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Abstract

BACKGROUND: Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas 

that arise at an estimated frequency of 8% to 13% in individuals with neurofibromatosis type 1 

(NF1). Compared with their sporadic counterparts, NF1-associated MPNSTs (NF1-MPNSTs) 

develop in young adults, frequently recur (approximately 50% of cases), and carry a dismal 

prognosis. As such, most individuals affected with NF1-MPNSTs die within 5 years of diagnosis, 

despite surgical resection combined with radiotherapy and chemotherapy.

METHODS: Clinical genomic profiling was performed using 1000 ng of DNA from 7 cases of 

NF1-MPNST, and bioinformatic analyses were conducted to identify genes with actionable 

mutations.
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RESULTS: A total of 3 women and 4 men with NF1-MPNST were identified (median age, 38 

years). Nonsynonymous mutations were discovered in 4 genes (neurofibromatosis type 1 [NF1], 

ROS proto-oncogene 1 [ROS1], tumor protein p53 [TP53], and tyrosine kinase 2 [TYK2]), which 

in addition were mutated in other MPNST cases in this sample set. Consistent with their 

occurrence in individuals with NF1, all tumors had at least 1 mutation in the NF1 gene. Whereas 

TP53 gene mutations are frequently observed in other cancers, ROS1 mutations are common in 

melanoma (15%−35%), another neural crest-derived malignancy. In contrast, TYK2 mutations are 

uncommon in other malignancies (<7%). In the current series, recurrent TYK2 mutations were 

identified in 2 cases of NF1-MPNST (30% of cases), whereas TYK2 protein overexpression was 

observed in 60% of MPNST cases using an independently generated tissue microarray, regardless 

of NF1 status.

CONCLUSIONS: Clinical genomic analysis of the current series of NF1-MPNST cases found 

that TYK2 is a new gene mutated in MPNST. Future work will focus on examining the utility of 

TYK2 expression as a biomarker and therapeutic target for these cancers
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INTRODUCTION

Neurofibromatosis type 1 (NF1) is one of the most common inherited tumor predisposition 

syndromes, affecting 1 in 2500 individuals worldwide.1 As such, individuals with NF1 begin 

life with 1 mutated (germline) copy and 1 functional copy of the NF1 gene in every cell in 

their body.2 The presence of this germline mutation significantly increases their risk of 

developing cancer because tumorigenesis requires only somatic loss of the remaining 

functional NF1 gene. In this regard, individuals with NF1 are prone to the development of 

central and peripheral nervous system malignancies, including malignant peripheral nerve 

sheath tumors (MPNSTs).

MPNSTs are aggressive soft tissue sarcomas3 that arise in individuals with NF1 at an 

estimated frequency of 8% to 13%. In contrast to sporadic MPNSTs, which arise in adults 

during their 60s and 70s, NF1-associated MPNSTs (NF1-MPNSTs) tend to occur in young 

patients, usually in their 20s and 30s.4 These cancers are composed of neoplastic Schwann 

cells, and in the setting of NF1, most often arise from a benign precursor lesion, termed a 

plexiform neurofibroma. When MPNSTs are diagnosed, they initially are treated with 

surgery and radiotherapy, and in some situations, chemotherapy is added. However, despite 

aggressive initial management with multimodality therapy, approximately 50% of affected 

individuals will experience cancer recurrence or metastatic disease, and the majority of 

patients die within 5 years of their diagnosis.5–7 Moreover, metastatic tumors are particularly 

difficult to treat because they inevitably become resistant to chemotherapy. Given the poor 

prognosis of these tumors, it is essential that better strategies be developed to detect and treat 

these aggressive malignancies.
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To identify improved treatments for patients with NF1-MPNSTs, several groups have used 

genetically engineered mouse models of these cancers, resulting in the discovery of new 

biologically targeted therapies.8–14 Based on these basic discovery efforts, mechanistic 

target of rapamycin (mTOR), mitogen-activated kinase kinase (MEK), and heat shock 

protein 90 (HSP90) inhibitors have all entered the clinical trials pipeline as promising 

targeted therapies for NF1 tumors (ClinicalTrials.gov Identifier NCT01661283, 

NCT01885195, and NCT020088770). As a complementary approach to mouse model-

driven discovery,15–17 in the current study, we leveraged clinical-grade genomic profiling on 

MPNSTs from 7 subjects with NF1 to identify new potentially actionable gene mutations.

MATERIALS AND METHODS

Patients

Tumors were obtained from individuals diagnosed with NF1 according to established 

criteria18 and treated at the Washington University/St. Louis Children’s Hospital 

Neurofibromatosis Clinical Program. This study was performed under active Human Studies 

Protocols approved by the Institutional Review Boards at each respective institution in 

accordance with the 1964 Declaration of Helsinki and its later amendments or comparable 

ethical standards. Tumor DNA samples were obtained from formalin-fixed paraffin-

embedded (FFPE) blocks or frozen tissue (when available) obtained at the time of surgical 

resection or biopsy.

Laser Capture Microdissection

Images of hematoxylin and eosin-stained slides were created on an Aperio ScanScope XT 

(Leica Biosystems, Buffalo Grove, Ill). The Aurora mScope viewer (Aurora Interactive Ltd, 

Montreal, Quebec, Canada) was used to view the images and obtain images at × 20 

magnification. A pathologist examined a digitized hematoxylin and eosin-stained slide to 

determine and outline tumor nests, directing the laser capture microdissection (LCM) to 

areas of high tumor cell content on the adjacent FFPE sections. A total of 5 to 10 sections 

(10-μm thick) from each FFPE block were cut on a microtome (Leica RM 2255; Leica 

Biosystems), air-dried for ≥ 2 hours, and placed at 60°Cfor 30 minutes. The sections were 

stored at 4°C until use or were immediately stained with a rapid hematoxylin and eosin 

ethanol-based staining protocol. Within 10 minutes of air-drying, the slide was placed on the 

LCM stage of the Arcturus PixCell instrument (Thermo Fisher Scientific, Waltham, Mass) 

for microdissection. The desired cells were microdissected into the cap of a 500-μL, safe-

lock tube filled with 50 μL of ALT buffer (Qiagen, Valencia, Calif). This procedure was 

repeated on the next slide until a total of 2000 to 5000 cells of interest had been captured for 

each case.

DNA Extraction

LCM-derived DNA samples were isolated from 2000 to 5000 cells using a QIAamp DNA 

Micro Kit (Qiagen category 56304; Qiagen) after RNase A treatment, according to the 

manufacturer’s instructions. DNA was quantified using a NanoDrop 2000 spectrophotometer 

(Thermo Fisher Scientific).
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Sequencing

For these studies, we employed next-generation sequencing using a protocol similar to 

Clinical Laboratory Improvement Amendments-approved mutation testing available for 

patients with cancer treated at the study institution (Genomics and Pathology Services; 

https://gps.wustl.edu/patient care/). The list of sequenced genes in this set are listed in 

Supporting Information Table 1. In brief, genomic DNA was sonicated to an average size of 

approximately 200 base pairs. The fragments were blunt ended, “A” tailed, and ligated to 

Illumina sequencing adapters (Illumina Inc, San Diego, Calif). The ligated fragments were 

amplified for 7 polymerase chain reaction cycles. Exome targets were enriched with Agilent 

Custom SureSelect reagents (Agilent Technologies, Santa Clara, Calif) according to the 

manufacturer’s protocols. Enriched fragments were amplified for 14 cycles with primers that 

incorporate a unique indexing sequence tag. The resulting library fragments were sequenced 

from each end (paired-end reads) for 101 bases using an Illumina HiSeq-2500 instrument 

(Illumina Inc).

Analysis

Sequence reads were mapped to the human reference genome (GRCh37/hg19) using the 

Novoalign tool (www.novocraft.com/products/novoalign/).19 Marking and removing 

polymerase chain reaction duplicates were performed using the PICARD tool (http://

broadinstitute.github.io/picard/). Variants were determined using the GATK Unified 

Genotyper (https://www.broadinstitute.org/gatk/).20 Variant filtration and selection was 

performed with the GATK Filter Variants tool. Variants with low depth, strand bias, etc, 

were discarded. Filters used include: filter out snps if depth <50 or phredFisher StrandBias > 

100 and filter out indels if readDepth (DP) < 50, phredFisherStrandBias > 100, or Homo-

polymerRun > 7. Filtered data was annotated using Annovar (hg19 build) (http://

annovar.openbioinformatics.org/en/latest/).21 Filtered variants initially were classified into 1 

of 4 levels using the bioinformatics pipeline. The classification scheme is described in Table 

1. The driver genes used for level 1 significance were tumor protein 53 (TP53), NF1, cyclin-

dependent kinase inhibitor 2A (CDKN2A), epidermal growth factor receptor (EGFR), 

platelet-derived growth factor (PDGF), Erb-B2 receptor tyrosine kinase 2 (ERBB2), KIT, 
MET, platelet-derived growth factor receptor (PDGFR), phosphatase and tensin homolog 

(PTEN), Janus kinase 2 (JAK2), and patched-1 protein (PTCH1). Variants were classified 

into categories 1, 2, 3, and 4. Variants were then manually reviewed, and recurrent variants 

occurring in exonic sequences were identified.

Immunohistochemistry and Tissue

Microarray Generation—Immunohistochemical staining was performed using a rabbit 

polyclonal antibody to neurofibromin (1:500 dilution; Santa Cruz Biotechnology, Dallas, 

Tex) or a rabbit polyclonal antibody to TYK2 antibody (ab39550, dilution 1:1000; Abcam, 

Cambridge, Mass;) with citrate antigen retrieval. Immunohistochemistry for histone 3 lysine 

trimethylation (H3K27 me3) was performed using rabbit monoclonal antibodies (C36B11, 

1:50 dilution; Cell Signaling Technology, Danvers, Mass) and 

Trisethylenediaminetetraacetic acid (EDTA) antigen retrieval. Previously generated tissue 

microarray blocks contained at least 2 cores of tissue (2 mm in diameter) from the most 
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representative areas of the tumor, as well as from normal peripheral nerve.22 Breast 

carcinoma was used as a positive control for TYK2 staining. Images for TYK2 and 

neurofibromin immunohistochemistry were acquired at × 200 magnification using a Nikon 

Eclipse E600 microscope (Nikon USA, Melville, NY) equipped with an optical camera 

(Leica EC3; Leica Biosystems) and Leica Application suite image analysis software 

(Version 2.1.0; Leica Biosystems). Tumors with strong immunostaining in >80% of the cells 

were scored as positive, whereas those with weak or no immunostaining were deemed 

negative. H3K27 me3 immunoreactivity was evaluated by one of the authors (M.P.) who was 

blinded to the other molecular features of the cases. Tumors with nuclear staining in <5% of 

the tumor cells, in the presence of an internal positive control (eg, endothelial cells), were 

scored as having a loss of H3K27 me3.

Survival Analysis—Clinical data from the MPNST cases from the study institutions were 

accessed by electronic medical records. Patients were censored by date of death (Social 

Security Death Index) or date of last follow-up. Overall survival data was generated by 

Kaplan-Meier analysis and the log-rank test using GraphPad Prism statistical software 

(version 5.03; GraphPad Software, San Diego, Calif).

RESULTS

We collected clinical data on 7 adults with NF1-associated MPNSTs: 3 women and 4 men 

(Table 2). The average age of the subjects at the time of diagnosis of MPNST was 39 years 

(median, 38 years; range, 20–50 years), which is consistent with previous studies reporting a 

lower age of onset for NF1-MPNSTs.22,23 One subject was found to have metastatic disease 

at the time of diagnosis whereas the other individuals presented with localized disease. At 

the time of the study, 2 subjects died, 4 were being actively followed at Barnes-Jewish 

Hospital/Washington University, and 1 individual was lost to follow-up. All DNA that was 

sequenced was isolated from the primary tumors by microdissection to ensure that samples 

contained pure tumor. We specifically selected a sequencing platform that is similar to the 

Clinical Laboratory Improvement Amendments-approved service at the study institution to 

identify actionable mutations in cancer relevant to the continued application of this 

discovery modality for future precision oncology treatments.

On average, there were 67 mutations per tumor categorized as variants in: 1) genes 

associated with MPNST; 2) genes previously reported to be mutated in other cancers; or 3) 

mutations for which the clinical significance is currently unknown (Table 3). Mutations were 

identified in 4 genes previously implicated in MPNST pathogenesis in both human studies 

and genetically engineered mouse models (NF1, TP53, EGFR, and PDGFR-α [PDGFRA]).
24–28 Variants also were identified in other genes potentially involved in MPNST 

pathogenesis (GNAQ, SLCO1B1, LAMA2, SLC34A2, PTCH1, RB1, KDR, CYP2A6, 
MYC, FLT4, and PSMD2).17,29–34 In addition, there were variants identified in genes not 

previously implicated in MPNST pathogenesis (TYK2, CYP2D6, ABCB1, CSF1R, 
MAP3K1, JAK3, GNA11, FLT3, ROS1, APC, HTR2B, DPYD, ATRX, EV12A, CYP2C19, 
ALK, GNAS, CYP2B6, BRCA1, NOTCH1, DDR2, RAF1, SMARCB1, FLT1, smoothened, 

frizzled class receptor [SMO], ESR1, ERBB4, CREBBBP, and ABL1). Mutations in many 

of these genes have been identified in other malignancies.
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After manual review of our sequencing data, 4 of these genes were found to be recurrently 

mutated in other NF1-MPNSTs in the current series, and harbored mutations within 

potential functional domains (NF1, TP53, ROS1, and TYK2) (Table 4). Consistent with 

these tumors arising in adults with NF1, all tumors harbored at least 1 mutation predicted to 

be pathogenic in the NF1 gene and 86% of tumors (6 of 7 tumors) exhibited loss of NF1 
protein (neurofibromin) expression by immunohistochemistry (see Supporting Information 

Fig. 1). It is interesting to note that the 1 tumor that retained neurofibromin expression 

contained only 1 mutation predicted to be pathogenic whereas the other 6 tumors contained 

2 mutations predicted to be pathogenic. Although ROS1 mutations are reported to occur in 

15% to 35% of melanomas, TP53 mutations are commonly reported in other sarcomas, 

malignant gliomas (glioblastoma, glioblastoma multiforme), and melanoma (Table 5).29,35

It is important to note that the specific mutation identified in the TYK2 gene (Pro1104Ala) 

(Fig. 1A) previously has been identified in one case of diffuse large B-cell lymphoma,29,35 

and positive TYK2 immunoreactivity and increased signaling has been demonstrated in 

other cancers.36 Moreover, this specific mutation occurs within a highly conserved domain 

(Fig. 1B), in which it has been associated with autoimmune disease.37,38 In addition, this 

mutation was predicted to be pathogenic using several programs, including SIFT (Sorting 

Intolerant from Tolerant),39 PolyPhen2,40 and Mutation Assessor.41 Furthermore, this 

mutation has been predicted to be oncogenic, based on a previously published computational 

analysis.42 In light of all these observations, we performed immunohistochemistry to 

determine whether there was deregulated TYK2 expression in the original 7 cases of NF1-

MPNST. Although strong immunoreactivity was detected in both NF1-MPNST cases with 

the TYK2-Pro1104Ala mutation, little or no immunoreactivity was observed in NF1-MPNST 

cases lacking this mutation (Fig. 1C).

Because 30% of the original 7 cases of NF1-MPNSTs harbored this TYK2 mutation and 

exhibited strong TYK2 protein expression that correlated with mutation status, we next 

examined TYK2 protein expression in a larger set of MPNSTs. Using an independently 

generated tissue microarray containing 28 MPNST cases (both sporadic and those associated 

with NF1), 1 neurofibroma, and 1 schwannoma, we observed strong immunopositivity in 17 

MPNST cases (approximately 60%: 55% of sporadic cases [6 of 11 cases] and 65% of NF1-

associated cases [11 of 17 cases]). In contrast, neither of the benign tumors (neurofibroma 

and schwannoma) were found to be immunopositive for TYK2 (data not shown), similar to 

normal peripheral nerve. There was no significant difference noted with regard to overall 

patient survival based on TYK2 expression (P = .4893).

DISCUSSION

MPNSTs are aggressive sarcomas with limited treatment options and poor overall survival 

given the high rates of recurrence and metastatic disease. This is particularly true for 

MPNSTs arising within the context of NF1, in which individuals present at an earlier age 

than their counterparts with sporadic disease and thus often die at a young age, often in their 

20s and 30s.43,44 For this reason, it is critical to identify more effective therapies for this 

subgroup of individuals with MPNST. Based on the emergence of molecularly targeted 

therapies, we sought to apply a clinically applicable genomic profiling platform to discover 
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potentially targetable mutations in cases of NF1-MPNST. The current study raises 3 

important points.

First, NF1 gene mutations were identified in all the subjects analyzed, which is consistent 

with their diagnosis of NF1.45,46 There was no specific clustering of mutations and all were 

predicted to result in impaired neurofibromin function (ie, frameshift, deletion, and nonsense 

mutations). Consistent with biallelic NF1 gene inactivation in NF1-MPNSTs, 

immunohistochemistry revealed loss of neurofibromin expression in approximately 86% of 

these tumors. It is interesting to note that the 1 tumor that retained neurofibromin expression 

harbored only a single mutation predicted to be pathogenic, whereas the other 6 tumors 

contained 2 NF1 gene mutations predicted to be pathogenic.

Second, we identified genes previously implicated in MPNST pathogenesis. In this regard, 

approximately 30% of subjects (2 of 7 individuals) harbored a mutation in the TP53 gene. 

These mutations were located in the DNA-binding domain, and would be predicted to result 

in loss of p53 function.47 Although EGFR26 and PDGFRA48 mutations were identified in 

nonfunctional domains, to the best of our knowledge, the significance of these variants is 

unknown. In addition, we found nucleotide var iants in several NOTCH signaling pathway 

genes (PTCH1, NOTCH1, and SMO); however, these mutations were not located in 

functional domains and their biological significance is unclear. Although our clinical 

sequencing platform examines many of the known genes involved in MPNST pathogenesis 

(including TP53, NF1, CDKN2A, EGFR, PDGF, ERBB2, KIT, MET, PDGFR, PTEN, 
JAK2, and PTCH1), there are some important genes not included on this platform, such as 

polycomb repressive complex 2 (PRC2)/polycomb repressive complex 2 subunit (SUZ12), 

which is deregulated in as many as 70% of MPNSTs.9,49 As a surrogate for PRC2/SUZ12 

loss, we performed immunohistochemistry to examine H3K27 me3, a known downstream 

target of SUZ12.50 Consistent with PRC2/SUZ12 involvement, approximately 60% of the 

NF1-MPNSTs (20 of 35 NF1-MPNSTs) demonstrated loss of H3K27 me3 (data not shown).

Third, we identified 2 genes with mutations (ROS1 and TYK2) in 2 of the 7 NF1-MPNST 

cases in the current series. ROS1 is a receptor tyrosine kinase that is rearranged in 

approximately 1% of lung cancer cases.51–53 The 2NF1-MPNST cases in the current study 

harbored single-nucleotide variants, which resulted in nonsynonymous mutations within the 

predicted fibronectin type domain of ROS1, rather than the kinase domain in which drugs 

such as crizotinib act.51 As such, the significance of this specific mutation to our knowledge 

is unknown, and is not likely to result in a protein targetable by currently available 

inhibitors. Further analysis of this mutation in the biology of MPNST will be required.

In contrast, TYK2 was mutated or its protein product overexpressed in approximately one-

half of MPNST cases examined in the current study, which is significantly greater than that 

observed in other sarcomas, malignant gliomas, melanomas, or pheochromocytomas (<7% 

of all tumors). Moreover, the particular recurrent mutation (Pro1104Ala) was located within 

a highly evolutionarily conserved Jak1 homology domain (KH2; α helical region). TYK2 is 

a kinase molecule that associates with the cytoplasmic domain of cytokine receptors54 to 

activate STAT signaling and promote cancer cell survival by upregulating the BCL2 pro-

survival gene.55 Relevant to cancer therapeutics, TYK2 protein stability is in part mediated 
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by HSP90, the molecular chaperone protein, such that HSP90 targeting using small 

molecule inhibitors results in the rapid degradation of TYK2, reduced BCL2 expression, and 

apoptosis in patients with T-cell leukemia.56

The discovery of tumors with TYK2 immunoreactivity may serve as an indirect biomarker 

with which to identify those specific individuals whose MPNSTs are more likely to respond 

to agents such as ganetespib in combination with radiotherapy and targeted or conventional 

chemotherapy. In this regard, HSP90 inhibitors currently are being examined in clinical 

trials for individuals with NF1-MPNST (ClinicalTrials.gov Identifier NCT02008877).57 In 

addition, the established role of TYK2 in regulating cell survival in cancer raises the 

intriguing possibility that small molecular inhibitors that target HSP90 will increase TYK2/

BCL2-mediated MPNST cell death and result in more effective clinical outcomes. Future 

mechanistic studies will be required to determine whether TYK2 expression predicts patient 

response to HSP90 inhibitors.
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Figure 1. 
Tyrosine kinase 2 (TYK2) mutation and protein expression in malignant peripheral nerve 

sheath tumors (MPNSTs). (A) Schematic representation of the predicted TYK2 protein 

sequence. The location of the exonic mutations is denoted above the protein schematic 

(amino acid residue).(B) The proline (P) residue at position 1104 is highly conserved in 

vertebrates. (C) TYK2 immunoreactivity was observed in TYK2-mutant, but not in TYK2-

wild-type, neurofibromatosis type 1-associated MPNSTs. Breast carcinoma was included as 

a positive control, whereas normal sural nerve served as a negative control for TYK2 
immunostaining.
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TABLE 1.

Variant Classification Scheme

Variant Level Significance Details

1 Known driver for MPNSTs Variants reported in various publications to be associated with MPNST

2 Reported in cancer or other diseases Previously reported as a somatic variant in COSMIC or reported as clinically 
significant (pathogenic) in ClinVar archive

3 Common variants Synonymous/intergenic variants or variants with 1000 genome maf > 0.05 or 
ESP6500maf>0.05

4 Unknown Novel variant of unknown significance

Abbreviation: COSMIC, Catalogue Of Somatic Mutations In Cancer; MPNST, malignant peripheral nerve sheath tumor; maf, minor allele 
frequency.
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TABLE 3.

Genes With Exonic Mutations

NF1 GNAQ TYK2

TP53 SLC01B1 CYP2D6

EGFR LAMA2 ABCB1

PDGFRA SLC34A2 CSF1R

PTCH1 MAP3K1

RB1 JAK3

KDR GNA11

CYP2A6 FLT3

MYC R0S1

FLT4 APC

PSMD2 HTR2B

DPYD

ATRX

EV12A

CYP2C19

ALK

GNAS

CYP2B6

BRCA1

N0TCH1

DDR2

RAF1

SMARCB1

FLT1

SMO

ESR1

ERBB4

CREBBP

ABL1

Abbreviations: ABCB1, ATP-binding cassette subfamily B member 1; ABL1, Abelson murine leukemia viral oncogene homolog 1; ALK, 
anaplastic lymphoma kinase; APC, adenomatous polyposis coli; ATRX, alpha thalassemia/mental retardation syndrome X-linked; CREBBP, 
CREB-binding protein; CSF1R, colony-stimulating factor 1 receptor; CYP2A6, cytochrome P450 2A6; CYP2B6, cytochrome P450 family 2 
subfamily B member 6; CYP2C19, cytochrome P450 family 2 subfamily C member 19; CYP2D6, cytochrome P450 family 2 subfamily D member 
6; DDR2, discoidin domain receptor tyrosine kinase 2; DPYD, dihydropyrimidine dehydrogenase; EGFR, epidermal growth factor receptor; 
ERBB4, Erb-B2 receptor tyrosine kinase 4; ESR1, estrogen receptor 1; EV12A, ectropic viral integration site 2A; FLT1, Fms-related tyrosine 
kinase 1; FLT3, Fms-like tyrosine kinase 3; FLT4, Fms-related tyrosine kinase 4; GNA11, G protein subunit a 11; GNAQ, G protein subunit a Q; 
HTR2B, 5-hydroxytryptamine receptor 2B; JAK3, Janus kinase 3; KDR, kinase insert domain receptor; LAMA2, laminin subunit a 2; MAP3K1, 
mitogen-activated protein kinase kinase kinase 1; NF1, neurofibromatosis type 1; PDGFRA, platelet-derived growth factor receptor a; PSMD2, 
proteasome 26S subunit, non-ATPase 2; PTCH1, patched-1 protein; RB1, retinoblastoma 1; ROS1, ROS proto-oncogene 1; SLC34A2, solute 
carrier family 34 member 2; SLCO1B1, solute carrier organic anion transporter family member 1B1; SMARCB1, SWI/SNF-related, matrix-
associated, actin-dependent regulator of chromatin, subfamily B, member 1; SMO, smoothened, frizzled class receptor; TP53, tumor protein p53; 
TYK2, tyrosine kinase 2.
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a Gray shading indicates strong murine and human data, green shading indicates published molecular/sequencing data, and pink shading indicates 
new variants of unknown significance.
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TABLE 4.

Genes With Recurrent Mutations Located in Predicted Functional Protein Domains
a

Tumor

Gene 1405601 1405593 1405577 1405576 1405575 1111 2222

NF1

ROS1

TP53

TYK2

Abbreviations: NF1, neurofibromatosis type 1; ROS1, ROS proto-oncogene 1; TP53, tumor protein p53; TYK2, tyrosine kinase 2.

a
Black boxes indicate mutation, whereas the white boxes denote the absence of a mutation.
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TABLE 5.

Genes Mutated in Other Cancers

Gene Sarcoma GBM Melanoma Pheochromocytoma

NF1 3.4%−8.8% 6.1%−17.6% 12%−45% 8.7%

ROS1 5% 1 %−2.2% 15.4%−35% 0.6%

TP53 13.5%−45% 29.7%−35.2% 12.1%−25% 0.6%

TYK2 1.9%−6.7% 2.2% 3.2%−5% 0

Abbreviations: GBM, glioblastoma multiforme; NF1, neurofibromatosis type 1; ROS1, ROS proto-oncogene 1; TP53, tumor protein p53; TYK2, 
tyrosine kinase 2.
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