing, duration, and/or dosing of the therapeutic agents as well as not accounting for the

heterogeneity of the patient population. Thus, we hypothesize that controlling sepsis with cytokine me-

diation may require an adaptive personalized strategy involving multiple cytokines in coordination rather

than a static generic therapy targeting a single cytokine.

This hypothesis can be tested in several ways, each of which involves employing optimal control

methods to identify effective treatment strategies. Ideally, optimal control methods would be applied

retrospectively, that is, using existing data. Indeed, data-driven approaches for optimal control of sepsis

have been performed (Raghu et al., 2017); however, such retrospective studies can only optimize within the

same limited space of control strategies that have already been attempted. Given that approaches to date

have focused on single cytokine mediation, the data that would be required to test our hypothesis do not

exist, and thus a purely data-driven approach is not possible. Alternatively, we could test the hypothesis

prospectively, that is, through animal studies and/or clinical trials. However, searching the enormous space

of dynamic multicytokine mediation would be prohibitively expensive. Optimal control methods would

also require ‘‘exploring’’ and/or ‘‘perturbing’’ the system (i.e., patient) by deliberately applying suboptimal

treatments, which raises ethical concerns.

Given the infeasibility of both data-driven and experiment-driven approaches for discovering adaptive

multicytokine mediation, we turn to using a simulation as a surrogate of the real system. The use of an

appropriate simulation that explicitly models relevant mechanisms has several major advantages: (1) one

can explore therapeutic strategies beyond clinical practice and available data (in contrast to retrospective

analyses) and (2) the number of candidate therapeutic strategies explored using optimal control is limited

only by computational cost, which is generally orders of magnitude less than the costs of animal experi-

ments and/or clinical trials.

For this investigation, we use a previously developed agent-based model (ABM) of systemic inflammation:

the innate immune response agent-based model (IIRABM) (An, 2004) as a surrogate system for clinical sepsis.

Previous experiments using the IIRABM provide an explanation as to why single/limited cytokine perturbations

at a single or few time points are unlikely to significantly improve the mortality rate of sepsis (An, 2004). This

result is consistent with the clinical failures of previous static nonpersonalized attempts at treating sepsis.

Recently, genetic algorithms have been used to explore time-varying (but nonadaptive) multicytokine control

strategies for the IIRABM (Cockrell and An, 2018). The results showed some generalizability, but the authors

recognized that more advanced strategies are needed to achieve lower simulated mortality rates across a

broader range of simulated patients. In this study, we apply deep reinforcement learning (DRL)—a class of

optimal control methods—to the IIRABM to discover an adaptive personalized treatment policy that spe-

cifies effective multicytokine therapy to simulated sepsis patients based on systemic measurements.

To our knowledge, this work represents the first investigation into treating sepsis with adaptive per-

sonalized multicytokine mediation. We hope that by demonstrating this strategy through simulation, we

will help inform and direct research toward ‘‘minimally sufficient’’ criteria for developing measurement

technology, identifying biological targets for future drug development, and ultimately designing ani-

mal experiments and/or clinical trials. Finally, this work presents the first application of DRL to control a

simulation of a biological system. We believe the use of simulation together with reinforcement learning

(RL) for discovering adaptive and personalized therapeutics can have broad applicability in the biomedical

sciences, with potential for large impacts.
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2. BACKGROUND

2.1. Agent-based models and their use as a sepsis simulation

ABMs are a generic class of computational models well suited to represent the complex, stochastic, and

nonlinear dynamics of biological systems such as the immune response (An et al., 2009). ABMs are a

powerful alternative to differential equation-based models. Although differential equation-based models

excel in providing precise predictions for systems in which mechanisms are well understood and uncer-

tainty is low, ABMs facilitate exploring the behavior space for complex stochastic systems in which

mechanisms are poorly understood and uncertainty is high (Hunt et al., 2013). ABMs can also be highly

modularized (Petersen et al., 2014), affording the ability to easily explore the space of new mechanisms and

control strategies. ABMs have proved to be useful tools for biological applications, including immune

system modeling (Baldazzi et al., 2006; Bailey et al., 2007), host–pathogen modeling (Bauer et al., 2009),

and cancerous tumor modeling (Zhang et al., 2007; Wang et al., 2015).

Specifically, we use the existing IIRABM as a surrogate system for the investigation of potential control

strategies for a hospitalized patient with sepsis, a role previously proposed for ABMs (An et al., 2017). The

IIRABM simulates the human inflammatory signaling network response to injury. The model has been

calibrated such that it reproduces clinical trajectories of sepsis (An, 2004; Cockrell and An, 2017). The

IIRABM operates by simulating multiple cell types and their interactions, including endothelial cells,

macrophages, neutrophils, and helper T cells (Th0, Th1, and Th2 cells).

The IIRABM has been used to simulate in silico clinical trials of mediator-directed therapies through the

inhibition or augmentation of single cytokine synthesis pathways or limited hypothetical combinations of

interventions (An, 2004). These studies reproduced the failures of past clinical trials and demonstrated that

several other simulated treatment strategies were non-efficacious. The authors could not provide a pathway

toward discovering a sucessful intervention strategy.

The IIRABM is instantiated by selecting five physiological parameters that characterize the injury/infection

and host: initial injury size, microbial invasiveness, microbial toxigenesis, environmental toxicity, and

host resilience. In previous work (Cockrell and An, 2017), the authors performed a parameter sweep to

determine the subset of all parameterizations that are considered clinically relevant. These are parame-

terizations that can lead to multiple outcomes: complete healing, death by infection, or death from immune

dysregulation/sepsis.

2.2. Reinforcement learning

RL is a class of methods within machine learning for finding solutions to high-dimensional control

problems that may not be analytically tractable. RL is a suitable candidate for controlling ABMs, which do

not have analytic expressions for their global state dynamics and are not straightforward to approach using

classical control methods. A traditional simulation of an ABM proceeds ‘‘uninterrupted’’: given an initial

state and starting parameters, agents behave semiautonomously without external influence. In the context

of RL, external actions are applied throughout the course of the simulation in an attempt to guide the

system toward a desired final state. The goal of RL is to learn the best action to execute for each possible

state during the simulation; it learns an adaptive policy for maximizing a reward function (e.g., a

patient’s health).

An RL problem is formulated as a Markov decision process, in which an environment interacts with an

RL agent (see Supplementary Material). Since the sepsis environment exhibits a high-dimensional con-

tinuous state space, we exploit DRL, a subclass of RL that uses function approximators to represent the

policy and/or value functions. Specifically, our RL agent is trained using the deep deterministic policy

gradient (DDPG) algorithm (Lillicrap et al., 2015), a DRL algorithm suitable for continuous action spaces.

3. METHODS

3.1. Defining the sepsis environment

We formalize the control problem by casting the IIRABM as an RL environment, that is, by defining

initial and termination conditions, an observation space, action space, and reward function derived from the

IIRABM.

DEEP REINFORCEMENT LEARNING AND SIMULATION 599



3.1.1. Initial and termination conditions. An episode begins 12 hours after the onset of the initial

simulated injury, that is, once the system has accumulated tissue damage and is trying to recover. Since

both the initial state and the dynamics of the simulation are stochastic, this burn-in period produces a

random draw from the environment’s starting state distribution. An episode ends when the simulated

patient completely heals or dies, or when the RL algorithm reaches 1000 steps.*

3.1.2. Observation space. The IIRABM state exists over a discrete 101 · 101 grid. There are 21 real-

valued state variables of interest at each grid point: concentrations for 12 cytokines, concentrations for 2

cytokine receptors, counts for 5 cell types, a measure of tissue damage, and a measure of infection.

However, a spatially resolved observation space would be clinically unrealistic, as it would involve

measuring the precise locations of cells and local cytokine gradients in the body, which is infeasible given

current technology. We chose a more clinically relevant observation space by spatially aggregating values

for each dimension, consistent with systemic cell and cytokine concentrations, for example, as measured

from a blood sample. This reduces the putative observation space from R101 · 101 · 21 to R21.

3.1.3. Action space. An action taken by the RL agent corresponds to a continuous value between -1

(maximal inhibition) and +1 (maximal augmentation) for each of the 12 cytokines (see Supplementary

Material for details). Thus, the action space is [ - 1‚ 1]12 � R12. Clinically, the choice of continuous actions

reflects the ability of multiple therapeutics to be administered independently and with precise control

through intravenous infusions. An action is applied every four frames of the ABM (which maps to 28

minutes) and the values are sustained in the ABM for all four frames. Note that cytokine mediation actions

are applied on top of a fixed antibiotic therapy regimen in which antibiotics are applied every 24 hours.

Since the antibiotic regimen is fixed, it is not considered as part of the control problem and is thus not part

of the RL agent’s action space.

3.1.4. Reward function. A fully healed patient receives a positive terminal reward (chosen as +250).

A patient who dies receives a negative terminal reward (chosen as -250). If the episode terminates early

due to the 1000-step limit, there is no terminal reward. To facilitate learning, we provide an intermediate

reward shaping term proportional to /(st + 1) - /(st), where /(s) = - damage(s). This term penalizes (or

rewards) the RL agent for increasing (or decreasing) tissue damage, which helps the RL agent drive the

state toward health. Finally, we added an L1 penalty to the reward function for actions taken. This promotes

conservative actions (those that use less mediator), which is clinically relevant as real drugs incur additional

side effects not explicitly captured in the simulation.

Thus, the final reward function is

rt =

- 250 death

+ 250 health

b /(st + 1) - /(st)ð Þ - k k atk1 otherwise‚

8>><
>>:

where b = 100 and k = 1.

4. RESULTS AND DISCUSSION

4.1. Training

We trained the RL agent on a single patient parameterization with 46% baseline (antibiotic only)

mortality rate. Each episode used a different random seed. We ceased training at 2500 episodes (about 7

million frames), by which time the reward signal plateaued and many episodes resulted in healing during

training.

Figure 1 illustrates the reward per episode, outcome distribution, and episode length as a function of

training episode. Taken together, these results suggest that the RL agent progresses through several

*To avoid ambiguity, hereafter we refer to a frame as a single step of the ABM; we use step to refer to a single step
taken by the RL agent.

600 PETERSEN ET AL.



qualitatively different stages of learning. Early on, some patients heal during training, as the policy begins

centered around zero-valued actions (recall that the patient heals 46% of the time with standalone antibiotic

therapy). The reward per episode then reaches an early peak around episode 125, despite a poor healing rate

and long episodes. As the RL agent continues to learn, episode lengths increase up to the 1000-step

maximum as both the healing and death rates drop to nearly zero. Around episode 1000, the RL agent

begins healing patients quickly and episode length correspondingly declines to roughly 500 steps. For the

remainder of the training episodes, the policy maintains a high healing rate. Thus, it appears that the RL

agent first learned to stabilize the patient (leading to long episodes) despite not healing patients. It then

learned to heal these patients and continued to improve by healing them faster.

4.2. Policy evaluation and generalizability

The clinically relevant measure of performance is patient outcome (life or death). Since the simulation is

stochastic, any given initialization (with or without cytokine mediation) results in a distribution of out-

comes. Thus, we evaluate a policy by its resulting mortality rate. Specifically, a policy proceeded until a

health/death outcome was reached or 1000 time steps elapsed. At this point, cytokine mediation stopped

and the patient proceeded for at least 12 hours before determining the final outcome. The learned policy

resulted in 0% patient mortality rate during test time for the patient parameterization on which DDPG was

trained.

We analyzed the generalizability of the learned policy by testing it over a set of 500 different patient

parameterizations with baseline mortality rates in the range 1%–99%. The patient parameterizations in-

cluded in this study span the entire space of clinically plausible parameterizations for the IIRABM as

determined in Cockrell and An (2017). For each patient parameterization, mortality rate was calculated for

50 episodes with different random seeds (Fig. 2; Top). The overall mortality rate (across all 500 patient

parameterizations) improved from 46.0% with standalone antibiotic therapy to 0.8% under the policy.

Moreover, no patient parameterization exhibited an increase in mortality rate compared to baseline. For

each test patient parameterization, we also assessed a measure of performance of the policy relative to

baseline (Fig. 2; Bottom). These results suggest that despite being trained on a single patient parameter-

ization, the policy generalizes well, as it is robust to changes in patient parameterizations.

FIG. 1. Training performance. Top: reward per episode. Middle: moving average for 100 episodes of the rates of

patient outcome (death: red, timeout: blue, health: green). Bottom: episode length (in steps). For the top and bottom

plots, gray represents the actual value of each episode; black represents a moving average for 100 episodes.
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4.3. Policy characterization

To investigate whether the learned policy indeed (1) is adaptive to patients’ state progression over time,

(2) prescribes personalized (i.e., patient-specific) actions, and (3) involves mediating multiple cytokines

simultaneously in coordination, we characterized the policy by observing the time series of selected actions

over various characteristic episodes on different patient parameterizations.

In the first test, we selected patient parameterizations with recurrent injury values in the set f1‚ 5‚ 9g (low,

middle, and high values in the parameter range), and identical values for all other parameters. These param-

eterizations correspond to baseline mortality rates f64%‚ 96%‚ 96%g, respectively. Each parameterization

healed under the policy. Figure 3a–c illustrates the moving average of time series of actions prescribed for

cytokines platelet-activating factor (PAF), interleukin (IL)-1, and interferon (IFN)c, respectively. The policy’s

actions for this patient demonstrate that the policy is adaptive, even switching from inhibition to augmentation

during the course of treatment in the case of PAF. Differences between patient trajectories show the policy’s

specificity to different patient parameterizations. The periodicity of action values that arise after certain time

points further reflects the policy’s adaptive response to recurrent injuries: after patients have reached the health

threshold, the policy specifies a repeating cycle of augmentation of IL-1 when the recurrent injury reappears,

and inhibition once the recurrent injury is cleared. In each of the cytokines shown, we see that patient 3 (green)

takes the most time to enter the periodic region, since this patient has the highest recurrent injury number.

We repeated this experiment for patient parameterizations with initial injury size in the set f20‚ 24‚ 30g,
with all other parameters held constant and recurrent injury set to zero (to remove the aforementioned

periodicity). These parameterizations correspond to baseline mortality rates {4%, 30%, 100%}, respectively.

Figure 3d–f demonstrates the policy’s adaptive transition between inhibition and augmentation, as well as

dependence on a patient’s initial injury size.

FIG. 2. Top left: Histogram of baseline (standalone antibiotic therapy) mortality rates for 500 test patient parame-

terizations (N = 50 instances per test patient parameterization). Top right: Histogram of mortality rates using the learned

policy (combination antibiotic cytokine mediation therapy) for 500 test patient parameterizations. Bottom: Performance

of the learned policy on each of the 500 test patient parameterizations (defined as the difference in mortality rate with

and without the policy, normalized by the larger of the two), sorted by increasing performance. Thus, positive values

can be interpreted as the fraction of patients who were healed by the policy that otherwise would have died, whereas

negative values indicate the fraction of patients who died from the policy that otherwise would have healed. Since the

policy did not cause an increase in mortality rates for any patient parameterization, there are no negative values.
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Although a thorough biomedical interpretation of the learned policy is beyond the scope of this article,

we note that the policy has some intuitive characteristics. For example, the control pattern of IL-1 (a

proinflammatory cytokine) seen in Figure 3e is consistent with nonsuppression during the very early phases

of the response where IL-1 is needed to clear the infection, followed by later suppression of IL-1 to aid in

containment of runaway inflammation and collateral damage. Moreover, the suppression occurs later for

patients with larger initial injury (e.g., patient 6), likely due to the fact that the immune system requires a

longer period of inflammation for larger initial injury sizes to contain and control the greater level of

infection/injury present. IFNc follows a similar pattern (Fig. 3f), although less clearly defined perhaps due

to its more complicated secondary effects like modulating Th cell population distributions.

5. CONCLUSION

We propose a novel approach for precision medicine that involves formulating a dynamic feedback

control problem, simulating the disease process mechanistically, and using optimal control methods to

identify adaptive personalized therapeutic strategies. We demonstrated this approach using an agent-based

simulation of sepsis and investigated whether adaptive personalized multicytokine mediation is an effective

approach for lowering simulated patient mortality rate. Using DRL, we identified a policy that dramatically

lowers mortality rate across a wide range of simulated patients. These proof-of-concept results using

simulation motivate further investigation into such adaptive approaches on real systems.

To the best of our knowledge, this study is the first to exploit DRL to control a biological simulation, and

is the first to consider adaptive personalized multicytokine mediation therapy for sepsis. This work has

demonstrated that mechanism-based simulations in the biomedical sciences can be a powerful alternative to

relying exclusively on real-world data sets. Indeed, the mechanism-based simulation enabled us to explore

therapeutic strategies that have never been attempted in clinical or experimental settings. This work has

also demonstrated that DRL is a powerful methodology to control simulations of real-world systems; we

hope that such methods continue to be applied to simulations in biology and beyond.
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FIG. 3. Moving average of action values (window length 20) for PAF, IL-1, and IFNc, selected by the learned policy

during test treatment of three patient parameterizations. Top row (a–c): varying recurrent injury parameter, all other pa-

rameters held constant. Bottom row (d–f): varying initial injury size, all other parameters held constant, with recurrent injury

set to zero. All patients healed from the policy’s intervention. IL, interleukin; IFN, interferon; PAF, platelet-activating factor.
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