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Abstract

Collectively, the completion of the Human Genome Project and subsequent development of high-
throughput next-generation sequencing methodologies have revolutionized genomic research.
However, the rapid sequencing and analysis of thousands upon thousands of human exomes and
genomes has taught us that most genes, including those known to cause heritable cardiovascular
disorders such as long QT syndrome, harbor an unexpected background rate of rare, and
presumably innocuous, non-synonymous genetic variation. In this Review, we aim to reappraise
the genetic architecture underlying both the acquired and congenital forms of long QT syndrome
by examining how the clinical phenotype associated with and background genetic variation in long
QT syndrome-susceptibility genes impacts the clinical validity of existing gene-disease
associations and the variant classification and reporting strategies that serve as the foundation for
diagnostic long QT syndrome genetic testing.
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Introduction

Long QT syndrome (LQTYS) is a genetically and phenotypically heterogeneous disorder of
cardiac repolarization characterized clinically by prolongation of the heart rate-corrected QT
interval (QTc) on the 12-lead electrocardiogram (ECG) and an increased propensity for
torsadogenic syncope/seizures and sudden cardiac death (SCD) [1,2]. Following the sentinel
discovery of the canonical LQTS-susceptibility genes (KCNQ1, KCNHZ, and SCN5A) in
1995 and 1996 [3-5]and completion of the Human Genome Project in 2003, rapid advances
in deoxyribonucleic acid (DNA) sequencing technology allowed for the discovery of new
Mendelian disease-susceptibility genes, including most of the 14 minor LQTS-susceptibility
genes [6-12], at a dizzying pace.

However, the high-throughput DNA sequencing and subsequent analysis of tens-to-hundreds
of thousands human exomes and genomes have exposed the stark reality that one in eight
protein-encoding base pairs hosts a genetic variant and many Mendelian disease-
susceptibility genes, including the canonical LQTS-susceptibility genes, are surprisingly
tolerant to non-synonymous genetic variation [13-15]. Unfortunately, this burden of rare
non-synonymous background genetic variants not only complicates variant interpretation
[16-18], but for some minor LQTS-susceptibility genes, also calls into question the veracity
of longstanding gene-disease associations.

In this Review, we (i) detail current paradigms regarding the molecular and cellular
underpinnings of LQTS, (ii) reappraise the veracity of the QT phenotype associated with
specific minor LQTS subtypes, (iii) examine ongoing attempts to classify and curate the
clinical validity of existing gene-disease associations, and (iv) assess the limitations of
current variant interpretation and reporting standards in an effort to highlight how a critical
reappraisal of LQTS genetic architecture can help preserve, and hopefully enhance, the
clinical validity of diagnostic LQTS genetic testing. To assist those readers with limited
genetics/genomics backgrounds or those in need of a quick refresher, a glossary of
terminology used throughout this Review is included in the online supplementary material.

Long QT syndrome: cellular mechanisms, genetic underpinnings, and
prevailing paradigms

The electromechanical function of the heart is dependent on the coordinated activation and
inactivation of inward depolarizing [sodium (Na*) and calcium (Ca2*)] and outward
repolarizing [potassium (K*)] currents that underlie the five major phases of the cardiac
action potential (Fig. 1) [19,20]. Genetic or acquired defects that accentuate depolarizing Na
*and Ca2" currents (Ina and Icg ) or attenuate repolarizing K* currents (lxs, Ikr, and lx1)
(Fig. 1a) can prolong the ventricular cardiac action potential (Fig. 1b), as reflected by a
prolonged QT interval on the surface 12-lead ECG (Fig. 1c). Current joint expert consensus
guidelines define a prolonged QTc value as >450 ms in males and >460 ms in females [21].
However, ~5-10% of individuals within the general population have a QTc¢ > 460 ms on
screening ECG [22]. As such, sex-specific 99.5th percentile QTc values (>460 ms for
prepubertal males and females, >470 ms for postpubertal males, and >480 ms for
postpubertal females) are used commonly as a cutoff to identify those who might benefit
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from cLQTS genetic testing [23]. Practically, a baseline QTc value = 500 ms is considered
definitely abnormal and if observed, in the absence of one or more QT prolonging risk
factors, should compel strong clinical suspicion for congenital LQTS (cLQTS) and a class |
recommendation to proceed with LQTS genetic testing [23].

Regardless of the underlying mechanism of QT prolongation [acquired/drug-induced LQTS
(aLQTS) vs. cLQTS], increased cardiomyocyte refractoriness generates an electrical
substrate that can give rise to frequent early afterdepolarizations (EADs) mediated by re-
activation of L-type Ca%* and sodium-calcium exchange currents during phase 2 and 3 of the
cardiac action potential. Triggered activity from focal EADs coupled with EAD augmented
electrical heterogeneity in adjacent regions of myocardium likely generates the electrical
substrate needed for the initiation, propagation, and maintenance of forsades de pointes
(TdP), the hallmark form of self-sustaining polymorphic ventricular tachycardia observed in
patients with LQTS (Fig. 1d) [24].

During the early-to-mid 1990s, a series of now classical linkage-analysis studies identified
the KCNQ1 -encoded Ky, 7.1 K* channel, the KCNH2-encoded K, 11.1/hERG K* channel,
and the SCN5A- encoded Na,, 1.5 Na+ channel pore-forming a-subunits as genetic
substrates for congenital LQTS [3-5]. Among clinically definitive LQTS cases (i.e. QTc =
480 ms and “Schwartz score” = 3.5) [25], ~75% harbor a pathogenic variant in one of the
three canonical LQTS-susceptibility genes /[KCNQI (~35%), KCNHZ (~30%), and SCN5A
(~10%)] (Table 1) [26]. An additional ~5-10% of LQTS cases, including patients that may
display prolonged QTc values as part of distinct multisystem syndromes [27-29] such as
Timothy syndrome (TS1 and CACNAIC), Andersen-Tawil Syndrome (ATS1 and KCN.J2),
and Triadin Knockout Syndrome (TKOS and 7RDN), are anticipated to harbor a pathogenic
variant in one of at least 14 additional “minor” LQTS-susceptibility genes that have been
published in the literature to date (Table 1).

A case of mistaken identity? Reappraising the QT phenotype associated

with Andersen Tawil syndrome (ATS) and ankyrin-B syndrome (ABS)

Disease severity in most forms of LQTS, including the degree of QT prolongation, is
influenced strongly by the phenomena of incomplete penetrance and variable expressivity.
However, since the sentinel clinical description of both ATS [30] and Ankyrin-B syndrome
(ABS) [31], subsequent evidence suggests that individuals with both disorders rarely display
baseline QTc values consistent with cLQTS. As such, the following paragraphs briefly
examine if ATS and ABS still merit designation as bona fide LQTS subtypes and whether
KCNJ2or ANKZshould remain on diagnostic LQTS genetic testing panels.

ATS was first described in 1971 as a clinical triad of periodic paralysis, ventricular ectopy/
arrhythmia, and variable developmental abnormalities of the head, face, and limbs [30]. Due
to the presence of prominent U waves and resulting QT-U interval prolongation on 12-lead
ECG, ATS was labelled, initially and erroneously, as a multisystem form of cLQTS and the
ATS-causative KCNJZ gene given the historical designation as LQT7 [32].
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However, once the abnormal U wave is excluded, ATS patients almost always display
normal QT intervals (<440 ms) [33]. Furthermore, the burden of complex ventricular ectopy
at rest and biventricular tachycardia (a rare subtype of polymorphic ventricular tachycardia
observed in catecholaminergic polymorphic ventricular tachycardia, but not LQTS) observed
in ATS are highly uncharacteristic of LQTS [33]. As such, it is difficult to find substantive
evidence to support the ongoing use of the historical LQT7 convention to describe ATS or
the inclusion of KCNJZ2on diagnostic LQTS genetic testing panels, other than to catch the
rare case of ATS incorrectly diagnosed as LQTS due to a failure to recognize the multi-
system disorder’s distinct clinical and electrocardiographic profile.

Unlike ATS, ABS is a cardiac-only disorder characterized clinically by a range of variably
present arrhythmia phenotypes including sinus node dysfunction, supraventricular and
ventricular arrhythmias, and SCD [34]. Interestingly, overt QT prolongation (average QTc
490 £ 30 ms) was a characteristic of affected individuals in the multigenerational French
pedigree that led to the first description of ABS (historically termed LQT4) and the
discovery of the locus containing ANKZ2[31,35]. However, subsequent studies have
demonstrated that baseline QTc prolongation is at best inconsistently observed in ABS
[34,36,37]. Like ATS, this initial discrepancy may be caused, in part, by the inclusion of
prominent U waves/sinusoidal T-U abnormalities in QTc calculations. As a result, QTUc
values may appear markedly prolonged in ABS, but true QTc values typically reside in the
normal-to-borderline range as more commonly reported [34,36,37].

That said, the recent description of a novel ANKZ variant, p.Ser646Phe-ANK?2, that appears
to be more consistently associated with true QTc prolongation (average QTc 475 £ 40 ms)
[38] and the prior association of common ANKZ variants with QTc duration in the general
population [39] support a role for ANKZin cardiac repolarization/LQTS pathogenesis. As
such, it would be premature, at least on the basis of clinical phenotype alone, to call for the
removal of ANKZ from diagnostic LQTS genetic testing panels. However, when taken in
context of (i) the weak QT phenotype inconsistently observed in ABS [34,36,37], (ii) failure
of subsequent larger genome-wide association studies (GWAS) to reproduce the association
between ANKZand QTc duration in the general population [40,41], and (iii) public exome
data presented in the ensuing sections, there is clearly impetus to reappraise the role of
ANK2Zin the pathogenesis of monogenic cLQTS.

Minor LQTS-susceptibility genes: time for a critical reappraisal?

In the 15 years following the release of the completed human genome, advances in
sequencing technology facilitated the discovery of new disease-susceptibility genes in
scenarios (i.e. singletons and small pedigrees) not feasible with classical linkage analysis. As
a result, nearly half of the gene-disease associations in existence today [42], including the
majority of the minor LQTS-susceptibility genes (Table 1) [6-12], were discovered over the
last ~10 years using largely hypothesis-driven, mutational analysis of biologically plausible
genes and their gene-encoded proteins. However, many of these genes were discovered in an
era before the burden of background non-synonymous genetic variation was appreciated
fully. As such, the strength of evidence behind existing gene-disease associations is widely
variable. In the following paragraphs, we explore the minor non-syndromic LQTS-
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susceptibility genes as a prototype to examine ongoing efforts to assess the validity of gene-
disease associations and detail the potential impact of these efforts on clinical LQTS genetic
testing.

Reappraising the non-syndromic minor LQTS-susceptibility genes

Due to a relative paucity of gene- and variant-level evidence, virtually every novel ultra-rare
missense variant in a nonsyndromic, minor LQTS-susceptibility gene (Table 1) is likely to
receive, at best, a variant of uncertain significance (VUS) designation. Not suprisingly, the
identification of an ambiguous VUS in so-called weak or preliminary evidence genes is
rarely clinically informative, increases the risk of genetic test misinterpretation, and
ultimately can result in potentially harmful diagnostic miscues. In an effort to improve the
validity of genes included on clinical genetic tests, the National Institutes of Health funded
Clinical Genome Resource (ClinGen) has developed a semi-quantitative framework
designed to standardize how the strength of genetic and functional evidence supporting a
given gene-disease association is assessed systematically [43].

Although official ClinGen curations for the majority of LQTS-and other inherited cardiac
channelopathy-susceptibility genes are eagerly awaited, independent application of the open
access ClinGen gene-disease association framework suggests that 6/9 (66.7%) of the minor
non-syndromic LQTS-susceptibility genes will receive (ANKZ, KCNEZ, KCNJ5/and
SNTA1)or have already received (AKAP9and SCN4B) [43] disputed-evidence gene or
limited-evidence gene designations (Table 3) [43].

For AKAPY, SCN4B, and SNTA1, where only a single qualifying functional ultra-rare
missense variant is present in the literature (Table 2), there is simply not enough genetic
evidence to elevate these genes beyond a limited-evidence gene regardless of the strength of
experimental evidence available (Table 3). Of note, the putative LQTS-causative variants
within both AKAP9and SNVTAI used to establish their initial gene-disease associations are
present, albeit at extremely low frequency (<10 out of >10 0,00 0 individuals), in pubic
exomes (Table 2). Although this finding rightfully questions the nature of AKAP9and
SNTA’s association with penetrant mongogenic cLQTS, the identification of additional
LQTS-associated variants, more sophisticated functional characterization of existing and
newly discovered variants such as using patient-specific and their variant-corrected induced
pluripotent stem cell-derived cardiac cell lines to assess both necessity and sufficiency of an
implicated genetic variant, and development of publication avenues that encourage the
pursuit and reporting of these findings is needed urgently to determine if AKAPY, SCN4B/
and SVTA1 are candidates for elevation from a limited-evidence gene to a bona fide LQTS-
susceptibility gene or further demation to a disputed-evidence gene.

Already, the body of evidence for some of the other minor non-syndromic LQTS genes
compel their demotion (Table 3). In a recent analysis, those variants in KCNEZ-encoded
MinK-related peptide 1 (MiRP1) initially deemed to be KCNE2-LQTS (historically
designated as LQT6)-causative [7] were (i) collectively observed in 1.4% of public exomes,
(i) not found to co-segregate with a LQTS phenotype in either the literature or a large
multicenter cohort of KCNEZ rare variant-positive subjects, and (iii) rarely associated with
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QT prolongation, TdP, or SCD in the absence of a secondary stressor (electrolyte
abnormalities, QT prolonging medications, etc.) [44]. This collective evidence led to the
conclusion that rare loss-of-function KCNEZ variants confer an underlying arrhythmia-
susceptiblity that may manifest as QT prolongation, TdP, and SCD when exacerbated by
additional environmental and/or genetic risk factors, but likely do not cause bona fide
cLQTS in isolation [44]. As such, KCNEZ appears poised to receive a disputed-evidence
gene designation when the official ClinGen gene-disease association classifications are
released (Table 3).

Similarly, a majority of the ANKZ-encoded ankyrin-B loss-of-function variants previously
deemed to be ABS-causative [34,35,45] are observed at unacceptably high minor allele
frequencies (MAF) in public exomes (Table 2). Furthermore, as discussed above, over time,
it has become increasingly clear that QT prolongation is not a consistent feature of the
cardiac phenotype observed in ABS [36]. Although the disruption of multiple ion channels/
transporters and resulting arrhythmia-susceptibility conferred by loss-of-function ANK2
variants is not in question, the high frequency of putative ABS-causative variants in public
exomes and nature of the ABS cardiac phenotype certainly question the ongoing designation
of ANKZas a self-sufficient cLQTS-susceptibility gene. That said, the aforementioned
recent discovery of a loss-of-function ANKZ2 variant (p.Ser646Phe-ANK2) in the Gitxsan
First Nations founder population that appears to be more consistently associated with QT
prolongation and is absent from public exomes may save ANKZ from receiving a disputed-
evidence gene designation (Table 3) [38].

Lastly, a single trafficking-defective variant, p.Gly387Arg-KCNJ5, in the KCNJ5-encoded
G-protein-coupled inward rectifier potassium channel subtype 4 (GIRK4; Kir3.4) that
partially conducts the acetylcholine-induced potassium current (IiKACh) current has been
linked to cLQTS through a multi-generational Chinese pedigree [12]. On one hand, KCNJ5
represents one of the only nonsyndromic, minor LQTS-susceptibility genes to be discovered
by classical linkage analysis [12]. On the o present in 47/9424 (0.005%) East Asian public
exomes/genomes and evidence to support a definitive role for Ik ach in human ventricular
repolarization is lacking currently [46]. Furthermore, a closer analysis of the clinical
phenotype of p.Gly387Arg-KCNJ5-positive individuals revealed that overt QT prolongation
was only observed in individuals with additional non-modifiable QT prolongation risk
factors such as heart failure, bradycardia, and diabetes [47]. Therefore, it is not clear whether
KCNJ5 functions as a self-sufficient but weakly penetrant cLQTS-susceptibility gene or
more likely confers an underlying arrhythmia-susceptibility that can manifest as QT
prolongation in the presence of multiple additional QT prolongation risk factors. Regardless,
in light of the aformentioned population frequency data (Table 2) and lingering questions
regarding the role of Ixach in ventricular repolarization, it would come as little suprise if
KCNJ5 receives a disputed-evidence gene designation (Table 3).

While AIKAPY9, ANKZ, KCNEZ, KCNJ5, SCN4B, and SNTA1 appear headed for demotion
to either limited- or disputed-evidence gene status, it is important to remember that our
understanding of LQTS genetic architecture is not static. A gene demoted today in the
setting of a prevailing monogenic paradigm may well find new life tomorrow as our
understanding of the oligogenic/polygenic nature of LQTS continues to evolve. As such, the
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temptation to simply lock these genes up and throw away the key must be resisted and the
fluid nature of gene-disease association assessment must be embraced.

Genetic testing panels: is bigger really better?

From the onset of clinical genetic testing for LQTS and other Mendelian disorders, the
mindset regarding the size of genetic testing panels has largely followed a “bigger is better”
mentality. As new disease-susceptibility genes were discovered, the race between clinical
laboratories to rapidly expand their respective diagnostic genetic testing panels was on. In
recent years, a natural extension of this “bigger is better” mantra has been the development
of massive pan-disease diagnostic genetic testing panels (i.e. pan-arrhythmia, pan-cardiac,
etc.) that often encompass hundreds of genes with highly variable gene-disease association
strengths [18]. When combined with an inherently high rate of background genetic variation,
the use of these large and relatively non-specific genetic testing panels has become a recipe
for the identification of an enormous number of VUS destined for so-called “genetic
purgatory” [17]. Consequently, the unintentional mishandling of VUS has resulted in
diagnostic miscues that range in severity from the misguided initiation of predictive cascade
screening to the inappropriate implantation of prophylactic implantable
cardioverterdefibrillators [16,17].

As those genes ultimately designated as disputed-evidence genes and limited-evidence genes
(i.e. genes of uncertain significance or GUS) are likely to also contribute a substantial
number of VUS, there are bound to be calls to remove some of the minor LQTS-
susceptibility genes designated officially as either disputed/limited-evidence genes from
genetic testing panels. However, the assumption that variants residing within such a gene
cannot impact clinical decision making may be flawed.

For example, unless current estimates of LQTS/LQTS subtype prevalence represent vast
underestimates, functional rare variants in KCNEZ (i.e. p.ThrlOMet-KCNEZ2, p.Met54Thr-
KCNEZ2, and p.lle57Thr-KCNE?2) [44,48] are simply observed too frequently in public
exomes to support even a weakly penetrant, but selfsufficient, role in the pathogenesis of a
LQTS subtype widely believed to account for <1% of LQTS cases [26,36,49]. However,
each of these KCNEZrare variants have been observed in individuals who exhibited a
prolonged QT phenotype, including se vere manifestations such as TdP and SCD, in the
presence of additional endogenous and exogenous risk factors [44]. Thus, despite an
uncertain role in the pathogenesis of fully penetrant monogenic cLQTS, it still remains
possible that rare, functionally pro-arrhythmic, variants in an otherwise disputed/limited-
evidence gene (from a monogenetic disease-causing perspective) can potentially contribute
to oligogenic/polygenic LQTS or predispose to acquired forms of LQTS. Therefore, some
variants in these genes have the potential to impact clinical decision-making in some clinical
scenarios.

This begs the question of how to ensure that ordering healthcare providers are made aware
of the presence of potentially clinically-impactful, functional rare variants termed functional
risk alleles that may contribute to oligogenic, polygenic, or acquired forms of LQTS
residing within genes believed to have a limited or disputed role in penetrant monogenic
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LQTS without needlessly increasing the number of novel rare VUSs. At first glance, the
removal of disputed-evidence genes and perhaps even limited-evidence genes from
diagnostic genetic testing panels might be the best solution. However, as our understanding
of the genetic architecture underlying LQTS continues to evolve, we may quickly discover
that the removal of some limited/disputed-evidence genes has resulted in a genetic test that
now fails to convey/capture an individual’s true genetic predilection for disease. As such,
once the formal ClinGen classifications for LQTS and other SCD-predisposing
cardiovascular disorders are released, it will be up to research community at large to develop
more definitive means of assessing the potential pathogenic contributions of the minor
LQTS-susceptibility genes that have been demoted, including potential oligogenic/polygenic
contributions, as well as determining formal criteria for the fluid inclusion of genes on
clinical genetic tests of all shapes and sizes.

Historical LQTS conventions: farewell old friend?

Unlike genes, which are granted an official name and symbol by a formal committee [the
Human Genome Organization (HUGO) Gene Nomenclature Committee (HGNC)], there is
and never was a gold standard by which the genetics and genomics community was expected
to adhere when naming genetic disorders. The result has been a hodge-podge of naming
conventions: (i) major sign of the disorder (e.g. LQTS), (ii) responsible genetic/biochemical
defect (e.g. Ankyrin-B syndrome, ABS), (iii) surname(s) of the disorder’s discover(s) (e.g.
Andersen and Tawil Syndrome, ATS, Jervell and Lange-Nielsen Syndrome, JLNS, and
Timothy Syndrome, TS), and (iv) the adoption of a rigid numerical approach (i.e. LQT1,
LQT?2, etc.) to the naming of disease subtypes.

With the likely demotion of previously published monogenic cLQTS-causative genes due to
either (i) contradictory clinical evidence (KCNJ2/LQTY7), (ii) genetic evidence (AKAP9/
LQT11, KCNE2/LQT6, KCNJ5/LQT13, SCN4B/LQT10, and SNTAIAQT12), or (iii) a
combination of both (ANKZ/LQT4), gaps in the classical/historical LQT1-17 subtype
nomenclature are bound to emerge. As such, the time to reappraise existing LQTS
nomenclature and institute substantive changes has never been better.

To this end, the adoption of a system that allows the canonical, irrefutable, and common
disease-susceptibility genes to retain their historical LQT1-3 designations and then assigns a
gene-derived convention for the minor non-syndromic LQTS-susceptibility genes (i.e.
CACNAILC-LQTS) is preferable. Such a system (i) communicates directly the gene/minor
LQTS subtype in question, (ii) eliminates the need to recall additional/unnecessary
associations (LQT15 is caused by what again?), and (iii) allows genes to fluidly enter or exit
as the strength of evidence and/or prevailing paradigms dictate regarding LQTS genetic
architecture.

Reappraisal of variant interpretation and reporting strategies in diagnostic

LQTS genetic testing

As a result of inter-laboratory heterogeneity in the classification and reporting of genetic
variants, the American College of Medical Genetics and Genomics (ACMG) and the
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Association for Molecular Pathology (AMP) released updated variant classification and
reporting standards in 2015 [50]. In response, most commercial genetic testing companies,
including the majority of those that perform diagnostic LQTS genetic testing, have adopted
variant classification and reporting strategies that closely align with the 2015 ACMG/AMP
guidelines. However, these general “one-size-fits-all” guidelines were not intended to
address the intricacies and idiosyncrasies associated with genetic testing for specific
disorders such as LQTS [51]. As such, the following paragraphs examine specific limitations
of the 2015 ACMG/AMP guidelines that have already negatively impacted diagnostic LQTS
genetic testing.

Potentially pro-arrhythmic common genetic variants (functional risk

alleles): missing in action or not clinically actionable?

Unfortunately, the 2015 ACMG/AMP guidelines specifically avoided guidance on how or
whether common genetic variants, that may modify cLQTS phenotypic severity and/or serve
as genetic risk factors for aLQTS, should be classified and incorporated into diagnostic
LQTS genetic testing reports. In turn, this lack of guidance gave those clinical genetic
testing laboratories, that adopted ACMG/AMP-based schemes, the latitude to interpret (or
misinterpret) the 2015 guidelines in a manner that has resulted in the exclusion of common
variants with the potential to impact clinical decision making (Table 4) from diagnostic
LQTS genetic testing reports [51].

As recently reviewed in detail elsewhere [51], the population frequency of common variants
such as p.Asp85Asn-KCNE1 and p.Ser1103Tyr-SCN5A (Table 4) easily exceed cLQTS
prevalence. However, these variants have substantial epidemiologic and experimental
evidence to suggest they are capable of generating a circumstance-dependent, pro-
arrhythmic state in the setting of QT prolonging medications, electrolyte abnormalities,
structural heart disease, and repolarization reserve-deficient genetic backgrounds [51]. Thus,
these common variants are likely not benign as frequently classified (Table 4). Rather, they
represent a newly defined class of variants termed “functional risk alleles” capable of
mimicking the sequelae of ultra-rare penetrant cLQTS-causative pathogenic variants,
including conferring susceptibility for TdP and SCD, under specific conditions [51].
Therefore, the practice of withholding or limiting information regarding the presence of so-
called functional risk alleles to a supplement that must be requested by healthcare providers
has likely resulted in LQTS genetic tests that fail to accurately reflect their patient’s true
genetic risk of SCD-predisposing disease.

As such, consideration should be given to reporting those variants that meet the
epidemiologic (i.e. odds ratio >5 in case-control studies) and experimental (i.e. well-
established functional evidence such as in vitro cellular electrophysiology data) to be
classified as functional risk alleles (Table 4) under a distinct “Other Reportable” category
with an accompanying disclaimer such as “This variant is not a self-sufficient, disease-
causative mutation in isolation. However, in the setting of either disease-causative mutations
or acquired QT-aggravating risk factors, the presence of this risk allele can potentially
increase the patient’s risk of a potentially life threatening ventricular arrhythmia” [51].
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This approach differentiates functional risk alleles from truly pathogenic/likely pathogenic
variants and ambiguous VUS and limits the risk of misinterpretation and downstream
diagnostic mis-cues. Furthermore, this approach highlights how a critical reappraisal of
current variant classification and reporting strategies can improve the state of diagnostic
LQTS genetic testing by ensuring patients and healthcare providers are informed of
functional risk alleles and afforded every opportunity to institute the simple interventions
[i.e. QT prolonging drug avoidance (www.crediblemeds. org), hydration/potassium
supplementation, judicious use of antipyretics, etc.] needed to mitigate the small but
increased risk of SCD that the presence of functional risk alleles may confer [51].

LQTS-lite: reappraising how weakly penetrant “pathogenic” genetic

variants are classified and reported

Residing somewhere between functional risk alleles (Table 4) and penetrant ultra-rare
cLQTS-causative pathogenic variants (an LQT1-causative variant for example) is a class of
functional rare variants deemed previously to be LQTS-causative, but whose frequency in
public exomes exceed expected cLQTS subtype prevalence (1:7,143 for LQT1, 1:10,000 for
LQT2, 1:25,0 00 for LQT3, and 1:250,0 0 0 for minor LQTS subtypes). In a heterozygous
state, these variants, which are perhaps best exemplified by Finnish (p.Arg176Trp-KCNH2
and p.Leu552Ser-KCNH2) [52] and Norwegian/Swedish (p.Arg518Ter-KCNQ1) [53]
founder variants, are associated with a subclinical/concealed LQTS phenotype consisting of
borderline QTc prolongation (~450-460 ms) and low SCD risk. Functionally, these rare
variants result in haploinsufficiency (p.Arg518Ter-KCNQ1 and all truncating KCNQ1
variants for that matter) or confer modest reductions in Ik, current density (p.Argl76Trp-
KCNH2 and p.Leu552Ser-KCNH2) [54-57]. Furthermore, the pro-arrhythmic potential of
these variants is further highlighted by their frequent contribution to the severe LQTS
phenotype observed in JLNS/compound heterozygosity [53,56] and/or association with
drug-induced LQTS/TdP risk [58]. As such, these weakly penetrant, but functional, rare
variants represent well- known examples of an emerging class of LQTS-causative variants,
that includes many KCNQZ1 prematurely truncating nonsense and frame-shift variants [59],
which collectively result in a latent and more common form of LQTS perhaps best referred
to as “LQTSLite”.

Based on public exome-derived population frequencies, LQTSL.ite-causative variants are
anticipated to be amongst those variants most frequently encountered during diagnostic
LQTS genetic testing [13]. Although classification of LQTS-Lite-causative variants as
“pathogenic variants” or “likely pathogenic variants” is appropriate, these weakly penetrant
variants highlight the fact that current ACMG/AMP guidelines were not designed to
communicate blatant differences in the strength/penetrance of pathogenic variants. As a
result of this “all-or-nothing” approach, healthcare providers with little experience with
genetic heart diseases may subject extremely low risk asymptomatic individuals with LQTS-
Lite-causative variants to overly aggressive treatment on the basis of a “positive” genetic
test. As such, the best management strategies for patients with LQTS-L.ite-causative
variant(s) and the development of variant classification and reporting mechanisms capable of
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differentiating between pathogenic variants with intrinsically lower/higher risk and/or
penetrance represent areas in need of ongoing reappraisal.

LQTS genetic architecture: truly a monogenic disease?

The number of minor LQTS-susceptibility gene variants observed at unacceptably high
frequency in public exomes (Table 2) suggests that the role many of these genes play in
LQTS pathogenesis may be more limited, or alternatively more complicated, than believed
initially. When viewed in the context of pro-arrhythmic common variants/functional risk
alleles (Table 4) and weakly pen etrant LQTS-Lite-causative rare variants in the canonical
LQTS-susceptibility genes, it appears that the spectrum of genetic variants capable of
contributing to the genetic architecture of LQTS (Fig. 2) may be far more complicated than
envisioned previously.

On the severe end of the LQTS genetic spectrum are ultra-rare, self-sufficient pathogenic/
likely pathogenic variants that substantially reduce cardiac repolarization reserve and
underlie relatively penetrant monogenic cLQTS (Fig. 2). Due to the strong negative selective
pressure exerted against these variants, they are likely rarely, if ever, observed at frequencies
that exceed the estimated prevalence of cLQTS in the general population [1:2,500 or a minor
allele frequency (MAF) < 0.00 04%] [60].

The opposite (benign) end of the LQTS genetic spectrum features common genetic variants
(MAF > 1%), often identified through large-scale genome wide association studies
associated with QT interval duration in the general population (Fig. 2) [40,41,61]. Although
benign in isolation, the aggregate effect of multiple QT-influencing common genetic
variants, as assessed by weighted-effect genetic risk scores, are associated with inter-
individual variability in baseline QTc duration [62] and the exaggerated QTc response/TdP
risk following exposure to a medication with known QT prolonging potential [63] observed
in acquired/drug-induced LQTS (Fig. 2). In theory, the burden of QT-influencing, common
genetic variants within an individual’s genetic background (i.e. repolarization reserve rich
vs. deficient) could also contribute to the phenomena of incomplete penetrance and variable
expressivity observed in many LQTS pedigrees as well as the ~20% of LQTS cases that
remain genotype-negative.

Lastly, in the middle of the LQTS genetic variation spectrum are relatively rare and
comparatively more common genetic variants (MAF ranging from >0.00 04 to < 1%) that
we have designated herein as either LQTS-Lite-causative rare variants or func tional risk
alleles, respectively (Fig. 2). These variants result in mild-to-moderate reductions in cardiac
repolarization reserve that may manifest as borderline or transient QT prolongation, but
rarely cause LQTS-triggered syncope/seizures or SCD in the absence of additional QT
prolonging genetic variants or endogenous/exogenous risk factors. As such, these variants
may serve as primary drivers of so-called oligogenic cLQTS when present in genetic
backgrounds that contain other QT-related genetic modifiers such as common variants in
NOS1AP[64,65], the 3" untranslated region of KCNQI[66], and perhaps an increased
burden of those common variants shown to influence QTc duration in health. Furthermore,
LQTS-Lite-causative variants within this class likely explain, in part, the observation that
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functional rare variants previously associated with cLQTS are observed at unexpectedly high
frequency in public exome/genome databases [67].

As the dust settles: practical implications for the clinician

As outlined in the preceding sections, the stage is set for several paradigm shifts, notably the
possible demotion/reclassification of ~40% of LQTS-susceptibility genes and the transition
away from a rigid monogenic model of disease, with the potential to radically alter our view
of the genetic architecture underlying LQTS and other heritable cardiovascular disorders.
For those charged with the care of patients with LQTS, whether it be on a daily basis or once
in a blue moon, it is anticipated that this Review will generate a litany of questions, and
perhaps some appropriate anxiety, regarding the current role of genetics in the diagnosis,
risk-stratification, and management of LQTS.

Once formal ClinGen gene-disease association classifications are released, it will take time
for (i) the field to reach a consensus regarding if/how variants in demoted/reclassified genes
are reported and (ii) clinical laboratories to implement these recommendations. As genetic
testing is, and should remain, a class | recommendation for LQTS [23], clinicians should
continue to utilize the current generation of diagnostic LQTS genetic tests. However,
ordering healthcare providers should assure they are receiving a complete genetic risk profile
on every patient by requesting the supplemental information needed to determine if
functional risk alleles are present and handling variants identified in genes that are poised for
demotion/reclassification with extra caution and skepticism.

During this transition period, clinicians may find it helpful to utilize a tiered approach,
independent from commercial classification and reporting schemes, to prioritize the analysis
of diagnostic LQTS genetic testing results (Fig. 3). Under such an approach, findings in the
canonical [KCNQ1 (LQT1), KCNHZ2 (LQT2), and SCN5A (LQT3)] and moderate-to-strong
evidence minor LQTS-susceptibility genes (CACNALC-LQTS, CALM1/2/3-LQTS, CAV3-
LQTS, KCNE1-LQTS, and TRDN-LQTS/TKOS) are prioritized and represent the area
where generalists should focus their efforts. Until the dust settles, it is recommended that
patients with either a VUS or variants labelled, previously or actively, as pathogenic/likely
pathogenic in limited/disputed evidence genes be referred to dedicated Cardiovascular
Genetics Clinics to decrease the risk of diagnostic miscues. Furthermore, any vexing
questions related to LQTS genetic testing, including appropriateness of cascade screening,
VUS resolution, and the possibility of oligogenic/polygenic disease, are best addressed in a
similar setting.

Conclusion

As illustrated in this Review, the unexpectedly high rate of background genetic variation in
the canonical and minor LQTS-susceptibility genes is beginning to re-shape our
understanding of the genetic architecture underlying LQTS. In short order, a number of the
minor LQTS-susceptibility genes, previously believed to be responsible for ~5-10% of non-
syndromic LQTS cases, could be demoted to either limited-evidence or disputed-evidence
gene status and, at best, be relegated to roles as oligogenic/polygenic contributors.
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Meanwhile, the presence of functional and potentially clinically impactful genetic variation
in LQTS-susceptibility genes whose population frequencies easily exceed overall LQTS
and/or LQTS subtype prevalence exposes inherent limitations in our current variant
classification and reporting strategies. Unfortunately, these issues are not unique to LQTS
and are anticipated to impact all heritable cardiovascular disorders, including the
aortopathies, cardiomyopathies, and the other cardiac channelopathies, to some degree. As
these issues continue to challenge current paradigms, it is paramount that the field
continually reappraise whether (i) a larger than anticipated number of LQTS cases, including
many currently labelled as minor gene-positive or genotype-negative, are actually oligogenic
or polygenic in nature, (ii) previous estimates of cLQTS prevalence are indeed accurate, and
(iii) existing variant classification and reporting strategies accurately reflect the full
spectrum of genetic variation that may contribute to LQTS pathogenesis and therefore
convey an individual’s true genetic risk of disease. Hopefully, ongoing efforts, to address
these and other pressing issues (i.e. “the VUS crisis”), will continue to improve the state of
diagnostic LQTS genetic testing and ensure that patients have access to accurate genotype-
guided approaches to the diagnosis, risk-stratification, and clinical management of this
potentially fatal, but highly treatable, genetic disorder [68].
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I KACh acetylcholine- induced potassium current
K* potassium

LQTS long QT syndrome

MAF minor allele frequency

Na* sodium

QTc heart rate-corrected QT interval

SCD sudden cardiac death

TdP torsades de pointes

VUS variant of uncertain significance
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a Genetic Functional Effects of Long QT Syndrome-Causative Genetic Variation
perturbation

of cardiac ion
channel

pore-forming

and
accessory

subunits

8

1 APD, EAD
frequency, and

“, Phase 4

myocardial o
electrical m :

heterogeneity

Fig. 1.

Cl?rrent paradigm for the molecular and cellular basis of congenital long QT syndrome. (a)
Genetic variation in pore-forming a-subunits or accessory S-subunits that results in cardiac
potassium channel (KCNQI-encoded Kv7.1, KCNH2-encoded Kv11.1, and KCN.J2-
encoded Kir2.1) loss-of-function, cardiac sodium channel (SCN5A-encoded Nav1.5) gain-
of-function, or cardiac L-type calcium channel (CACNAIC-encoded Cavl.2) gain-of-
function. (b) A genetically-mediated increase in outward depolarizing currents (purple
channels/boxes) and/or inward repolarizing currents (orange channels/boxes) prolongs the
action potential duration (APD) generating the substrate needed for an increased frequency
of early after depolarizations (EADSs). (c) An increase in APD manifests as heart-rate
corrected QT (QTc) interval prolongation on 12-lead surface electrocardiogram. (d) EAD-
triggered action potentials can precipitate forsades de pointes (TdP) which may degenerate
into ventricular fibrillation. Adapted from Giudicessi et al. [69] with permission. Copyright
© 2018, Wiley. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 2.

Spgectrum of genetic variation underlying the acquired and congenital forms of long QT
syndrome. At the severe (red) end of the spectrum are ultra-rare congenital long QT
syndrome (cLQTS)-causative pathogenic variants with strong effects on gene function. In
the middle of the spectrum (yellow) are weakly penetrant rare variants previously labelled as
cLQTS-causative, but whose minor allele frequencies in public exomes exceed anticipated
cLQTS/cLQTS subtype prevalence, and comparatively more common functional risk alleles
(e.g. p.Asp85Asn-KCNEL1) that exhibit moderate effects on gene function and rarely
produce overt QT prolongation in the absence of additional endogenous or exogenous hits to
cardiac repolarization and therefore result in so-called LQTS-Lite. Lastly, at the benign
(green) end of the spectrum are common variants with weak effects on gene function, largely
discovered through large genome wide association studies of QT prolongation in the general
population, that are incapable of producing disease in isolation, but have been shown to
result in acquired LQTS (aLQTS) risk when multiple QT-prolonging common variants are
present within the genome of an individual with additional endogenous and exogenous QT
prolonging risk factors. In recognition that the genetic basis of aLQTS and cLQTS is
variable, dark gray triangles denote the spectrum of genetic variation underlying both LQTS
forms. Adapted from Giudicessi and Ackerman [60] with permission. Copyright © 2013,
Elsevier. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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« Are both patient and provider comfortable with the possibility of unearthing a VUS in a canonical or minor LQTS-susceptibility gene?
« Are both patient and provider comfortable with the possibility of unearthing a rare variant in a limited- or disputed-evidence gene?
Yes
Rare Variant(s) No Rare Variant(s)
Reported Initiate diagnostic LQTS Reported

genetic testing

Diagnostic LQTS Genetic Testing Pre-Test Considerations
+ Does the strength of the index case'’s clinical phenotype/pre-test probability of disease merit diagnostic LQTS genetic testing?
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susceptibility geneis)
Definitive ic LQTS ity genes:
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y QTS ibility genes:
CACNA1C (CACNA1C-LQTS), CALM1-3 (CALM-LQTS), CAV3
(CAV3-LQTS), and KCNE1 (KCNE1-LQTS).

Multisystem LQTS-susceptibility genes’:
KCACN/UC (TS), KCNQ1 (JLNS), KCNET (JLNS), and TRDN

(TKOS). -
No ) ~ P>| Possibility of genotype-
Consider referral to a I > | negiastgraes: rrgllr?aoig:mc
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rare variant identified

_ SCN4B, and SNTAT. in a limited/disputed v:rifms_wer; fnotc:_e[;‘cwlte_d .:
evidence gene. letermine if functional ris|
= allele(s) are present.
v
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. Consnder referral toa dedlcated Cardiovascular Genetics Clinic with expertise in interpreting genetic tests for heri

Fig. 3.

A?ational tiered approach to LQTS genetic testing initiation, variant interpretation, and
ongoing re-assessment of variants of unknown/uncertain significance (VUS). Light gray
boxes denote basic considerations pertaining to the initiation of LQTS genetic testing. Light
orange boxes denote a tiered approach to the assessment of rare variants in LQTS-
susceptibility genes with variable gene-disease association evidence strength. Gold boxes
denote basic considerations pertaining to the identification of a rare VUS in self-sufficient
LQTS-susceptibility genes that currently lacks sufficient evidence to classify as either
benign or pathogenic. *Due to the lack of a true QT prolongation phenotype, the authors
recommend against the routine inclusion of KCNJZ2on diagnostic LQTS testing panels. #
Although the self-sufficient role of these genes in LQTS pathogenesis requires further
investigation, specific rare variants in these genes may still confer arrhythmia-susceptibility
and/or contribute to an oligogenic/polygenic form of LQTS. Referral to a dedicated
Cardiovascular Genetics Clinic is recommended.” Current ACMG/AMP guidelines are not
equipped to assess or communicate the strength of likely pathogenic/pathogenic variants.
Outside of beta-blocker use, management of low-risk asymptomatic/concealed individuals
should not be made on genetic test results alone. Abbreviations: ACMG, American College
of Medical Genetics and Genomics; AMP, Association for Molecular Pathology; JLNS,
Jervell and Lange-Nielson syndrome; LP, likely pathogenic; LQTS, long QT syndrome; P,
pathogenic; TKOS, triadin knock-out syndrome; TS, Timothy syndrome; and VUS, variant
of uncertain significance. Adapted from Giudicessi et al. [51] with permission. Copyright ©
2018, Lippincott Williams & Wilkins with permission. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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