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Abstract

Collectively, the completion of the Human Genome Project and subsequent development of high-

throughput next-generation sequencing methodologies have revolutionized genomic research. 

However, the rapid sequencing and analysis of thousands upon thousands of human exomes and 

genomes has taught us that most genes, including those known to cause heritable cardiovascular 

disorders such as long QT syndrome, harbor an unexpected background rate of rare, and 

presumably innocuous, non-synonymous genetic variation. In this Review, we aim to reappraise 

the genetic architecture underlying both the acquired and congenital forms of long QT syndrome 

by examining how the clinical phenotype associated with and background genetic variation in long 

QT syndrome-susceptibility genes impacts the clinical validity of existing gene-disease 

associations and the variant classification and reporting strategies that serve as the foundation for 

diagnostic long QT syndrome genetic testing.
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Introduction

Long QT syndrome (LQTS) is a genetically and phenotypically heterogeneous disorder of 

cardiac repolarization characterized clinically by prolongation of the heart rate-corrected QT 

interval (QTc) on the 12-lead electrocardiogram (ECG) and an increased propensity for 

torsadogenic syncope/seizures and sudden cardiac death (SCD) [1,2]. Following the sentinel 

discovery of the canonical LQTS-susceptibility genes (KCNQ1, KCNH2, and SCN5A) in 

1995 and 1996 [3–5]and completion of the Human Genome Project in 2003, rapid advances 

in deoxyribonucleic acid (DNA) sequencing technology allowed for the discovery of new 

Mendelian disease-susceptibility genes, including most of the 14 minor LQTS-susceptibility 

genes [6–12], at a dizzying pace.

However, the high-throughput DNA sequencing and subsequent analysis of tens-to-hundreds 

of thousands human exomes and genomes have exposed the stark reality that one in eight 

protein-encoding base pairs hosts a genetic variant and many Mendelian disease-

susceptibility genes, including the canonical LQTS-susceptibility genes, are surprisingly 

tolerant to non-synonymous genetic variation [13–15]. Unfortunately, this burden of rare 

non-synonymous background genetic variants not only complicates variant interpretation 

[16–18], but for some minor LQTS-susceptibility genes, also calls into question the veracity 

of longstanding gene-disease associations.

In this Review, we (i) detail current paradigms regarding the molecular and cellular 

underpinnings of LQTS, (ii) reappraise the veracity of the QT phenotype associated with 

specific minor LQTS subtypes, (iii) examine ongoing attempts to classify and curate the 

clinical validity of existing gene-disease associations, and (iv) assess the limitations of 

current variant interpretation and reporting standards in an effort to highlight how a critical 

reappraisal of LQTS genetic architecture can help preserve, and hopefully enhance, the 

clinical validity of diagnostic LQTS genetic testing. To assist those readers with limited 

genetics/genomics backgrounds or those in need of a quick refresher, a glossary of 

terminology used throughout this Review is included in the online supplementary material.

Long QT syndrome: cellular mechanisms, genetic underpinnings, and 

prevailing paradigms

The electromechanical function of the heart is dependent on the coordinated activation and 

inactivation of inward depolarizing [sodium (Na+) and calcium (Ca2+)] and outward 

repolarizing [potassium (K+)] currents that underlie the five major phases of the cardiac 

action potential (Fig. 1) [19,20]. Genetic or acquired defects that accentuate depolarizing Na
+ and Ca2+ currents (INa and ICa,L) or attenuate repolarizing K+ currents (IKs, IKr, and IK1) 

(Fig. 1a) can prolong the ventricular cardiac action potential (Fig. 1b), as reflected by a 

prolonged QT interval on the surface 12-lead ECG (Fig. 1c). Current joint expert consensus 

guidelines define a prolonged QTc value as >450 ms in males and >460 ms in females [21]. 

However, ~5–10% of individuals within the general population have a QTc > 460 ms on 

screening ECG [22]. As such, sex-specific 99.5th percentile QTc values (>460 ms for 

prepubertal males and females, >470 ms for postpubertal males, and >480 ms for 

postpubertal females) are used commonly as a cutoff to identify those who might benefit 
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from cLQTS genetic testing [23]. Practically, a baseline QTc value ≥ 500 ms is considered 

definitely abnormal and if observed, in the absence of one or more QT prolonging risk 

factors, should compel strong clinical suspicion for congenital LQTS (cLQTS) and a class I 

recommendation to proceed with LQTS genetic testing [23].

Regardless of the underlying mechanism of QT prolongation [acquired/drug-induced LQTS 

(aLQTS) vs. cLQTS], increased cardiomyocyte refractoriness generates an electrical 

substrate that can give rise to frequent early afterdepolarizations (EADs) mediated by re-

activation of L-type Ca2+ and sodium-calcium exchange currents during phase 2 and 3 of the 

cardiac action potential. Triggered activity from focal EADs coupled with EAD augmented 

electrical heterogeneity in adjacent regions of myocardium likely generates the electrical 

substrate needed for the initiation, propagation, and maintenance of torsades de pointes 
(TdP), the hallmark form of self-sustaining polymorphic ventricular tachycardia observed in 

patients with LQTS (Fig. 1d) [24].

During the early-to-mid 1990s, a series of now classical linkage-analysis studies identified 

the KCNQ1 -encoded Kv 7.1 K+ channel, the KCNH2-encoded Kv 11.1/hERG K+ channel, 

and the SCN5A- encoded Nav 1.5 Na+ channel pore-forming α-subunits as genetic 

substrates for congenital LQTS [3–5]. Among clinically definitive LQTS cases (i.e. QTc ≥ 

480 ms and “Schwartz score” ≥ 3.5) [25], ~75% harbor a pathogenic variant in one of the 

three canonical LQTS-susceptibility genes [KCNQ1 (~35%), KCNH2 (~30%), and SCN5A 
(~10%)] (Table 1) [26]. An additional ~5–10% of LQTS cases, including patients that may 

display prolonged QTc values as part of distinct multisystem syndromes [27–29] such as 

Timothy syndrome (TS1 and CACNA1C), Andersen-Tawil Syndrome (ATS1 and KCNJ2), 
and Triadin Knockout Syndrome (TKOS and TRDN), are anticipated to harbor a pathogenic 

variant in one of at least 14 additional “minor” LQTS-susceptibility genes that have been 

published in the literature to date (Table 1).

A case of mistaken identity? Reappraising the QT phenotype associated 

with Andersen Tawil syndrome (ATS) and ankyrin-B syndrome (ABS)

Disease severity in most forms of LQTS, including the degree of QT prolongation, is 

influenced strongly by the phenomena of incomplete penetrance and variable expressivity. 

However, since the sentinel clinical description of both ATS [30] and Ankyrin-B syndrome 

(ABS) [31], subsequent evidence suggests that individuals with both disorders rarely display 

baseline QTc values consistent with cLQTS. As such, the following paragraphs briefly 

examine if ATS and ABS still merit designation as bona fide LQTS subtypes and whether 

KCNJ2 or ANK2 should remain on diagnostic LQTS genetic testing panels.

ATS was first described in 1971 as a clinical triad of periodic paralysis, ventricular ectopy/

arrhythmia, and variable developmental abnormalities of the head, face, and limbs [30]. Due 

to the presence of prominent U waves and resulting QT-U interval prolongation on 12-lead 

ECG, ATS was labelled, initially and erroneously, as a multisystem form of cLQTS and the 

ATS-causative KCNJ2 gene given the historical designation as LQT7 [32].
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However, once the abnormal U wave is excluded, ATS patients almost always display 

normal QT intervals (<440 ms) [33]. Furthermore, the burden of complex ventricular ectopy 

at rest and biventricular tachycardia (a rare subtype of polymorphic ventricular tachycardia 

observed in catecholaminergic polymorphic ventricular tachycardia, but not LQTS) observed 

in ATS are highly uncharacteristic of LQTS [33]. As such, it is difficult to find substantive 

evidence to support the ongoing use of the historical LQT7 convention to describe ATS or 

the inclusion of KCNJ2 on diagnostic LQTS genetic testing panels, other than to catch the 

rare case of ATS incorrectly diagnosed as LQTS due to a failure to recognize the multi‐

system disorder’s distinct clinical and electrocardiographic profile.

Unlike ATS, ABS is a cardiac-only disorder characterized clinically by a range of variably 

present arrhythmia phenotypes including sinus node dysfunction, supraventricular and 

ventricular arrhythmias, and SCD [34]. Interestingly, overt QT prolongation (average QTc 

490 ± 30 ms) was a characteristic of affected individuals in the multigenerational French 

pedigree that led to the first description of ABS (historically termed LQT4) and the 

discovery of the locus containing ANK2 [31,35]. However, subsequent studies have 

demonstrated that baseline QTc prolongation is at best inconsistently observed in ABS 

[34,36,37]. Like ATS, this initial discrepancy may be caused, in part, by the inclusion of 

prominent U waves/sinusoidal T-U abnormalities in QTc calculations. As a result, QTUc 

values may appear markedly prolonged in ABS, but true QTc values typically reside in the 

normal-to-borderline range as more commonly reported [34,36,37].

That said, the recent description of a novel ANK2 variant, p.Ser646Phe-ANK2, that appears 

to be more consistently associated with true QTc prolongation (average QTc 475 ± 40 ms) 

[38] and the prior association of common ANK2 variants with QTc duration in the general 

population [39] support a role for ANK2 in cardiac repolarization/LQTS pathogenesis. As 

such, it would be premature, at least on the basis of clinical phenotype alone, to call for the 

removal of ANK2 from diagnostic LQTS genetic testing panels. However, when taken in 

context of (i) the weak QT phenotype inconsistently observed in ABS [34,36,37], (ii) failure 

of subsequent larger genome-wide association studies (GWAS) to reproduce the association 

between ANK2 and QTc duration in the general population [40,41], and (iii) public exome 

data presented in the ensuing sections, there is clearly impetus to reappraise the role of 

ANK2 in the pathogenesis of monogenic cLQTS.

Minor LQTS-susceptibility genes: time for a critical reappraisal?

In the 15 years following the release of the completed human genome, advances in 

sequencing technology facilitated the discovery of new disease-susceptibility genes in 

scenarios (i.e. singletons and small pedigrees) not feasible with classical linkage analysis. As 

a result, nearly half of the gene-disease associations in existence today [42], including the 

majority of the minor LQTS-susceptibility genes (Table 1) [6–12], were discovered over the 

last ~10 years using largely hypothesis-driven, mutational analysis of biologically plausible 

genes and their gene-encoded proteins. However, many of these genes were discovered in an 

era before the burden of background non-synonymous genetic variation was appreciated 

fully. As such, the strength of evidence behind existing gene-disease associations is widely 

variable. In the following paragraphs, we explore the minor non-syndromic LQTS-
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susceptibility genes as a prototype to examine ongoing efforts to assess the validity of gene-

disease associations and detail the potential impact of these efforts on clinical LQTS genetic 

testing.

Reappraising the non-syndromic minor LQTS-susceptibility genes

Due to a relative paucity of gene- and variant-level evidence, virtually every novel ultra-rare 

missense variant in a nonsyndromic, minor LQTS-susceptibility gene (Table 1) is likely to 

receive, at best, a variant of uncertain significance (VUS) designation. Not suprisingly, the 

identification of an ambiguous VUS in so-called weak or preliminary evidence genes is 

rarely clinically informative, increases the risk of genetic test misinterpretation, and 

ultimately can result in potentially harmful diagnostic miscues. In an effort to improve the 

validity of genes included on clinical genetic tests, the National Institutes of Health funded 

Clinical Genome Resource (ClinGen) has developed a semi-quantitative framework 

designed to standardize how the strength of genetic and functional evidence supporting a 

given gene-disease association is assessed systematically [43].

Although official ClinGen curations for the majority of LQTS-and other inherited cardiac 

channelopathy-susceptibility genes are eagerly awaited, independent application of the open 

access ClinGen gene-disease association framework suggests that 6/9 (66.7%) of the minor 

non-syndromic LQTS-susceptibility genes will receive (ANK2, KCNE2, KCNJ5/ and 

SNTA1) or have already received (AKAP9 and SCN4B) [43] disputed-evidence gene or 

limited-evidence gene designations (Table 3) [43].

For AKAP9, SCN4B, and SNTA1, where only a single qualifying functional ultra-rare 

missense variant is present in the literature (Table 2), there is simply not enough genetic 

evidence to elevate these genes beyond a limited-evidence gene regardless of the strength of 

experimental evidence available (Table 3). Of note, the putative LQTS-causative variants 

within both AKAP9 and SNTA1 used to establish their initial gene-disease associations are 

present, albeit at extremely low frequency (<10 out of >10 0,00 0 individuals), in pubic 

exomes (Table 2). Although this finding rightfully questions the nature of AKAP9 and 

SNTA’s association with penetrant mongogenic cLQTS, the identification of additional 

LQTS-associated variants, more sophisticated functional characterization of existing and 

newly discovered variants such as using patient-specific and their variant-corrected induced 

pluripotent stem cell-derived cardiac cell lines to assess both necessity and sufficiency of an 

implicated genetic variant, and development of publication avenues that encourage the 

pursuit and reporting of these findings is needed urgently to determine if AKAP9, SCN4B/ 
and SNTA1 are candidates for elevation from a limited-evidence gene to a bona fide LQTS-

susceptibility gene or further demotion to a disputed-evidence gene.

Already, the body of evidence for some of the other minor non-syndromic LQTS genes 

compel their demotion (Table 3). In a recent analysis, those variants in KCNE2-encoded 

MinK-related peptide 1 (MiRP1) initially deemed to be KCNE2-LQTS (historically 

designated as LQT6)-causative [7] were (i) collectively observed in 1.4% of public exomes, 

(ii) not found to co-segregate with a LQTS phenotype in either the literature or a large 

multicenter cohort of KCNE2 rare variant-positive subjects, and (iii) rarely associated with 
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QT prolongation, TdP, or SCD in the absence of a secondary stressor (electrolyte 

abnormalities, QT prolonging medications, etc.) [44]. This collective evidence led to the 

conclusion that rare loss-of-function KCNE2 variants confer an underlying arrhythmia-

susceptiblity that may manifest as QT prolongation, TdP, and SCD when exacerbated by 

additional environmental and/or genetic risk factors, but likely do not cause bona fide 
cLQTS in isolation [44]. As such, KCNE2 appears poised to receive a disputed-evidence 

gene designation when the official ClinGen gene-disease association classifications are 

released (Table 3).

Similarly, a majority of the ANK2 -encoded ankyrin-B loss-of-function variants previously 

deemed to be ABS-causative [34,35,45] are observed at unacceptably high minor allele 

frequencies (MAF) in public exomes (Table 2). Furthermore, as discussed above, over time, 

it has become increasingly clear that QT prolongation is not a consistent feature of the 

cardiac phenotype observed in ABS [36]. Although the disruption of multiple ion channels/

transporters and resulting arrhythmia-susceptibility conferred by loss-of-function ANK2 
variants is not in question, the high frequency of putative ABS-causative variants in public 

exomes and nature of the ABS cardiac phenotype certainly question the ongoing designation 

of ANK2 as a self-sufficient cLQTS-susceptibility gene. That said, the aforementioned 

recent discovery of a loss-of-function ANK2 variant (p.Ser646Phe-ANK2) in the Gitxsan 

First Nations founder population that appears to be more consistently associated with QT 

prolongation and is absent from public exomes may save ANK2 from receiving a disputed-

evidence gene designation (Table 3) [38].

Lastly, a single trafficking-defective variant, p.Gly387Arg-KCNJ5, in the KCNJ5-encoded 

G-protein-coupled inward rectifier potassium channel subtype 4 (GIRK4; Kir3.4) that 

partially conducts the acetylcholine-induced potassium current (IiKACh) current has been 

linked to cLQTS through a multi-generational Chinese pedigree [12]. On one hand, KCNJ5 
represents one of the only nonsyndromic, minor LQTS-susceptibility genes to be discovered 

by classical linkage analysis [12]. On the o present in 47/9424 (0.005%) East Asian public 

exomes/genomes and evidence to support a definitive role for IKACh in human ventricular 

repolarization is lacking currently [46]. Furthermore, a closer analysis of the clinical 

phenotype of p.Gly387Arg-KCNJ5-positive individuals revealed that overt QT prolongation 

was only observed in individuals with additional non-modifiable QT prolongation risk 

factors such as heart failure, bradycardia, and diabetes [47]. Therefore, it is not clear whether 

KCNJ5 functions as a self-sufficient but weakly penetrant cLQTS-susceptibility gene or 

more likely confers an underlying arrhythmia-susceptibility that can manifest as QT 

prolongation in the presence of multiple additional QT prolongation risk factors. Regardless, 

in light of the aformentioned population frequency data (Table 2) and lingering questions 

regarding the role of IKACh in ventricular repolarization, it would come as little suprise if 

KCNJ5 receives a disputed-evidence gene designation (Table 3).

While AIKAP9, ANK2, KCNE2, KCNJ5, SCN4B, and SNTA1 appear headed for demotion 

to either limited- or disputed-evidence gene status, it is important to remember that our 

understanding of LQTS genetic architecture is not static. A gene demoted today in the 

setting of a prevailing monogenic paradigm may well find new life tomorrow as our 

understanding of the oligogenic/polygenic nature of LQTS continues to evolve. As such, the 
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temptation to simply lock these genes up and throw away the key must be resisted and the 

fluid nature of gene-disease association assessment must be embraced.

Genetic testing panels: is bigger really better?

From the onset of clinical genetic testing for LQTS and other Mendelian disorders, the 

mindset regarding the size of genetic testing panels has largely followed a “bigger is better” 

mentality. As new disease-susceptibility genes were discovered, the race between clinical 

laboratories to rapidly expand their respective diagnostic genetic testing panels was on. In 

recent years, a natural extension of this “bigger is better” mantra has been the development 

of massive pan-disease diagnostic genetic testing panels (i.e. pan-arrhythmia, pan-cardiac, 

etc.) that often encompass hundreds of genes with highly variable gene-disease association 

strengths [18]. When combined with an inherently high rate of background genetic variation, 

the use of these large and relatively non-specific genetic testing panels has become a recipe 

for the identification of an enormous number of VUS destined for so-called “genetic 

purgatory” [17]. Consequently, the unintentional mishandling of VUS has resulted in 

diagnostic miscues that range in severity from the misguided initiation of predictive cascade 

screening to the inappropriate implantation of prophylactic implantable 

cardioverterdefibrillators [16,17].

As those genes ultimately designated as disputed-evidence genes and limited-evidence genes 

(i.e. genes of uncertain significance or GUS) are likely to also contribute a substantial 

number of VUS, there are bound to be calls to remove some of the minor LQTS-

susceptibility genes designated officially as either disputed/limited-evidence genes from 

genetic testing panels. However, the assumption that variants residing within such a gene 

cannot impact clinical decision making may be flawed.

For example, unless current estimates of LQTS/LQTS subtype prevalence represent vast 

underestimates, functional rare variants in KCNE2 (i.e. p.Thr10Met-KCNE2, p.Met54Thr-

KCNE2, and p.Ile57Thr-KCNE2) [44,48] are simply observed too frequently in public 

exomes to support even a weakly penetrant, but selfsufficient, role in the pathogenesis of a 

LQTS subtype widely believed to account for ≤1% of LQTS cases [26,36,49]. However, 

each of these KCNE2 rare variants have been observed in individuals who exhibited a 

prolonged QT phenotype, including se vere manifestations such as TdP and SCD, in the 

presence of additional endogenous and exogenous risk factors [44]. Thus, despite an 

uncertain role in the pathogenesis of fully penetrant monogenic cLQTS, it still remains 

possible that rare, functionally pro-arrhythmic, variants in an otherwise disputed/limited-

evidence gene (from a monogenetic disease-causing perspective) can potentially contribute 

to oligogenic/polygenic LQTS or predispose to acquired forms of LQTS. Therefore, some 

variants in these genes have the potential to impact clinical decision-making in some clinical 

scenarios.

This begs the question of how to ensure that ordering healthcare providers are made aware 

of the presence of potentially clinically-impactful, functional rare variants termed functional 
risk alleles that may contribute to oligogenic, polygenic, or acquired forms of LQTS 

residing within genes believed to have a limited or disputed role in penetrant monogenic 
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LQTS without needlessly increasing the number of novel rare VUSs. At first glance, the 

removal of disputed-evidence genes and perhaps even limited-evidence genes from 

diagnostic genetic testing panels might be the best solution. However, as our understanding 

of the genetic architecture underlying LQTS continues to evolve, we may quickly discover 

that the removal of some limited/disputed-evidence genes has resulted in a genetic test that 

now fails to convey/capture an individual’s true genetic predilection for disease. As such, 

once the formal ClinGen classifications for LQTS and other SCD-predisposing 

cardiovascular disorders are released, it will be up to research community at large to develop 

more definitive means of assessing the potential pathogenic contributions of the minor 

LQTS-susceptibility genes that have been demoted, including potential oligogenic/polygenic 

contributions, as well as determining formal criteria for the fluid inclusion of genes on 

clinical genetic tests of all shapes and sizes.

Historical LQTS conventions: farewell old friend?

Unlike genes, which are granted an official name and symbol by a formal committee [the 

Human Genome Organization (HUGO) Gene Nomenclature Committee (HGNC)], there is 

and never was a gold standard by which the genetics and genomics community was expected 

to adhere when naming genetic disorders. The result has been a hodge-podge of naming 

conventions: (i) major sign of the disorder (e.g. LQTS), (ii) responsible genetic/biochemical 

defect (e.g. Ankyrin-B syndrome, ABS), (iii) surname(s) of the disorder’s discover(s) (e.g. 

Andersen and Tawil Syndrome, ATS, Jervell and Lange-Nielsen Syndrome, JLNS, and 

Timothy Syndrome, TS), and (iv) the adoption of a rigid numerical approach (i.e. LQT1, 

LQT2, etc.) to the naming of disease subtypes.

With the likely demotion of previously published monogenic cLQTS-causative genes due to 

either (i) contradictory clinical evidence (KCNJ2/LQT7), (ii) genetic evidence (AKAP9/

LQT11, KCNE2/LQT6, KCNJ5/LQT13, SCN4B/LQT10, and SNTA1/LQT12), or (iii) a 

combination of both (ANK2/LQT4), gaps in the classical/historical LQT1–17 subtype 

nomenclature are bound to emerge. As such, the time to reappraise existing LQTS 

nomenclature and institute substantive changes has never been better.

To this end, the adoption of a system that allows the canonical, irrefutable, and common 

disease-susceptibility genes to retain their historical LQT1–3 designations and then assigns a 

gene-derived convention for the minor non-syndromic LQTS-susceptibility genes (i.e. 

CACNA1C-LQTS) is preferable. Such a system (i) communicates directly the gene/minor 

LQTS subtype in question, (ii) eliminates the need to recall additional/unnecessary 

associations (LQT15 is caused by what again?), and (iii) allows genes to fluidly enter or exit 

as the strength of evidence and/or prevailing paradigms dictate regarding LQTS genetic 

architecture.

Reappraisal of variant interpretation and reporting strategies in diagnostic 

LQTS genetic testing

As a result of inter-laboratory heterogeneity in the classification and reporting of genetic 

variants, the American College of Medical Genetics and Genomics (ACMG) and the 
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Association for Molecular Pathology (AMP) released updated variant classification and 

reporting standards in 2015 [50]. In response, most commercial genetic testing companies, 

including the majority of those that perform diagnostic LQTS genetic testing, have adopted 

variant classification and reporting strategies that closely align with the 2015 ACMG/AMP 

guidelines. However, these general “one-size-fits-all” guidelines were not intended to 

address the intricacies and idiosyncrasies associated with genetic testing for specific 

disorders such as LQTS [51]. As such, the following paragraphs examine specific limitations 

of the 2015 ACMG/AMP guidelines that have already negatively impacted diagnostic LQTS 

genetic testing.

Potentially pro-arrhythmic common genetic variants (functional risk 

alleles): missing in action or not clinically actionable?

Unfortunately, the 2015 ACMG/AMP guidelines specifically avoided guidance on how or 

whether common genetic variants, that may modify cLQTS phenotypic severity and/or serve 

as genetic risk factors for aLQTS, should be classified and incorporated into diagnostic 

LQTS genetic testing reports. In turn, this lack of guidance gave those clinical genetic 

testing laboratories, that adopted ACMG/AMP-based schemes, the latitude to interpret (or 

misinterpret) the 2015 guidelines in a manner that has resulted in the exclusion of common 

variants with the potential to impact clinical decision making (Table 4) from diagnostic 

LQTS genetic testing reports [51].

As recently reviewed in detail elsewhere [51], the population frequency of common variants 

such as p.Asp85Asn-KCNE1 and p.Ser1103Tyr-SCN5A (Table 4) easily exceed cLQTS 

prevalence. However, these variants have substantial epidemiologic and experimental 

evidence to suggest they are capable of generating a circumstance-dependent, pro-

arrhythmic state in the setting of QT prolonging medications, electrolyte abnormalities, 

structural heart disease, and repolarization reserve-deficient genetic backgrounds [51]. Thus, 

these common variants are likely not benign as frequently classified (Table 4). Rather, they 

represent a newly defined class of variants termed “functional risk alleles” capable of 

mimicking the sequelae of ultra-rare penetrant cLQTS-causative pathogenic variants, 

including conferring susceptibility for TdP and SCD, under specific conditions [51]. 

Therefore, the practice of withholding or limiting information regarding the presence of so-

called functional risk alleles to a supplement that must be requested by healthcare providers 

has likely resulted in LQTS genetic tests that fail to accurately reflect their patient’s true 

genetic risk of SCD-predisposing disease.

As such, consideration should be given to reporting those variants that meet the 

epidemiologic (i.e. odds ratio >5 in case-control studies) and experimental (i.e. well-

established functional evidence such as in vitro cellular electrophysiology data) to be 

classified as functional risk alleles (Table 4) under a distinct “Other Reportable” category 

with an accompanying disclaimer such as “This variant is not a self-sufficient, disease-

causative mutation in isolation. However, in the setting of either disease-causative mutations 

or acquired QT-aggravating risk factors, the presence of this risk allele can potentially 

increase the patient’s risk of a potentially life threatening ventricular arrhythmia” [51].
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This approach differentiates functional risk alleles from truly pathogenic/likely pathogenic 

variants and ambiguous VUS and limits the risk of misinterpretation and downstream 

diagnostic mis-cues. Furthermore, this approach highlights how a critical reappraisal of 

current variant classification and reporting strategies can improve the state of diagnostic 

LQTS genetic testing by ensuring patients and healthcare providers are informed of 

functional risk alleles and afforded every opportunity to institute the simple interventions 

[i.e. QT prolonging drug avoidance (www.crediblemeds. org), hydration/potassium 

supplementation, judicious use of antipyretics, etc.] needed to mitigate the small but 

increased risk of SCD that the presence of functional risk alleles may confer [51].

LQTS-lite: reappraising how weakly penetrant “pathogenic” genetic 

variants are classified and reported

Residing somewhere between functional risk alleles (Table 4) and penetrant ultra-rare 

cLQTS-causative pathogenic variants (an LQT1-causative variant for example) is a class of 

functional rare variants deemed previously to be LQTS-causative, but whose frequency in 

public exomes exceed expected cLQTS subtype prevalence (1:7,143 for LQT1, 1:10,000 for 

LQT2, 1:25,0 00 for LQT3, and 1:250,0 0 0 for minor LQTS subtypes). In a heterozygous 

state, these variants, which are perhaps best exemplified by Finnish (p.Arg176Trp-KCNH2 

and p.Leu552Ser-KCNH2) [52] and Norwegian/Swedish (p.Arg518Ter-KCNQ1) [53] 

founder variants, are associated with a subclinical/concealed LQTS phenotype consisting of 

borderline QTc prolongation (~450–460 ms) and low SCD risk. Functionally, these rare 

variants result in haploinsufficiency (p.Arg518Ter-KCNQ1 and all truncating KCNQ1 
variants for that matter) or confer modest reductions in IKr current density (p.Arg176Trp-

KCNH2 and p.Leu552Ser-KCNH2) [54–57]. Furthermore, the pro-arrhythmic potential of 

these variants is further highlighted by their frequent contribution to the severe LQTS 

phenotype observed in JLNS/compound heterozygosity [53,56] and/or association with 

drug-induced LQTS/TdP risk [58]. As such, these weakly penetrant, but functional, rare 

variants represent well- known examples of an emerging class of LQTS-causative variants, 

that includes many KCNQ1 prematurely truncating nonsense and frame-shift variants [59], 

which collectively result in a latent and more common form of LQTS perhaps best referred 

to as “LQTSLite”.

Based on public exome-derived population frequencies, LQTSLite-causative variants are 

anticipated to be amongst those variants most frequently encountered during diagnostic 

LQTS genetic testing [13]. Although classification of LQTS-Lite-causative variants as 

“pathogenic variants” or “likely pathogenic variants” is appropriate, these weakly penetrant 

variants highlight the fact that current ACMG/AMP guidelines were not designed to 

communicate blatant differences in the strength/penetrance of pathogenic variants. As a 

result of this “all-or-nothing” approach, healthcare providers with little experience with 

genetic heart diseases may subject extremely low risk asymptomatic individuals with LQTS-

Lite-causative variants to overly aggressive treatment on the basis of a “positive” genetic 

test. As such, the best management strategies for patients with LQTS-Lite-causative 

variant(s) and the development of variant classification and reporting mechanisms capable of 
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differentiating between pathogenic variants with intrinsically lower/higher risk and/or 

penetrance represent areas in need of ongoing reappraisal.

LQTS genetic architecture: truly a monogenic disease?

The number of minor LQTS-susceptibility gene variants observed at unacceptably high 

frequency in public exomes (Table 2) suggests that the role many of these genes play in 

LQTS pathogenesis may be more limited, or alternatively more complicated, than believed 

initially. When viewed in the context of pro-arrhythmic common variants/functional risk 

alleles (Table 4) and weakly pen etrant LQTS-Lite-causative rare variants in the canonical 

LQTS-susceptibility genes, it appears that the spectrum of genetic variants capable of 

contributing to the genetic architecture of LQTS (Fig. 2) may be far more complicated than 

envisioned previously.

On the severe end of the LQTS genetic spectrum are ultra-rare, self-sufficient pathogenic/

likely pathogenic variants that substantially reduce cardiac repolarization reserve and 

underlie relatively penetrant monogenic cLQTS (Fig. 2). Due to the strong negative selective 

pressure exerted against these variants, they are likely rarely, if ever, observed at frequencies 

that exceed the estimated prevalence of cLQTS in the general population [1:2,500 or a minor 

allele frequency (MAF) < 0.00 04%] [60].

The opposite (benign) end of the LQTS genetic spectrum features common genetic variants 

(MAF > 1%), often identified through large-scale genome wide association studies 

associated with QT interval duration in the general population (Fig. 2) [40,41,61]. Although 

benign in isolation, the aggregate effect of multiple QT-influencing common genetic 

variants, as assessed by weighted-effect genetic risk scores, are associated with inter‐

individual variability in baseline QTc duration [62] and the exaggerated QTc response/TdP 

risk following exposure to a medication with known QT prolonging potential [63] observed 

in acquired/drug-induced LQTS (Fig. 2). In theory, the burden of QT-influencing, common 

genetic variants within an individual’s genetic background (i.e. repolarization reserve rich 

vs. deficient) could also contribute to the phenomena of incomplete penetrance and variable 

expressivity observed in many LQTS pedigrees as well as the ~20% of LQTS cases that 

remain genotype-negative.

Lastly, in the middle of the LQTS genetic variation spectrum are relatively rare and 

comparatively more common genetic variants (MAF ranging from >0.00 04 to < 1%) that 

we have designated herein as either LQTS-Lite-causative rare variants or func tional risk 

alleles, respectively (Fig. 2). These variants result in mild-to-moderate reductions in cardiac 

repolarization reserve that may manifest as borderline or transient QT prolongation, but 

rarely cause LQTS-triggered syncope/seizures or SCD in the absence of additional QT 

prolonging genetic variants or endogenous/exogenous risk factors. As such, these variants 

may serve as primary drivers of so-called oligogenic cLQTS when present in genetic 

backgrounds that contain other QT-related genetic modifiers such as common variants in 

NOS1AP [64,65], the 3′untranslated region of KCNQ1 [66], and perhaps an increased 

burden of those common variants shown to influence QTc duration in health. Furthermore, 

LQTS-Lite-causative variants within this class likely explain, in part, the observation that 
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functional rare variants previously associated with cLQTS are observed at unexpectedly high 

frequency in public exome/genome databases [67].

As the dust settles: practical implications for the clinician

As outlined in the preceding sections, the stage is set for several paradigm shifts, notably the 

possible demotion/reclassification of ~40% of LQTS-susceptibility genes and the transition 

away from a rigid monogenic model of disease, with the potential to radically alter our view 

of the genetic architecture underlying LQTS and other heritable cardiovascular disorders. 

For those charged with the care of patients with LQTS, whether it be on a daily basis or once 

in a blue moon, it is anticipated that this Review will generate a litany of questions, and 

perhaps some appropriate anxiety, regarding the current role of genetics in the diagnosis, 

risk-stratification, and management of LQTS.

Once formal ClinGen gene-disease association classifications are released, it will take time 

for (i) the field to reach a consensus regarding if/how variants in demoted/reclassified genes 

are reported and (ii) clinical laboratories to implement these recommendations. As genetic 

testing is, and should remain, a class I recommendation for LQTS [23], clinicians should 

continue to utilize the current generation of diagnostic LQTS genetic tests. However, 

ordering healthcare providers should assure they are receiving a complete genetic risk profile 

on every patient by requesting the supplemental information needed to determine if 

functional risk alleles are present and handling variants identified in genes that are poised for 

demotion/reclassification with extra caution and skepticism.

During this transition period, clinicians may find it helpful to utilize a tiered approach, 

independent from commercial classification and reporting schemes, to prioritize the analysis 

of diagnostic LQTS genetic testing results (Fig. 3). Under such an approach, findings in the 

canonical [KCNQ1 (LQT1), KCNH2 (LQT2), and SCN5A (LQT3)] and moderate-to-strong 

evidence minor LQTS-susceptibility genes (CACNA1C-LQTS, CALM1/2/3-LQTS, CAV3-

LQTS, KCNE1-LQTS, and TRDN-LQTS/TKOS) are prioritized and represent the area 

where generalists should focus their efforts. Until the dust settles, it is recommended that 

patients with either a VUS or variants labelled, previously or actively, as pathogenic/likely 

pathogenic in limited/disputed evidence genes be referred to dedicated Cardiovascular 

Genetics Clinics to decrease the risk of diagnostic miscues. Furthermore, any vexing 

questions related to LQTS genetic testing, including appropriateness of cascade screening, 

VUS resolution, and the possibility of oligogenic/polygenic disease, are best addressed in a 

similar setting.

Conclusion

As illustrated in this Review, the unexpectedly high rate of background genetic variation in 

the canonical and minor LQTS-susceptibility genes is beginning to re-shape our 

understanding of the genetic architecture underlying LQTS. In short order, a number of the 

minor LQTS-susceptibility genes, previously believed to be responsible for ~5–10% of non-

syndromic LQTS cases, could be demoted to either limited-evidence or disputed-evidence 

gene status and, at best, be relegated to roles as oligogenic/polygenic contributors. 
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Meanwhile, the presence of functional and potentially clinically impactful genetic variation 

in LQTS-susceptibility genes whose population frequencies easily exceed overall LQTS 

and/or LQTS subtype prevalence exposes inherent limitations in our current variant 

classification and reporting strategies. Unfortunately, these issues are not unique to LQTS 

and are anticipated to impact all heritable cardiovascular disorders, including the 

aortopathies, cardiomyopathies, and the other cardiac channelopathies, to some degree. As 

these issues continue to challenge current paradigms, it is paramount that the field 

continually reappraise whether (i) a larger than anticipated number of LQTS cases, including 

many currently labelled as minor gene-positive or genotype-negative, are actually oligogenic 

or polygenic in nature, (ii) previous estimates of cLQTS prevalence are indeed accurate, and 

(iii) existing variant classification and reporting strategies accurately reflect the full 

spectrum of genetic variation that may contribute to LQTS pathogenesis and therefore 

convey an individual’s true genetic risk of disease. Hopefully, ongoing efforts, to address 

these and other pressing issues (i.e. “the VUS crisis”), will continue to improve the state of 

diagnostic LQTS genetic testing and ensure that patients have access to accurate genotype-

guided approaches to the diagnosis, risk-stratification, and clinical management of this 

potentially fatal, but highly treatable, genetic disorder [68].
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I KACh acetylcholine- induced potassium current

K+ potassium

LQTS long QT syndrome

MAF minor allele frequency

Na+ sodium

QTc heart rate-corrected QT interval

SCD sudden cardiac death

TdP torsades de pointes

VUS variant of uncertain significance
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Fig. 1. 
Current paradigm for the molecular and cellular basis of congenital long QT syndrome. (a) 

Genetic variation in pore-forming α-subunits or accessory β-subunits that results in cardiac 

potassium channel (KCNQ1-encoded Kv7.1, KCNH2-encoded Kv11.1, and KCNJ2-
encoded Kir2.1) loss-of-function, cardiac sodium channel (SCN5A-encoded Nav1.5) gain-

of-function, or cardiac L-type calcium channel (CACNA1C-encoded Cav1.2) gain-of-

function. (b) A genetically-mediated increase in outward depolarizing currents (purple 

channels/boxes) and/or inward repolarizing currents (orange channels/boxes) prolongs the 

action potential duration (APD) generating the substrate needed for an increased frequency 

of early after depolarizations (EADs). (c) An increase in APD manifests as heart-rate 

corrected QT (QTc) interval prolongation on 12-lead surface electrocardiogram. (d) EAD-

triggered action potentials can precipitate torsades de pointes (TdP) which may degenerate 

into ventricular fibrillation. Adapted from Giudicessi et al. [69] with permission. Copyright 

© 2018, Wiley. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.)
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Fig. 2. 
Spectrum of genetic variation underlying the acquired and congenital forms of long QT 

syndrome. At the severe (red) end of the spectrum are ultra-rare congenital long QT 

syndrome (cLQTS)-causative pathogenic variants with strong effects on gene function. In 

the middle of the spectrum (yellow) are weakly penetrant rare variants previously labelled as 

cLQTS-causative, but whose minor allele frequencies in public exomes exceed anticipated 

cLQTS/cLQTS subtype prevalence, and comparatively more common functional risk alleles 

(e.g. p.Asp85Asn-KCNE1) that exhibit moderate effects on gene function and rarely 

produce overt QT prolongation in the absence of additional endogenous or exogenous hits to 

cardiac repolarization and therefore result in so-called LQTS-Lite. Lastly, at the benign 

(green) end of the spectrum are common variants with weak effects on gene function, largely 

discovered through large genome wide association studies of QT prolongation in the general 

population, that are incapable of producing disease in isolation, but have been shown to 

result in acquired LQTS (aLQTS) risk when multiple QT-prolonging common variants are 

present within the genome of an individual with additional endogenous and exogenous QT 

prolonging risk factors. In recognition that the genetic basis of aLQTS and cLQTS is 

variable, dark gray triangles denote the spectrum of genetic variation underlying both LQTS 

forms. Adapted from Giudicessi and Ackerman [60] with permission. Copyright © 2013, 

Elsevier. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 3. 
A rational tiered approach to LQTS genetic testing initiation, variant interpretation, and 

ongoing re-assessment of variants of unknown/uncertain significance (VUS). Light gray 

boxes denote basic considerations pertaining to the initiation of LQTS genetic testing. Light 

orange boxes denote a tiered approach to the assessment of rare variants in LQTS-

susceptibility genes with variable gene-disease association evidence strength. Gold boxes 

denote basic considerations pertaining to the identification of a rare VUS in self-sufficient 

LQTS-susceptibility genes that currently lacks sufficient evidence to classify as either 

benign or pathogenic. *Due to the lack of a true QT prolongation phenotype, the authors 

recommend against the routine inclusion of KCNJ2 on diagnostic LQTS testing panels. # 

Although the self-sufficient role of these genes in LQTS pathogenesis requires further 

investigation, specific rare variants in these genes may still confer arrhythmia-susceptibility 

and/or contribute to an oligogenic/polygenic form of LQTS. Referral to a dedicated 

Cardiovascular Genetics Clinic is recommended.† Current ACMG/AMP guidelines are not 

equipped to assess or communicate the strength of likely pathogenic/pathogenic variants. 

Outside of beta-blocker use, management of low-risk asymptomatic/concealed individuals 

should not be made on genetic test results alone. Abbreviations: ACMG, American College 

of Medical Genetics and Genomics; AMP, Association for Molecular Pathology; JLNS, 

Jervell and Lange-Nielson syndrome; LP, likely pathogenic; LQTS, long QT syndrome; P, 

pathogenic; TKOS, triadin knock-out syndrome; TS, Timothy syndrome; and VUS, variant 

of uncertain significance. Adapted from Giudicessi et al. [51] with permission. Copyright © 

2018, Lippincott Williams & Wilkins with permission. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.)
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