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Role of network-mediated stochasticity
in mammalian drug resistance
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A major challenge in biology is that genetically identical cells in the same environment
can display gene expression stochasticity (noise), which contributes to bet-hedging, drug
tolerance, and cell-fate switching. The magnitude and timescales of stochastic fluctuations
can depend on the gene regulatory network. Currently, it is unclear how gene expression
noise of specific networks impacts the evolution of drug resistance in mammalian cells.
Answering this question requires adjusting network noise independently from mean
expression. Here, we develop positive and negative feedback-based synthetic gene circuits
to decouple noise from the mean for Puromycin resistance gene expression in Chinese
Hamster Ovary cells. In low Puromycin concentrations, the high-noise, positive-feedback
network delays long-term adaptation, whereas it facilitates adaptation under high Puromycin
concentration. Accordingly, the low-noise, negative-feedback circuit can maintain resistance
by acquiring mutations while the positive-feedback circuit remains mutation-free and regains
drug sensitivity. These findings may have profound implications for chemotherapeutic inef-
ficiency and cancer relapse.
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Imost two decades after the completion of the Human

Genome Project!, understanding how genes control

mammalian cells and organisms remains a daunting
task®3. A major factor contributing to this challenge is the
complexity of gene regulation at various scales, from underlying
molecular mechanisms to large-scale regulatory networks®°.
Adding to the conundrum is that genetically identical cells can
differ drastically due to microenvironmental and stochastic fac-
tors®=?, Numerous examples over the last two decades indicate
that a population of isogenic cells in the same environment can
exhibit single-cell-level stochastic fluctuations in gene expression,
also known as gene expression noise®. Gene expression noise
can arise from the intrinsic randomness of underlying biochem-
ical reactions or processes extrinsic to the gene!0. Two main
characteristics of gene expression noise are its amplitude and its
memory. The amplitude (often measured by the coefficient of
variation or CV) defines how far cells deviate from the average.
The memory describes the time for which cells remain deviant
once they depart from the average!l’12. These noise character-
istics of a gene depend strongly on the regulatory network that
embeds it. Positive regulatory feedback typically increases both
the amplitude and memory of noise, while negative feedback
tends to have the opposite effect!, implying that network
structure and noise characteristics are deeply intertwined and
difficult to separate.

Traditional measurements have generated numerous insights
by focusing on the gene expression mean and its cellular effects,
but we still need to understand the phenotypic roles of gene
expression noise in many circumstances”®14-16. Likewise,
approaches that perturb cells in bulk by over-expression, down-
regulation, or knockout try to control only the gene expression
mean, without precisely adjusting cell-to-cell stochasticity or
considering its phenotypic effects!”18. Hypotheses from over a
decade ago propose that non-genetic heterogeneity aids cell sur-
vival during drug treatment!21>1920 and other forms of envir-
onmental stress>!22, These effects depend on the amplitude and
memory of noise, both of which are network-dependent. The
network conferring noise can evolve?3 and noise improves the
adaptive impact of beneficial mutations under stress?4. Studies
in human cells seemingly suggest that cellular heterogeneity and
gene expression noise in general promote chemotherapy
resistance20-2°, evasion of apoptosis?®, and metastasis?’-28, How-
ever, prior demonstration that noise can also be harmful in low
stress!%22 cautions against the generality of these conclusions.
Moreover, prior work implies that examining the phenotypic
effects of noise requires proper, mean-decoupled noise
control!%2%:30, which has not been established for mammalian
cells. Therefore, despite the growing interest in the role of
mammalian gene expression noise, its precise role in mammalian
cell survival and evolution remain open questions. Addressing
these questions requires establishing mammalian cell lines that
are as similar as possible, differing only in the networks con-
trolling their gene expression noise. To achieve this, one might
manipulate the expression of genes by selecting and mixing
cells?8, controlling transcriptional regulators, or applying noise-
altering chemicals®!. However, the regulatory networks that
control mammalian gene expression are large, complex3>33 and
incompletely known, making predictable and mean-decoupled
noise control for specific individual genes in their native context
difficult. Thus, unraveling how gene expression noise of specific
networks affects mammalian cell evolution remains a serious
challenge.

The field of synthetic biology builds bottom-up synthetic
regulatory circuits, which often mimic natural network
structures343>, While gene expression noise is difficult to control
endogenously, simple synthetic gene circuits have been

specifically engineered to modulate noise independently of mean
gene expression levels in yeast!®3¢ and bacteria?®30, In such
cases, two non-overlapping noise vs mean curves have decoupled
noise regimes (Fig. 1a), which consist of decoupled noise points
(DNPs) where two different noise values correspond to the same
mean. Low-noise gene circuits for this purpose could include
synthetic microRNA-based feedforward loops3’-40 or negative
autoregulation?!=43. In contrast, synthetic gene circuits that
incorporate positive auto-regulation or ultrasensitivity have high
gene expression noise in yeast**> and mammalian cells#647,
Enforcing similar means, but different noise levels in yeast indi-
cated (Fig. 1b), consistently with computational models (Sup-
plementary Fig. 1), that noise aids survival in high stress whereas
it hinders survival in low stress if the kill curve is sharp. For
gradual kill curves, cells with high noise always have a survival
advantage regardless of the stress level. Testing the role of net-
work structure and noise in mammalian cell evolution requires
a similar control feat. However, genes integrate randomly into
mammalian genomes, which can impose locus-dependent effects
on gene expression®¥8, compromising rigorous noise control
in mammalian cells. Therefore, noise-decoupling gene circuits
should be reliably integrated at the same transcriptionally active
locus to minimize such locus-dependent effects.

Here, we integrate mammalian-optimized high-noise positive-
feedback (mPF) and low-noise negative feedback (mNF) synthetic
gene circuits (Fig. 1a) into separate, but isogenic Chinese Hamster
Ovary (CHO) cells at the same well-expressed genomic locus by
utilizing the Flp-In™ system®’. By comparing gene expression in
CHO cell lines carrying each gene circuit, we establish decoupled
noise points with different gene expression noise levels but with
similar mean expression. By using these gene circuits to control
the expression of the Puromycin N-acetyl-transferase (PuroR or
pac) gene that confers resistance to the antibiotic Puromycin,
we investigate how mNF and mPF gene expression noise influ-
ences mammalian drug resistance evolution. We find that the
mPF gene circuit with high PuroR expression noise can aid long-
term evolutionary adaptation of mammalian cells at the highest
stress (Puromycin) level, whereas it has the opposite effect at low
stress. Moreover, by withdrawing and re-adding the drug we
find that the gene circuit can mutate to adapt stably in mNF cells.
On the contrary, cells with the mPF gene circuit do not adapt
by intra-network mutations and their resistance is unstable
without circuit induction. Overall, combining mammalian syn-
thetic biology with experimental evolution indicates that the noisy
mPF network aids adaptation of mammalian cells to high drug
levels, while the opposite is true at low drug levels. These findings
may have implications for cancer treatment with known reg-
ulatory mechanisms of resistance.

Results

Developing a high-noise puromycin resistance gene circuit. To
obtain high gene expression noise amplitude and memory, we
designed and assembled a Flp-In-compatible version of the
positive-feedback (PF) synthetic gene circuit>. We integrated this
mammalian PF-PuroR (mPF-PuroR or mPF) gene circuit into the
well-expressed genomic FRT site of clonal Chinese Hamster
Ovary (CHO) Flp-In™ cells to avoid genomic locus-dependent
variation in silencing. In mPF-PuroR, the reverse tetracycline
Trans-Activator (rtTA)!7 binds to Doxycycline (Dox) and acti-
vates the transcription of a tricistronic construct consisting of that
same rtTA regulator, the fluorescent reporter EGFP, and the drug
resistance gene PuroR (Fig. 2a). Thus, with Doxycycline induc-
tion, the positive auto-regulatory network increases fluctuations
in gene expression within a population of cells. We joined these
coding sequences transcriptionally using the self-cleaving Porcine
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Fig. 1 Stress-dependent effect of network noise on drug resistance. a Tuning the induction (yellow gradient) of mammalian positive (mPF, left, red circle)
or negative (mNF, left, blue circle) feedback synthetic gene circuits can confer high and low gene expression noise while the mean expression is identical.
This enables decoupling gene expression noise amplitude (middle, standard deviation divided by the mean; 6/p) from the mean within a decoupled noise
regime (right, red and blue dashed lines) composed of decoupled noise points (right, red and blue arrows). b Schematic depictions to illustrate fractional
viability under low or high levels of drug (stress, grey arrow) for cells with high (red distribution) or low (blue distribution) gene expression noise of a
drug resistance gene. Relative survival of cells upon drug treatment will depend on network noise relative to the fitness function (dashed black line).

If the fitness function is steep, noise hinders survival under low levels of drug while it is beneficial under high levels of drug (Supplementary Fig. 1)

teschovirus-1 2A (P2A) and Thosea asigna virus 2A (T2A) pep-
tides to prevent potential unwanted functional effects from
protein fusion®®. Once translated, the P2A and T2A peptide
motifs cleave themselves, leading to the expression of three
separated proteins from one transcript. This simple design, with a
single common promoter, minimizes the number of genetic
components in the mPF-PuroR gene circuit, facilitating genomic
integration.

To characterize the expression of the mPF-PuroR gene circuit,
we collected single-cell-level EGFP fluorescence data at varying
Doxycycline levels by flow cytometry. To minimize technical
variation from flow cytometry measurements, we normalized
this data by correcting for auto-fluorescence and then dividing
by the mean of the highest-fluorescence peak from flow
cytometry calibration beads (see Data Analysis and Statistics in
the Methods). We characterized these normalized EGFP fluores-
cence distributions in terms of their gene expression mean and
noise amplitude, quantified by the CV. The mean mPF-PuroR
expression dose-response was sigmoidal with a steep response
region (Fig. 2b; Supplementary Fig. 2a, c), similar to yeast*>. Gene
expression noise amplitude for uninduced mPF-PuroR cells was
low, but then increased markedly upon Doxycycline induction
(Fig. 2¢; Supplementary Fig. 2b, d). The highest noise amplitude
values corresponded to broad, yet visibly unimodal single-cell

expression distributions (Fig. 2d; Supplementary Fig. 3a) in
contrast to the bimodal distributions in yeast*>. The removal of
PuroR did not impact the performance (noise amplification)
of the mPF circuit (Supplementary Fig. 4). To summarize,
transferring the mPF-PuroR gene circuit into CHO Flp-In cells
led to high noise amplitude with broad, visibly unimodal
distributions.

Low- and high-noise gene circuits decouple noise jointly.
To generate a low-noise gene circuit in the same genomic locus, we
also integrated a Flp-In-compatible mammalian negative feedback
(mNF-PuroR or otherwise called mNF) gene circuit in the
same ancestral CHO cell line (Fig. 3a). With negative feedback,
gene expression fluctuations are suppressed*!~43. We preserved
previous optimizations that enhanced gene expression®!. Again, we
joined the humanized Tetracycline repressor (hTetR), the EGFP
reporter, and PuroR genes with P2A and T2A peptide motifs,
allowing co-translational separation of the three proteins.

To determine how the gene expression mean and noise
amplitude of the mNF-PuroR circuit depend on Doxycycline,
we obtained gene expression distributions by flow cytometry.
As expected®!, the mNF-PuroR gene expression mean increased
linearly with Doxycycline concentrations prior to saturation
(Fig. 3b; Supplementary Figs. 2a, e; 5a, b). We observed low gene
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Fig. 2 Dose-response of the mPF-PuroR gene circuit. a Network schematic of the mPF-PuroR gene circuit induced by Doxycycline (Dox), which expresses
the reverse tetracycline transactivator (rtTA) regulator, the Puromycin resistance gene (PuroR) and EGFP separated by the self-cleaving 2A elements.

The rtTA regulator activates its own expression upon binding Dox (red dashed line). b Normalized mean expression under varying levels of Doxycycline
induction. € Gene expression noise amplitude (normalized coefficient of variation, CV) in response to Doxycycline induction. Error bars denote the standard
error of the mean. There is an x-axis break (//) between 50 and 500 ng/mL Doxycycline. All samples were measured in triplicate (n =3). d Single-cell
gene expression distributions of mPF-PuroR cells with broad peaks at intermediate levels of Doxycycline. The legend displays Doxycycline concentrations

per distribution. Distributions are from representative replicates. Source data are provided as a Source Data file
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Fig. 3 Dose-response of the mNF-PuroR gene circuit. a The mNF-PuroR gene circuit controls the expression of a Puromycin resistance gene and the
EGFP reporter gene through inducible negative auto-regulation (blue dashed line) of a humanized tetracycline repressor (hTetR) gene. The 2A peptides
self-cleave after translation. b Normalized mean expression of mNF-PuroR cells under varying levels of Doxycycline (Dox). € Gene expression noise of
mNF-PuroR cells in response to Doxycycline. Error bars denote the standard error of the mean. There is an x-axis break (//) between 50 and 500 ng/mL
Dox. All samples were measured in triplicate (n = 3). d Single-cell gene expression distributions of the mNF-PuroR circuit. The legend indicates
Doxycycline concentrations for each distribution. Distributions are from representative replicates. Source data are provided as a Source Data file

expression noise amplitude in response to Doxycycline (Fig. 3¢;
Supplementary Fig. 2b, f), in agreement with narrow gene
expression distributions (Fig. 3d; Supplementary Fig. 3b). Remov-
ing PuroR did not affect the performance of the mNF gene circuit
(Supplementary Figs. 5¢, d; 6).

To test whether noise-mean decoupling is possible with mNF-
PuroR and mPF-PuroR, we sought Doxycycline induction levels
where the mean expression of the two gene circuits were similar
while the differences in noise amplitude were high (Fig. 1a). To
identify such a decoupled noise regime from the dose-response,
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we analyzed noise amplitude as a function of mean expression
(Fig. 4a). We observed two decoupled noise regimes, one before
and one after the mNF-PuroR and mPF-PuroR noise-mean
curves intersect at high mean expression. Each regime has a set of
decoupled noise points (DNPs) where circuits can have matching
mean expression while ensuring distinct noise amplitudes.
Although we only measure EGFP expression directly, these
measurements should reflect PuroR expression, including noise
decoupling because the two proteins are co-translated (Supple-
mentary Fig. 7¢, d, e). Besides the noise amplitude, we also
studied the memory, estimating the rate at which cells moved
within the distributions. Flow-sorting high- or low-expressing
subpopulations for both gene circuits at DNP induction levels
indicated that cells with the high-noise mPF-PuroR circuit have
higher memory (~2 days) than cells with the low-noise mNF-
PuroR circuit (~1/2 day) (Supplementary Fig. 7; Supplementary
Table 1). Overall, both cell lines were equivalent except for the
noise-controlling constructs, each integrated as a single copy
(Supplementary Fig. 8) into the same genomic locus of a clonal
cell line. Thus, the decoupled noise regimes provide DNPs to
jointly control PuroR gene expression noise amplitude and
frequency and test their role in drug resistance evolution.

The noisy network can aid or hinder drug resistance evolution.
To uncover the role of noise-controlling mNF and mPF networks
in mammalian drug resistance evolution, we decoupled noise
from mean PuroR expression in isogenic CHO cells. By following
these cells in constant inducer concentrations through parallel
flow cytometry and microscopy (Fig. 5a), we identified a DNP for
mNF-PuroR and mPF-PuroR at 0.05 and 6 ng/mL Doxycycline,

respectively, in two experimental sets. At the DNPs, the means
differed by less than 10%. The gene expression noise amplitudes
were significantly distinct (**p value = 0.0022, n =6, two-tailed
Mann-Whitney U test) prior to treatment in both sets (Fig. 4b;
Supplementary Fig. 9a, b). Accordingly, the high-noise mPF-
PuroR expression distribution consisted of a wide, visibly unim-
odal peak while the low-noise mNF-PuroR peak was narrow
(Fig. 4c; Supplementary Fig. 9¢, d), which is apparent in imaging
(Fig. 4d). Since the mNF-PuroR mean exceeded slightly the mPF-
PuroR mean (non-significantly in the first experiment and sig-
nificantly, but still within 10%, in the second experiment; p value
=0.0931 and *p value = 0.0022, respectively, n =6, two-tailed
Mann-Whitney U test), observing better mPF-PuroR survival
should strengthen the evidence for noise-aided drug tolerance
and subsequent resistance.

After preparing six mNF-PuroR and mPF-PuroR replicates at
the DNP, we introduced various concentrations of Puromycin
and performed sets of evolution experiments, each lasting until
the adapting replicates have reached confluency. In the first
experiment set, we maintained Puromycin concentrations of 0,
10, and 22.5ug/mL while in the second set, we kept cells in
Puromycin concentrations of 35 and 50 ug/mL. A total of five
mPF-PuroR replicates (3 under 35 pg/mL Puromycin and 2 under
50 pg/mL Puromycin) were lost during sample maintenance.

To study the adaptation of CHO cells with low- and high-noise
networks to Puromycin treatment, we constructed population-
level adaptation curves at 0, 10, 22.5, 35, and 50 pg/mL
Puromycin by detecting and counting single cells from daily
microscope images. After examining these adaptation curves, we
observed immediate growth without adaptation for low
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Source data are provided as a Source Data file

Puromycin doses, while for moderate to high Puromycin doses,
the curves were initially flat, and fast growth resumed with a delay
that increased with stress severity. We defined as adaptation
only this latter behavior, which revealed three different phases of
the adaptation process (Fig. 5b): (1) growth suppression while
the curve stayed mostly flat; (2) fast regrowth when the curve
rose (grey region); and (3) saturation when the curve flattened
again at confluency (green region). Based on these phases,
we analyzed the adaptation time, which we defined as the time
required for initially suppressed cells to reach half-saturation
(indicated by a dashed arrow in Fig. 5b). Interestingly, the

led Mann-Whitney U test inferred significant differences at p values < 0.05.

length of the growth suppression phase became more variable
between replicates of each circuit upon increasing Puromycin
concentrations (Fig. 5c-g).

We first investigated how decoupled PuroR expression noise
and the corresponding networks affect the adaptation time at
various levels of Puromycin. We calculated adaptation times only
for replicates whose moving average net growth rates (estimated
for every 3 timepoints on the adaptation curves) fell to 0 or below
at least once (Supplementary Fig. 10). Based on this definition,
CHO cells with both gene circuits grew without adaptation at
0 and 10 ug/mL Puromycin (Fig. 5h; Supplementary Fig. 10a, b).
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Under 22.5 ug/mL Puromycin, the high-noise mPF-PuroR cells
adapted after a delay (**p value=0.0022, n=6, two-tailed
Mann-Whitney U test) while the low-noise mNF-PuroR cells
grew without adapting (Fig. 5h; Supplementary Fig. 11a). Like-
wise, the low-noise mNF-PuroR replicates adapted faster
(*p value =0.0238, n=6 for mNF-PuroR and n=3 for mPF-
PuroR, two-tailed Mann-Whitney U test) with a shorter delay
than the mPF-PuroR replicates (2 out of 3 surviving) under
35 pg/mL Puromycin (Fig. 5h; Supplementary Fig. 11b). Inter-
estingly, cells with the high-noise network tended to exhibit
morphological diversity, including signs of polyploidy (Supple-
mentary Figs. 12-13) during adaptation. In contrast to the
lower drug concentrations, at 50 pg/mL Puromycin all mNF-
PuroR replicates perished whereas half (two) of the mPF-PuroR
replicates eventually adapted and recovered (Fig. 5h; Supplemen-
tary Figs. 11c; 14-15). Importantly, visual inspection indicated
that mNF-PuroR cells completely vanished from the culture
wells despite having slightly higher pre-treatment mean PuroR
expression (Supplementary Fig. 14), indicating their inability to
adapt to the highest Puromycin concentration.

Overall, the adaptation times indicate that the noisy mPF
network promotes evolutionary adaptation compared to mNF at
high stress, while the reverse is true for low stress, which is
consistent with the effects of noise on survival immediately after
treatment for steep kill curves (Supplementary Fig. 1). Therefore,
the noisy mPF network affects long-term mammalian drug
resistance evolution similarly to noise-dependent short-term
survival of other cell types!®. The most pronounced evolutionary
benefit from the noisy mPF network occurs at the highest stress
level, but it is not directly related to its preexisting gene
expression fluctuations!?, as the adaptation time to regrowth
(weeks) greatly exceeds the memory of preexisting PuroR
expression fluctuations (~2 days).

Computational modeling infers mechanisms for drug resis-
tance. To investigate whether gene expression noise differences
alone explain the experimentally observed adaptation to drug
treatment, we used a stochastic gene expression model that
decouples noise magnitude and fluctuation relaxation time
from the mean!2. To model cell population size over time,
we performed stochastic simulations of growing cells with gene
expression based on the Ornstein-Uhlenbeck process®?, fixing
mean gene expression levels, but varying gene expression noise
and relaxation times to match the two gene circuits. These
simulations indicated that the preexisting noise properties of
the gene circuits alone without additional cellular states could not
capture the long experimental adaptation times followed by fast
regrowth for prolonged, high Puromycin drug treatment (Sup-
plementary Fig. 16). If slow gene expression fluctuations would
underlie drug resistance without any phenotypic switching to
other cell states, the computational model assumingly suggests
slow but visible growth in a few days, as opposed to the experi-
mentally observed multi-week delays without growth.

Next, to better capture experimentally observed long-term
evolutionary adaptation behaviors at high stress, we developed a
more complex stochastic population/evolutionary dynamics
model®3. This model assumed additional cellular states based
on short-term experimental data before and immediately after
drug treatment. Specifically, we assumed that cells die if their
PuroR concentration is below a specific Puromycin-dependent
threshold, which we estimated from the initial fraction of cells
surviving Puromycin treatment [Eq. (3)-(5), Methods]. We
partitioned the remaining surviving cells into stress-induced
persister cells>®>> that neither grow nor die and preexisting,
nongenetically drug-resistant cells that grow in the presence of
Puromycin [Eq. (6), Methods] (Fig. 6a). Thus, upon initial drug

treatment, three different cell types exist within the cell
population: dead (D), persister (P), and nongenetically drug-
resistant (N) cells. We allowed phenotype switching between
Pand N cells. Additionally, we assumed that over time P cells and
N cells can give rise to a fourth, stable (genetically or
epigenetically) drug-resistant (G) cell type. Though the growth
rates of N and G cells were similar, the death rates of N cells
were increasingly greater than G cells for higher Puromycin
concentrations (Supplementary Table 2). Gene expression noise
and the drug concentration imposing selective pressure determine
the D, P, and N cell population proportions shortly after
treatment, and consequently, the ultimate evolutionary outcome
in these simulations (Fig. 6b-f). As Puromycin concentrations
increase, the number of D cells increases accordingly at the
expense of surviving cells. Among surviving cells, the frequency
of P cells increases with stress levels until all surviving cells are
P cells at very high stress (Supplementary Fig. 17). G cells emerge
subsequently at rates reflecting the numbers of their P and N cell
precursors.

To investigate various adaptation scenarios, we scanned cell-
type switching and mutation rate parameters (rn,p, 7pn> TG,N> TG.P5
Supplementary Table 2) over four orders of magnitude in the
population dynamics model. Interestingly, most of the scenarios
could not capture the adaptation times in all Puromycin
concentrations. For instance, in models that excluded P to G
conversions, the mPF cell population grew immediately (without
adaptation), although slowly in 22.5 ug/ml Puromycin (Supple-
mentary Fig. 18), in disagreement with experimental results
(Fig. 5e, h). Models that allowed P to G conversion captured
the experimental adaptation time dynamics in all tested
Puromycin conditions (Fig. 6g). Therefore, the experiments and
models jointly support that resistance to high Puromycin
levels occurs by drug-induced formation of persister-like cells
serving as reservoirs for fast-growing, heritably drug-resistant
mutants. Mutant antibiotic tolerant non- or slow-growing cells
have previously been shown to precede genetic drug resistance
during intermittent antibiotic exposure in bacteria®®. On the
other hand, at lower Puromycin levels adaptation may arise
from preexisting nongenetic phenotypic variability, as nongene-
tically drug-resistant cells survive and grow immediately upon
drug treatment.

Drug removal and sequencing suggest how mNF evolves. As
the computational model indicated, after initial cell death,
adaptation to Puromycin stress could occur by multiple different
mechanisms depending on the stress level. Specifically, at low
stress, nongenetically resistant cells could continue growing,
and eventually reestablish the population without any mutations
or other heritable alterations!2. Alternatively, at high stress,
cells can acquire heritable (genetic or epigenetic) drug resistance
alterations after a significant delay, leading to stable resistance.
Heritable mechanisms could be endogenous (based on native
mechanisms independent of PuroR gene expression), or PuroR-
dependent, elevating PuroR expression to a level sufficient for
resistance. However, for all mNF and mPF replicates evolved at
the highest 3 stress conditions, induced PuroR expression
increased and stayed far above pre-treatment levels. Therefore,
we concluded that adaptation always relied on elevated PuroR
expression.

PuroR-dependent mechanisms could occur inside or outside
the synthetic gene circuit and may depend on network induction.
To distinguish between such possibilities (Supplementary Fig. 19),
and to formulate hypotheses about the nature of molecular
events contributing to evolutionary adaptation, we removed
Puromycin temporarily and then re-added it again for cells that
have adapted under 22.5, 35, and 50pug/mL Puromycin.
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CHO cell population composition and survival. Nongenetically Puromycin-resistant cells (green cells - brighter cells have higher PuroR expression level and
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() 50 pg/mL of Puromycin. Growth curves shown in panels in (b-f) correspond to: mPF subpopulations (left), mNF subpopulations (center), and full mPF
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Moreover, to test whether gene circuit induction was necessary
for resistance, we split each evolved replicate into two separate
wells, culturing them either without Doxycycline (uninduced) or
with Doxycycline (induced) at the same concentration as before
Puromycin removal (Fig. 7a).

Next, we studied the behavior of mNF-PuroR replicates after
removal of 35pg/mL Puromycin. All uninduced and induced
mNF-PuroR replicates maintained constant PuroR expression
levels well above corresponding induced but untreated ancestral
cells for ~ a month (Fig. 7b; Supplementary Figs. 20a; 21-22),
suggesting that inducer-independent, high PuroR expression has
evolved. Accordingly, all uninduced and induced mNF-PuroR
replicates grew without adaptation upon Puromycin re-addition,
much quicker than their Puromycin-treated ancestors, further
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supporting stable, induction-independent drug resistance in
each population (Fig. 7e).

To examine how inducer-independent, PuroR-dependent
resistance arose in the mNF-PuroR circuit, we sequenced the
gene circuit from the six induced replicates after drug removal
at 35 pg/mL Puromycin. In replicate 2, we found an indel in
hTetR that can reduce binding affinity to tetO2 sites by 1000-
fold>” (Supplementary Fig. 23). Therefore, this mutation likely
compromised repressor functionality, leading to high PuroR
expression and drug resistance. In replicate 3, we found a single
nucleotide polymorphism in the distal region of the promoter
(Supplementary Fig. 24). Furthermore, the CRISP-ID® genotyp-
ing algorithm uncovered in replicate 1 two mutant variants in the
same distal promoter region as in replicate 3 (Supplementary
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Fig. 25). Both variants contain the same mutation as replicate 3,
suggesting that both arose by selection for elevated PuroR
expression. Therefore, mutations abrogating hTetR repression
seem to occur repeatedly, possibly because random mutations
are typically functionally deleterious rather than beneficial for
proteins?3. Here, mutations deleterious for hTetR protein
function are beneficial for cellular drug resistance. Despite
identical phenotypes (stable inducer-independent expression),
we found no mutations in the mNF-PuroR circuit from replicates
4-6 (Supplementary Fig. 26). In summary, the mNF gene circuit
adapts through intra-circuit mutations or extra-circuit heritable
alterations that corrupt hTetR repressor function to confer
elevated, inducer-independent PuroR expression (Supplementary
Fig. 27).

Finally, we followed the same procedure to gain insights for
evolution in 22.5 pg/mL Puromycin, the lowest stress level, where
mNEF-PuroR cells grew instantaneously. At this stress level, after
drug removal both uninduced and induced mNF-PuroR mean
expression levels reverted quickly towards their pre-treatment
levels (Supplementary Fig. 28a). This indicated non-genetic drug
resistance purely from non-uniform PuroR expression. Sequen-
cing revealed no intra-circuit mutations, further supporting
these conclusions (Supplementary Fig. 29a). Overall, the lack of
intra-circuit mutations and the quick reversion to pre-treatment
expression levels at 22.5 ug/mL Puromycin suggest nongenetic
drug resistance mechanisms relying on preexisting Doxycycline-
dependent PuroR expression variability, as predicted computa-
tionally at sufficiently low stress levels (Fig. 6d; Supplementary
Fig. 16).

Sequencing reveals mPF adaptation without circuit mutation.
To investigate molecular adaptation mechanisms of mPF cells
to 35ug/mL Puromycin, as for the mNF gene circuit, we
sequenced the high-noise mPF-PuroR gene circuit, but found no
mutations (Supplementary Figs. 30-31) for any replicate.
Therefore, extra-circuit heritable alterations must confer resis-
tance by rtTA induction-dependent or independent mechanisms.
To distinguish between these possibilities, as before, we compared
induced versus uninduced cell count and gene expression time
courses for mPF-PuroR replicates during drug removal and re-
addition. In contrast to cells with the mNF-PuroR circuit, unin-
duced mPF-PuroR replicates showed signs of regulator (rtTA)
induction-dependent adaptation, as their expression dropped
closer, albeit not completely down to ancestral levels (Fig. 7c;
Supplementary Figs. 20b; 32a, b), and they failed to grow initially
after drug re-addition, adapting with a long delay (Fig. 7).
Induced mPF-PuroR cells maintained their expression well above
induced and uninduced ancestral cells (Fig. 7¢; Supplementary
Figs. 20b; 32¢, d) and regrew quickly without adaptation upon
retreatment (Fig. 7f). Together with the lack of intra-circuit
mutations and reacquisition of drug sensitivity after Doxycycline
removal, the evidence supports rtTA induction-dependent
extra-circuit alterations that elevate PuroR expression to resist
35 pg/mL Puromycin (Supplementary Fig. 33).

At the highest level of 50 ug/mL Puromycin, two mPF-PuroR
replicates recovered, demonstrating the evolutionary benefit of
the noisy mPF-PuroR gene circuit over mNF-PuroR at very high
stress levels. Once again, sequencing did not reveal any intra-
circuit mutations (Supplementary Fig. 31). The expression of
uninduced mPF-PuroR replicates dropped closer to the baseline
DNP mean over ~10 days (Fig. 7d; Supplementary Figs. 20c; 32e,
f). Interestingly, for uninduced replicate 3 expression dropped
farther down, and re-adaptation to Puromycin occurred even in
the induced condition (Fig. 7g). Moreover, uninduced replicate
4 cells required more time to adapt upon retreatment compared
to replicate 3, despite slightly higher expression levels, which

suggests distinct heritable alterations contributed to resistance
in each replicate. Overall, we found evidence of distinct extra-
circuit heritable inducer-dependent mechanisms maintaining
high PuroR expression at 50 pg/mL Puromycin (Supplementary
Fig. 33).

Finally, we applied similar criteria to gain insights for
22.5 ug/mL Puromycin, the lowest stress level where mPF-
PuroR replicates adapted with a moderate delay. All induced
mPF-PuroR replicates maintained their PuroR expression above
the ancestral levels (Supplementary Fig. 28b), but uninduced
replicates dropped close to baseline, indicating stable PuroR
expression-dependent mechanisms of resistance requiring rtTA-
induction. Accordingly, uninduced mPF-PuroR replicates failed
to grow initially during retreatment, showing signs of adaptation
(Supplementary Fig. 34b, d), as opposed to induced replicates,
which grew instantaneously. Gene circuit sequencing revealed
no mutations (Supplementary Fig. 29b), suggesting extra-circuit
heritable alterations contributing to adaptation. Overall, in mPF-
PuroR we find evidence for extra-circuit, inducer- and PuroR-
dependent mechanisms of adaptation (Supplementary Fig. 35).

Discussion

Over a decade ago, hypotheses emerged on gene expression noise
contributing to chemotherapy resistance!®. Noise would ensure
initial survival in a memory-dependent manner!?, enabling
cancer cells or microbes to then develop genetic resistance. Recent
studies have raised further awareness on cellular heterogeneity
and gene expression noise, implying a general benefit for cell
populations to overcome drug resistance or metastatic
barriers?025-28, However, earlier evidence for the harmful effects
of noise in low stress!®?? cautions against generalizing these
recent observations. In fact, to rigorously study phenotypic effects
of noise requires two cell populations with similar means, but
different noise levels!®2%30, which was lacking for mammalian
cells. Without such control, we cannot exclude the possibility that
the fitness benefit is from higher mean expression. Therefore,
how gene expression noise affects mammalian cell survival and
evolution remained open questions, addressing which required
isogenic mammalian cells with mean-decoupled noise control.
We established such control with high- and low-noise gene cir-
cuits to study how network noise contributes to drug resistance
evolution in CHO cells. While earlier work in yeast indicated
that noise can aid or hinder short-term survival depending
on the balance between drug dose and resistance protein
levels'®%, the evolutionary effects of noise are only recently being
unraveled?>24. Here, by experimentally evolving synthetic gene
circuit-harboring CHO cells in Puromycin, we show that noisy
mPF networks aid evolution at high stress as previously hypo-
thesized!®, but also hinder evolution at low stress, mimicking
the effects of noise on short-term survivall®.

We combined experimental evolution and synthetic gene cir-
cuits to drive evolutionary adaptation in mammalian cells. Since
the pioneering studies of prokaryotic experimental evolution®,
the field has expanded into yeast232461 and fruit flies®2. Mam-
malian cell evolution studies are timely and relevant to cancer®3,
but they are rare and have not involved synthetic gene circuits.
Experimental evolution of artificial gene circuits in microbes?324
provided mechanistic insights across multiple scales of time
and biological organization, by reducing the influence of complex
and incompletely known native gene regulatory networks. Thus,
synthetic gene circuits facilitate the development of predictive
models that reveal unexpected, emergent effects, which would
be more difficult to derive for natural gene networks.

The experimental system we developed is a feasible model®3
for the long-term evolutionary response of cancer cells to

10 | (2019)10:2766 | https://doi.org/10.1038/s41467-019-10330-w | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

translational inhibitors. Puromycin compromises protein synth-
esis in a broad range of cell types, like emerging cancer ther-
apeutics targeting mRNA translation®4%>. Moreover, Puromycin
itself has been proposed as a potent anticancer agent specifically
released from a prodrug in cancer cells®®. Considering that over
80% (19,711/24,383) of the predicted CHO protein-coding genes
have homologs in human®, studying drug resistance evolution in
this cell line should be as relevant as mouse cell line models of
drug resistance are to human cancers.

Overall, the data suggest that at the highest stress levels that
cause prolonged growth suppression, only cells with high-noise
mPF networks recover ultimately through stable, but unknown
extra-circuit genetic or epigenetic drug resistance mechanisms. At
milder stress levels, cells with the low-noise mNF network adapt
partly by mutating the circuit to abrogate repressor function.
Surprisingly, adapting CHO cells always take advantage of the
non-native PuroR gene. The mechanisms vary, and most likely
include direct PuroR upregulation by intra- or extra-circuit
alterations. The intra-circuit mutations or lack thereof reflect the
fact that random evolutionary changes can more easily disrupt
repression than facilitate activation. The exact extra-circuit heri-
table mechanisms behind the evolutionary adaptation remain to
be studied as whole-genome and -transcriptome sequencing of
CHO cells advance®®.

We used different (mNF and mPF) networks to control noise
properties, keeping the role of networks and noise intertwined.
We think noise properties (amplitude and memory and then
switching to a persister state) should be more relevant for initial
survival, when the protein level fluctuations make the difference
between survival and death. On the other hand, network topology
(repression versus activation of drug resistance) and its modes
of beneficial alterations seem to matter more at longer, evolu-
tionary time scales. In the future, it will be interesting to try
controlling noise while minimizing differences in network
topology3®, to separate better the evolutionary effects of networks
and gene expression noise.

Comparing the experimental evolution time courses with the
evolutionary model and sequencing results suggested that pers-
ister cells convert to stably resistant proliferating cells at high
stress levels. The mammalian drug-tolerant persister state could
derive from a chromatin-mediated transition, which previously
has shown sensitivity to HDAC inhibitors®>, or could depend on
GPX4 expression®®. However, in these experiments persister
simply means cells that neither divide, nor die in stress — medi-
ated by many possible mechanisms, such as the formation of
polyploid cells®, as we noticed. Nonetheless, the successful
elimination of low-noise populations without resistance at high
stress levels provides hope for noise-controlling treatment stra-
tegies in cancer, like HIV-infected cells®!.

Methods

Plasmid construction. Plasmids integrated into CHO Flp-In™ cells (Invitrogen,
R758-07) were constructed using restriction cloning on commercial and custom
vectors and constructs. The mNF and mPF plasmids integrated into the genomic
FRT site with the aid of Flp-recombinase expressed from the pOG44 vector
(Invitrogen, V600520). The addition of T2A::PuroR to both plasmids resulted in
mNF-PuroR and mPE-PuroR constructs. The molecular cloning extensively used
overlap PCR extension to fuse DNA pieces together. For a detailed description of
plasmid construction, see Supplementary Methods and Supplementary Table 3
for cloning primers.

Cell culture and dose-response. Chinese hamster ovary (CHO) cells with the
single stably integrated FRT site (Invitrogen, R75807) were grown in Ham’s F-12
Nutrient Mix (Gibco, 11765) with 10% fetal bovine serum (Gibco, 10437) and
100 U/mL Penicillin and Streptomycin (Gibco, 15140). Hygromycin B (Invitrogen,
10687-010) at 700 ug/mL was used as a selection agent that killed untransfected
cells and cells with randomly integrated constructs (see below). Doxycycline (Fisher
Scientific, BP26531) stock solution was stored at —20 °C, and diluted in media

at 4 °C storage for no longer than 7 days after initial preparation. Cells were
passaged by washing with 1X Dulbecco’s phosphate-buffered saline (DPBS)
without calcium or magnesium (Life Technologies, 14190250), incubating cells
with 0.25% Trypsin-EDTA (Life Technologies, 25200056) up to 5min in 37 °C
with 5% CO,, neutralizing any proteases with media and growth serum, and then
cells were transferred to a new flask or tube. Prior to imaging experiments, CHO
cell nuclei were stained with the live cell dye NucBlue (Invitrogen, R37605) at a
concentration of 1 droplet per 90 mL of media.

Transfection and flpase-integration. For the genetic constructs containing the
PuroR gene, CHO Flp-In cells were transfected with plasmid DNA (up to 5 ug)
using the Lipofectamine 3000 reagent (Life Technologies, L3000008) according
to the manufacturer protocol. Plasmid DNA for mNF-GFP and mPF-GFP was
introduced into cells using the Nucleofector™ 2b device (Lonza, Walkersville,
MD), per manufacturer protocol, using 5-10 x 10 cells, plasmid DNA (1-5 pug),
and relevant buffers (Solution T, and program V-23). Site-specific integration

of synthetic gene circuits was achieved by co-transfecting the pOG44 plasmid
expressing Flp-recombinase with the Flp-expression vectors that encode an FRT-
tagged Hygromycin B resistance gene without a start codon. Upon selecting with
Hygromycin B, the resistance gene acts as a positive-selection promoter trap, which
provides the resistance gene with a start codon only upon successful integration at
the genomic FRT site, thus leading to survival. The clonal CHO populations were
derived from bulk-transfected cells by fluorescence-activated cell sorting (FACS).

Flow cytometry. The BD Accuri™ C6 benchtop flow cytometer measured EGFP
fluorescence data from single CHO cells. Before measuring expression, cell samples
were trypsinized, neutralized with media, centrifuged at 300 x g for 5 min, resus-
pended in 1X DPBS, and then strained into a 5 mL polystyene round-bottom tubed
(VWR, 21008948) for subsequent flow cytometry data collection. Up to 20,000
events were gated for analysis. Samples treated with drug typically had lower cell
counts. In the case of the flow-sorting experiments, cells were sorted by the
FACSAria III instrument at the Stony Brook School of Medicine Research Flow
Cytometry Core facility. The BD FACSCalibur Cell Analyzer flow cytometer at
the facility measured expression after sorting in memory estimation experiments
(see Supplementary Methods).

Data analysis and statistics. We developed custom MATLAB scripts to gate and
analyze flow cytometry data. Cells were adaptively gated with a density-threshold
fit of log-transformed SSC and FSC values per sample to exclude debris (see
Supplementary Fig. 36 and Supplementary Methods). Fluorescent events that
were less than 2,000 arbitrary units were filtered prior to normalization using the
following formula:
EGFP;

filtere

+ = EGFP! |(EGFP!

raw raw

>EGFPyorr), (1)

where EGFPlgereq is the filtered fluorescence for individual cells (i) that have an
unsilenced circuit, EGFPL,,,, is the raw fluorescence from any cell (i) with the
circuit, and EGFPf is a constant fluorescence threshold (2,000 arbitrary units)
above auto-fluorescence but below uninduced, basal circuit expression. The
EGFP05r was shown to threshold non-fluorescent cells from cells with uninduced
circuits based on the threshold value exceeding three standard deviations higher
than the auto-fluorescence mean. Additionally, the non-expressing peak and basal
expression peak flank a local minimum (Supplementary Fig. 2) that aligns with
the EGFP . The filter was justified by the lack of transitions from the small
subpopulation of non-expressing cells to the basal expression level for both circuits
(Supplementary Fig. 37).

To estimate technical variation in fluorescence under flow cytometry
between experiments, we measured fluorescent values from an auto-fluorescence
reference (CHO Flp-In parental cell line) and 8-peak fluorescent calibration beads
(BD, 653144). To normalize the gated, filtered fluorescence events, we applied
the technical fluorescence variation control data to the following formula:

- EGFP}, .o — EGFP,

EG. FPi ECFD auto , (2)

norm ~
max

where EGFPilorm is the normalized fluorescence from individual cells with an

unsilenced circuit, EGFP,, is the mean autofluorescence from the parental cell
line without the circuit, and EGFP,,,,, is the mean fluorescence of the highest
fluorescence intensity peak from the calibration beads control.

Using each individual normalized fluorescence reading, we calculated the

normalized mean and CV directly from the EGFP!_ values using standard

formulas: CV = ¢ (EGFP}

norm

) (eGP

norm

), where u(EGFP. ) =

norm

N .
ﬁ ; EGFP:mrm

and ¢? (EGFP!

N . .
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We plotted the mean and standard error of the mean (SEM) over replicates
for each condition. In imaging, the number of cells per field was determined by
spot detection of green-fluorescent cells and nuclei stained with the live cell dye
NucBlue using NIS Elements AR (see Supplementary Methods for a detailed

description). The non-parametric two-tailed Mann-Whitney U test inferred
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significant differences at a p value < 0.05. To calculate the adaptation time
parameter, we fit the Baranyi environmental adjustment model”? through
minimization between the model and the data using Powell’s method
(Supplementary Fig. 38).

Computational modeling. To relate the fraction of mPF-PuroR and mNF-PuroR
cells surviving the death phase of Puromycin treatment to EGFP and Puromycin
concentrations, we first log transformed the approximately lognormal experimental
CHO EGFP histograms, which were then fit to the Gaussian (normal) probability
density function (Supplementary Fig. 17a):

2

> )

1
— exp
2710 1mPF mNF

where EGFP is the level of the fluorescence reporter which corresponds to the
expression level of the Puromycin resistance gene (PuroR), and y and o are the
mean and standard deviation of the population EGFP distribution for the mam-
malian positive or negative feedback circuit as indicated by the indices mPF and
mNF, respectively.

The cumulative distribution function was directly obtained by integrating
Equation (3) and is related to the fraction of cells that are initially killed by
Puromycin (Ap)

(EGFPmPF,mNF ~ HinpE.mE)

2
207,pF,mNE

f(EGFPmPF,mNF) =

AD thres

Ap . (EGFP) =

'mPE,mNF

EGFP' - 2
( mPF,x;NF HinpF mNE) JEGEP’
207,pF,mNE

1
ex
\/EUmPF,mNF P<
(4)

The fraction of clonal CHO cells that initially survive Puromycin (Ag) is then
simply 1—Ap (Supplementary Fig. 17b). The EGFP expression threshold below
which CHO cells were killed is related to Puromycin concentration ([Puro]) via a
Michaelis-Menten type function (Supplementary Fig. 17¢):

[Puro]
Ap,.,(Puro) = B (m) . (5)

The fraction of initial surviving cells can be further divided into a persister cell
fraction (Ap) and a nongenetically resistant fraction (Ay) such that Ap + Ap + Ax
= 1. The Ap fraction was estimated using a lognormal distribution function
(Supplementary Fig. 17d):

([Puro]) =

A
P V270" pp 20"k

The initial subpopulation fractions of Ap, Ap, and Ay served as input to a
stochastic population dynamics model [Equation (7)], which accounted for the
phenotype switching between P and N cells and the mutation of N or P cells to
form a genetically drug-resistant subpopulation fraction of G cells (Ag), which like
N cells could grow and divide. The model predicted subpopulation fractions and
adaptation (Fig. 6):

1 exp (7(ln([PuroD - ”/“"’F‘mNFy) - (8

?TI: =r1pNyN —rypP —16pP
%’: —rp N+ rypP —rgyN +kyN — gyN,
4 = 16pP + 16y N + ksG — g6G

7)

where ry; is transition rate from genotype/phenotype j to i, k; is the growth rate of i,
and g; is the death rate of i. The total population size Ny, is given by:
dN,, dP dN dG
T Q@ +E+E—kNN+kGG—gNN—gGG.
See Supplementary Methods for details on the implementation of the
computational model. All parameter values are given in Supplementary Table 2.

©

Puromycin treatment phase. Prior to experimental design, a kill curve for
ancestral CHO cells evaluated the minimal Puromycin concentration affecting cells
without the resistance gene (see Supplementary Methods). In the initial drug
treatment experiment, cells were seeded at 5 x 10% cells in 6-well plates and
incubated 24 h prior to Doxycycline induction. After 48 h of induction, 8,000 cells
were split in replicates of six into 24-well plates and induced for another 24 h
before treatment with Puromycin. At 72 h, expression was measured by flow
cytometry to determine the existence of a decoupled noise point between the two
circuits, with the criteria being means that differ by less than 10%. Once the
decoupled noise point was established, the cells were treated with varying levels of
Puromycin. Plates were replenished with media, Doxycycline, Puromycin, and
NucBlue every 24 h before imaging (Fig. 5a). If a well became confluent during
the first treatment phase, we ran the sample under flow cytometry, temporarily
removed Puromycin, split the sample into two new wells with or without
Doxycycline, and the remaining cells were cryogenically frozen (Fig. 7a).

Adaptation criteria. We employed custom MATLAB scripts to estimate the local
slope (growth rate) of the growth curves with a moving window of 3 timepoints
(Supplementary Figs. 10; 34c, d). If the local growth rates up to saturation of the

growth curve were equal to or greater than 0, then the adaptation time = 0. If any
local growth rate of a curve was less than zero, then we extracted the half-saturation
time and adaptation time from the Baranyi model. Replicate populations that
completely die off have adaptation times = infinity.

Post-treatment and Re-treatment phases. Samples that survived the Puromycin
treatment phase were separated into two conditions: i) no Doxycycline and no
Puromycin; and ii) with Doxycycline and without Puromycin. To maintain the
same concentration of Doxycycline between passages, we neutralized 100 pL of
trypsinized solution with 1 mL of either 0.055 or 6.6 ng/mL Doxycycline to dilute
the solutions to 0.05 and 6 ng/mL, respectively. The media was replenished with the
appropriate induction levels after adherence. Expression was monitored by flow
cytometry during each passage. The number of passages for the samples required to
reach the re-treatment phase varied between two to nine. If the expression com-
pletely reset, the mean expression for the uninduced sample reached lower levels
than induced cells over a substantial amount of time (weeks), or the uninduced
sample mean expression levels did not change over a month, the samples were
retreated with the previously used Puromycin concentration. All lineages were
cryogenically preserved between each passage and after the re-treatment phase.
Additionally, uninduced mNF-PuroR or mPE-PuroR cells were measured by flow
cytometry at each passage as a positive control for a successful reset.

Genomic DNA extraction and sequencing analysis. Ancestral and evolved CHO
populations were centrifuged for 5 min at 300 x g, and the genomic DNA from the
cell pellet was either extracted with the DNeasy Blood & Tissue kit (QIAGEN,
69504) or immediately frozen at —80 Celsius for future extraction. For all samples
except mNF-PuroR replicates 1, 3, 4, 5, and 6, the entire sample was immediately
centrifuged after thawing from cryopreservation. Otherwise, one-tenth of the
sample was grown to confluence up to a 6-well plate, which was then lysed for
DNA extraction. Once purified, the genomic DNA acted as a template for PCR
amplification of the mNF-PuroR or mPF-PuroR circuits using primers listed in
Supplementary Table 4. Various sequencing primers were used for Sanger
sequencing such that the chromatographs covered the circuits with at least 2 reads.
The abl files were aligned and peaks visualized with the SnapGene software (from
GSL Biotech; available at snapgene.com). To assess for genetic heterogeneity in a
sequencing read with peak mixtures, CRISP-ID8 analyzed individual chromato-
graphs for variant subpopulation sequences (see Supplementary Methods).

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The raw growth curve data for Figs. 5c-g, 7e-g; DNA sequences for the plasmids shown
in Figs. 2a, 3a, Supplementary Figs. 4a, 6a; abl sequencing traces with associated template
DNA sequence files for Supplementary Figs. 23-26, 29-31; and flow cytometry data for
Figs. 2b-d, 3b-d, 4a-c, 7b-d, and associated Supplementary figures can be found at
https://openwetware.org/wiki/CHIP:Data. The remaining data supporting the findings in
the study are available from the corresponding author, G.B., upon reasonable request.
Source data are included as a separate source file.

Code availability
The MATLAB codes used to generate the computational results reported in this study are
available at: https://github.com/dacharle42/MDR.
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