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A connectivity-based parcellation 
improved functional representation 
of the human cerebellum
Yudan Ren1,2,3, Lei Guo1 & Christine Cong Guo   2

The cerebellum is traditionally well known for its role in motor learning and coordination. Recently, it 
is recognized that the function of the cerebellum is highly diverse and extends to non-motor domains, 
such as working memory, emotion and language. The diversity of the cerebellum can be appreciated 
by examining its extensive connectivity to the cerebral regions selective for both motor and cognitive 
functions. Importantly, the pattern of cerebro-cerebellar connectivity is specific and distinct to different 
cerebellar subregions. Therefore, to understand the cerebellum and the various functions it involves, 
it is essential to identify and differentiate its subdivisions. However, most studies are still referring the 
cerebellum as one brain structure or by its gross anatomical subdivisions, which does not necessarily 
reflect the functional mapping of the cerebellum. We here employed a data-driven method to generate 
a functional connectivity-based parcellation of the cerebellum. Our results demonstrated that 
functional connectivity-based atlas is superior to existing atlases in regards to cluster homogeneity, 
accuracy of functional connectivity representation and individual identification. Furthermore, our 
functional atlas improves statistical results of task fMRI analyses, as compared to the standard 
voxel-based approach and existing atlases. Our detailed functional parcellation provides a valuable 
tool for elucidating the functional diversity and connectivity of the cerebellum as well as its network 
relationships with the whole brain.

Generating an accurate map of the human brain has been a central focus for neuroscientists. Much efforts have 
been made to map the cerebral cortex, which uncovered a great degree of functional complexity and diversity1. 
The cerebellum, on the other hand, has been traditionally thought to be a uniform structure that primarily sup-
ports motor function2,3. A growing number of neuroimaging and clinical neuroscience studies, however, have 
convincingly demonstrated that the cerebellum comprises functional subdivisions that contribute to a large diver-
sity of functions beyond the motor domain4,5, such as language processing6–8, working memory8–10, executive 
function11,12 and emotion processing13,14. Recent naturalistic fMRI research also demonstrated that the cerebel-
lum is involved with dynamic perceptual and affective processes during film viewing15. The diverse functions of 
the cerebellum are further evident by its reciprocal connections with the cerebrum, which not only encompasses 
the motor cortex but also parietal and prefrontal cortices that support high-order cognitive processes6,11,16,17. 
Therefore, the function of the human cerebellum is likely to present a similar level of diversity and complexity as 
the cerebral cortex. To further elucidate this diverse function and connectivity, a detailed functional parcellation 
of the cerebellum is crucial.

Current atlases of the cerebellum are most based on its gross anatomy18,19. The cerebellum has distinctive 
anatomical subdivisions - the cerebellar lobules as defined by the cerebellar fissures20. Recent efforts to refine 
the cerebellar atlas mostly focused on automated methods to normalize and register the morphology of the cer-
ebellum and thus identify the cerebellar lobules18,19. However, morphological or structural boundary might not 
necessarily define functional specialization16,18,19. In fact, not much evidence suggests that each cerebellar lobule 
acts as a functionally homogenous entity: most fMRI studies in the cerebellum reported functional activations at 
a subset of a lobule or across two lobules15,21. Furthermore, there is little overlap between the cerebellar lobules 
and the functional networks within the cerebellum based on resting state connectivity16. Therefore, structural 
atlases might fall short for examining the function and connectivity of the cerebellum. To move the field forward, 
we need to develop an atlas that represents functional parcellation of the cerebellum.
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While several existing whole-brain functional parcellations encompass the cerebellum, the cerebellar parcels 
are relatively coarse and not necessarily optimized by the parcellation algorithms. To bridge this gap, we here 
generated a functional parcellation of the cerebellum based on resting state functional connectivity. Applying a 
data-driven method to the Human Connectome Project (HCP) resting state dataset, we parcellated the cerebel-
lum into functionally homogeneous clusters. We also systematically compared this functional parcellation with 
the widely used anatomical atlas – the Spatially Unbiased Atlas Template, and two cerebellar parcellations based 
on resting state functional connectivity16,22,23 - in terms of ROI homogeneity, accuracy of functional connectivity 
representation and individual identification. Finally, we tested whether this parcellation could improve statistical 
analyses of task fMRI dataset over voxel-based approaches, and further compared its performance of task fMRI 
studies with existing atlases.

Materials and Methods
Overview.  The overview of our analytical pipeline is illustrated in Fig. 1. First, we assigned two independent 
datasets as ‘parcellation’ and ‘validation’ group, and applied the parcellation method to these two groups sepa-
rately (Fig. 1a). To determine the appropriate number of clusters for the parcellation, we repeated the parcellation 
with a series of cluster numbers and evaluated how cluster number affects the reproducibility (Dice coefficient) 
and homogeneity (silhouette width) of the parcellation results (Fig. 1b). Furthermore, we compared our func-
tional atlases against previously established cerebellar atlases, namely the Spatially Unbiased Atlas Template, 
Shen’s functional parcellation and Buckner’s 17 networks, in regards to cluster homogeneity, accuracy of func-
tional connectivity representation and individual identification (Fig. 1c). Finally, we assessed whether our atlas 
can improve statistical analysis of task fMRI data over voxel-based approach (Fig. 1d).

Data acquisition and preprocessing.  Minimally preprocessed resting state fMRI datasets for 57 healthy 
subjects (age: 26–35, 34 females) are obtained from the Q3 Data Release of Human Connectome Project (HCP)24, 
and consist of 1,200 frames of multiband, gradient-echo planar images (TA = 14 min and 33 s; TR = 720 ms; 
TE = 33.1 ms; flip angle = 52°; field of view = 208 × 180 mm; matrix = 104 × 90; 72 slices; voxel dimen-
sions = 2 mm isotropic). Four resting state fMRI runs are acquired from each subject (left-right encoded and 
right-left encoded, two sessions of each), where all the runs in the first session are used as ‘parcellation’ group, and 
the ones in the second session served as ‘evaluation’ group. An independent un-preprocessed task fMRI datasets 
of seven tasks for 50 subjects (age: 22–35, 35 females) are obtained from the Q1 Data Release with the same acqui-
sition parameters as resting state fMRI data other than the TA, including working memory, gambling, motor, 
language, social cognitive, relational processing and emotion processing tasks.

The HCP minimal preprocessing pipeline of resting state fMRI data includes artifact removal, motion correc-
tion and registration to standard space. We then applied additional preprocessing steps to the resting state fMRI 
data, including band-pass filtering, which is important to remove frequencies not implicated in resting-state func-
tional connectivity25,26, and regression nuisance signals from the WM and CSF, which reflect non-neural fluctua-
tions27,28. Resting state fMRI data were then smoothed with 2 mm full width half maximum Gaussian kernel, band 
pass filtered (0.0085–0.15 HZ), and further regressed out nuisance covariates including WM, CSF and motion 
parameters using the Data Preprocessing Assistant for Resting-state fMRI software (DPARSF)29. For the task 
fMRI datasets, our preprocessing pipeline included slice timing correction, motion correction, co-registration, 
normalization, spatial smoothing with 2 mm full width half maximum Gaussian kernel, and global drift removal 
(high-pass filtering), implemented by FSL FEAT30. Full details of data acquisition and the minimal preprocessing 
pipeline can be found in previous publications from HCP31–34.

Figure 1.  The overview of our pipeline. The atlases illustrated in (a) contain 100 clusters.
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An independent dataset is served as ‘validation’ group to further validate and evaluate our cerebellar atlases35. 
The dataset consists of two sessions with 3 months interval acquired from 17 healthy controls. In each session, 
subjects underwent 8-min resting state scan with eye closed on a whole-body 3T Siemens Trio MRI scanner. The 
details of scan parameters and preprocessing steps can be referred to our previous study15,35. All the fMRI datasets 
have been manually inspected to ensure the full coverage of the cerebellum.

Functional parcellation of the cerebellum.  A two-step data-driven clustering method is adopted to 
generate cerebellar atlases, where the first step generates subject specific similarity matrices and the second step 
finalizes the clustering at the group level36–38. In this study, we first applied this clustering method to the ‘parcella-
tion’ group, generating cerebellar atlases with 10, 20, 30, 50, 75, 100, 150, 200, 250, 300 clusters for further param-
eter selection and evaluation. To further validate these results, we then generated atlases with a subset of cluster 
numbers (10, 100 and 300) for the ‘validation’ group to compare with ‘parcellation’ group.

To define subject-specific similarity matrix W, the similarity between the functional connectivity of each pair 
of voxels vi and vj within cerebellum is calculated as element wij of W (Eq. 1).
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The dij represents the distance between voxel vi and vj, and the radius ε here is chosen to include the 26 nearest 
neighbors of a voxel. This three-dimension spatial constraint ensures the resulting clusters in atlas contain con-
tiguous, spatially coherent voxels rather than spatially distributed voxels39,40. The similarity between voxels, s(vi, 
vj), is measured by Pearson’s correlation coefficient between time series of voxel vi and vj (rt)38. A threshold of 0.5 
is applied to exclude negative and weak correlations. This rt metric measures the temporal homogeneity within 
a cluster.

Group level clustering is accomplished by averaging the subject-specific similarity matrices, and the resulting 
matrix is clustered using the normalized cut spectral clustering (NCUT) algorithm (called group mean clustering 
method)36–38. An adjacency matrix A is constructed from the group clustering results, where the elements aij 
of A equals one if both voxel vi and voxel vj are contained in the same cluster and zero otherwise38. The NCUT 
algorithm shows superiority to other algorithms in terms of robustness to outliers41,42, favorable feasibility43, 
ability to incorporate constrains39,40. The details of NCUT algorithm have been described in previous studies37,38. 
The parcellation algorithm can be implemented by a publicly available toolbox pyClusterROI (http://ccraddock.
github.io/cluster_roi/)37.

Parameter selection.  The clustering method requires the number of clusters to be pre-specified. Therefore, 
to determine the optimal number of clusters, we generated cerebellar atlases using a serial of cluster numbers 
and compared them in terms of reproducibility and cluster homogeneity. Two commonly used strategies are 
employed for this comparison: leave-one-out cross-validation (LOOCV) and Silhouette width44,45.

The LOOCV procedure selects one subject for testing and all remaining subjects for training. The procedure 
iterates till every subject is selected once and only once. In each iteration, clustering is performed on the test-
ing subject (mth) and the training subjects separately. Then Dice’s coefficient was used to measure the similarity 
between the adjacency matrix generated from this mth testing subject (Am) and the one generated from the train-
ing group (A−m, Eq. 2)46. Dice’s coefficient can range from zero to one, where zero corresponds to no similarity 
and one represents maximum similarity46. Dice’s coefficients derived from all iterations were then averaged to 
derive the reproducibility score of one atlas.
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Silhouette width is used to quantify the functional homogeneity of clusters. The average similarity, ak, between 
every pair of voxels contained in the cluster ck of atlas C ( ∪= =C ck k1

K ), is defined as Eq. 3:
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where nk refers to the number of voxels assigned to cluster ck and s(vi, vj) corresponds to the measurement of 
similarity between ith voxel and jth voxel — either the temporal similarity metric (rt) used for our parcellation, or a 
spatial similarity metric (rs) measured by Pearson’s correlation coefficient between functional connectivity maps 
generated by seed voxel ith and jth 47. Then, the average similarity between in-cluster and out-of-cluster voxels, bk, 
is
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where N is the total number of voxels. The Silhouette width for atlas C is then defined as Eq. 5:
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Silhouette width can range from −∞ to ∞, where negative values represent improper parcellation and values 
near one or higher represent good parcellation. For each atlas, we calculated Silhouette width and Dice’s coeffi-
cient for each subject in the ‘parcellation’ group, and then averaged them across all subjects.

Comparison to existing cerebellar atlases.  We then compared the performance of our atlas against 
existing atlases or parcellation of the cerebellum, namely, a widely used anatomical atlas - the Spatially Unbiased 
Atlas Template, a whole-brain functional connectivity-based parcellation including cerebellum coverage 
- Shen’s functional parcellation and a gross cerebellar parcellation based on the cerebro-cerebellar connectiv-
ity - the Buckner’s 17 networks. Because the Buckner’s 17 networks atlas is coarse and does not separate the 
two hemispheres, we generated a Buckner’s 34 networks atlas by splitting each region at x = 0 into one on the 
left hemisphere and one on the right. The atlases are compared in three aspects: cluster homogeneity, accuracy 
of functional connectivity representation and individual identification. To avoid bias of evaluating the parcel-
lation on the same dataset from which it was derived, the comparisons on cluster homogeneity, accuracy of 
functional connectivity representation and individual identification analyses are performed on the ‘validation’ 
group, and further on ‘evaluation’ group. As the ‘evaluation’ group generates consistent results as ‘validation’ 
group (Supplementary Figs 1–3, Supplementary Table 1), we here only show the comparison results from ‘val-
idation’ group in the main text. In addition, we controlled for the influence of cluster numbers by generating 
additional atlases using our method with the same cluster numbers as these four atlases. The differences between 
our functional atlas and existing atlas were assessed by paired t-tests on each evaluation metric across all subjects. 
Bonferroni correction was applied in cases of multiple comparisons.

Cluster homogeneity.  Cluster homogeneity is measured as the average rt
48 and rs

47 between every pair of vox-
els within a cluster. While rt indicates temporal homogeneity within a cluster, rs reveals spatial homogeneity of 
functional connectivity maps. For each atlas and each subject, we calculated average rt and rs across voxels within 
each cluster, and then averaged these values across clusters. For each atlas, the values were then averaged across 
all subjects.

Accuracy of functional connectivity representation.  We first identified three seeds within the cerebellum by 
applying temporal concatenation group ICA to the resting state fMRI data in ‘parcellation’ group, as implemented 
by GIFT Matlab software49, and then used these seeds to calculate functional connectivity maps in the ‘validation’ 
group. This approach avoids potential bias in calculating functional connectivity maps on the same dataset from 
which the seeds are derived. The seed time series is derived by calculating the average BOLD time series across 
all voxels within the seed.

We then examined how well atlases-based functional connectivity maps match with voxel-wise functional 
connectivity maps, which have the highest spatial resolution and are regarded as ground truth. The voxel-wise 
functional connectivity maps are derived by correlating the seed time series with the time series of every voxel 
within cerebellum, as described previously50. The atlas-based functional connectivity maps are derived by corre-
lating the seed time series with the time series of each cluster in the atlas – the average BOLD time series across 
all voxels within the cluster. The correlation coefficients of each cluster are then assigned to all voxels within the 
cluster so that the atlas-based functional connectivity maps have the same data dimension as the voxel-wise maps. 
The similarity between the atlas-based and the voxel-wise functional connectivity maps is measured by Pearson’s 
correlation coefficient and then averaged across subjects for comparison.

Individual identification.  Here, we employed a functional connectivity-based identification method to assess the 
accuracy of individual identification using the cerebellar atlases22. Functional connectivity matrices were derived 
either between pairs of clusters within the cerebellum (cerebellar functional connectivity), or between cerebellar 
and cerebral clusters (cerebro-cerebellar functional connectivity) – cerebral clusters are the 200 ROIs based on 
the Craddock 2012 parcellation37.

For each cerebellar atlas, functional connectivity matrices were derived from the first session and second 
session of ‘validation’ group, respectively. Individual identification is then conducted between the two sessions, 
where one is used as the ‘target’ group and the other as the ‘database’ group. In each iteration, one subject’s func-
tional connectivity matrix (either cerebellar or cerebro-cerebellar functional connectivity) from the target set 
is selected and compared against each of functional connectivity matrices in the database set. The similarity 
between each pair of matrices is defined as the Pearson correlation coefficient between their functional connec-
tivity values. The matrix with maximum similarity in the database set is then identified as the predicted identity. 
If this predicted identity matches the true identity, the iteration is assigned a score of 1, and 0 if it does not. 
Each subject in target set is compared against the database set once and only once. The identification accuracy 
is defined as the percentage of iterations where the identity is correctly predicted out of the total number of 
iterations. For each atlas, we tested the identification using either the cerebellar or cerebro-cerebellar functional 
connectivity separately.

Task fMRI analysis.  We then tested the performance of our atlas in detecting functional activations dur-
ing task fMRI1. To save computation, we only selected our 100-cluster atlas for this analysis. Each of seven task 
fMRI signals are first extracted and averaged for each cluster to derive cluster-level task fMRI data. Then, we 
conducted General Linear Model (GLM) analyses on both voxel-level and cluster-level task fMRI data using FSL 
toolbox30. FSL’s FILM algorithm is used to compute first level task fMRI statistics, and then FSL’s FLAME algo-
rithm (FLAME1) is adopted to compute group level task fMRI z statistics. The HCP task fMRI z statistics maps for 
86 contrasts are then derived from cluster-level and voxel-level data. For each voxel-level z statistics map, z values 
of all the voxels within each cluster are averaged to generate average voxel-wise z statistics. Finally, to verify if our 
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atlas can improve signal-to-noise ratio (SNR) and statistical power in functional activation analyses, we compared 
the average voxel-wise z statistics against the parcellated z statistics (100 clusters × 86 task z statistics).

Furthermore, we then compared the performance of our atlas in detecting functional activations during task 
fMRI against existing cerebellar atlases, including the Spatially Unbiased Atlas Template (28 parcels), Shen’s func-
tional parcellation (46 parcels), Buckner’s 17 networks (17 parcels) and Buckner’s 34 networks (34 parcels) atlas. 
The same procedure is applied to cluster-level task fMRI data to derive z statistics maps for 86 contrasts for all 
cerebellar atlases. We then examined how well atlases-based z statistics maps match with voxel-wise maps, which 
have the highest spatial resolution and are regarded as ground truth. Specifically, for each contrast and each atlas, 
the z values of each cluster are assigned to all voxels within the cluster so that the atlas-based z statistics maps 
have the same data dimension as the voxel-wise maps. The similarity between the atlas-based and the voxel-wise z 
statistic maps is measured by Pearson’s correlation coefficient. Finally, the differences between our functional atlas 
and existing atlas were assessed by paired t-tests on the similarity between atlas-based and voxel-wise z statistics 
maps across all the 86 contrasts.

Ethical approval.  All procedures performed in studies involving human participants were in accordance 
with the ethical standards stated in the 1964 Helsinki declaration and approved by the Washington University 
institutional review board.

Informed consent.  Written informed consent was obtained from all individual participants included in the 
study.

Results
Functional atlases of the cerebellum.  We first parcellated the whole cerebellum into functionally and 
spatially coherent regions, using the ‘parcellation’ and ‘validation’ groups separately. For further parameter selec-
tion, we derived atlases with different cluster numbers.

The parcellations based on functional connectivity are robust and consistent across the two groups, shar-
ing similar shape, size and location (Fig. 2). In addition, the resultant ROIs show striking hemispheric symme-
try, where most of lobules have qualitatively very similar clusters in both hemispheres. The majority of clusters 
in our atlases cover a subregion of a lobule or across lobules, consistent with a previous parcellation based on 
cerebro-cerebellar functional connectivity - Buckner’s 17 network16.

Clusters in the 10-cluster atlas are large and coarse, where voxels with distinct functions might be clustered 
into the same clusters (Fig. 2 upper panel). On the other hand, clusters in the 300-cluster atlas are small and scat-
tered (Fig. 2 lower panel). The 100 cluster atlas appears to be a good compromise between these two extremes, 
whose clusters are of moderate shape and qualitatively symmetric between the two hemispheres (Fig. 2 middle 
panel). We then performed systematic and quantitative comparisons to select the optimal cluster number.

Parameter selection.  We first evaluated how cluster number influences the reproducibility of parcellation, 
as measured by Dice’s coefficient46. The value range of Dice’s coefficients in our results is comparable to previous 
parcellation study of the cerebral cortex using functional connectivity, supporting of our application in the cer-
ebellum37 (Fig. 3a). In general, the Dice’s coefficient decreases when the number of clusters increases. This trend 
likely reflects increased spatial variability as clusters become smaller and sparser. This decrease in Dice’s coeffi-
cients slows down after cluster number reaches 100 (Fig. 3a).

We then evaluated the effect of cluster number on the functional homogeneity of clusters, as quantified by 
silhouette width. As expected, both rt and rs silhouette widths increase with the number of clusters (Fig. 3b), 

Figure 2.  Cerebellar atlases for (a) ‘parcellation’ and (b) ‘validation’ groups containing 10, 100 and 300 clusters. 
Color codes are matched between the two groups as much as possible.
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reflecting improved homogeneity with smaller cluster size. Again, this increasing trend shows down around clus-
ter number of 100 and atlases with 100 or more clusters show good silhouette widths (Fig. 3).

Comparison to existing cerebellar atlases.  To further evaluate our functional atlases, we compared 
them against four existing cerebellar atlases: the Spatially Unbiased Atlas Template (28 parcels), Shen’s functional 
parcellation (46 parcels), Buckner’s 17 networks (17 parcels) and Buckner’s 34 networks (34 parcels) atlas, in 
terms of cluster homogeneity, accuracy of functional connectivity representation and individual identification. To 
avoid further potential biases introduced by different cluster numbers, we conducted these comparisons between 
existing atlases and our functional atlases with the same cluster numbers. Specifically, the statistical comparisons 
between our functional atlas and existing atlas were conducted by paired t-tests on each evaluation metric across 
all subjects. Bonferroni correction was applied in cases of multiple comparisons.

Cluster homogeneity.  For each atlas, the cluster homogeneity is measured by the average temporal (rt) and spa-
tial (rs) correlation between pairs of voxels within each cluster; these values are then averaged across all clusters 
for each subject in the ‘validation’ group (Fig. 4). Our functional atlases show significantly higher temporal and 
spatial homogeneity than Buckner’s 17 networks (paired t-test, Bonferroni-corrected P < 5 × 10−4), Buckner’s 
34 networks (paired t-test, Bonferroni-corrected P < 5 × 10−4), the Spatially Unbiased Atlas Template (paired 
t-test, Bonferroni-corrected P < 5 × 10−3) and Shen’s functional parcellation (paired t-test, Bonferroni-corrected 
P < 5 × 10−3), when the numbers of cluster are equal (Fig. 4). In addition, as both rt and rs homogeneity increase 
with the number of clusters, functional atlases using 100 or more clusters offer further improved cluster 
homogeneity.

Figure 3.  Comparison of atlases of different cluster numbers in: (a) reproducibility as measured by Dice’s 
coefficient, (b) functional homogeneity as measured by rt and rs silhouette widths. Symbols represent the mean 
and error bars indicate the standard deviation.

Figure 4.  Comparison of cluster homogeneity between our atlases (gray symbol) and four existing cerebellar 
atlases (Buckner’s 17 networks atlas - light blue, Buckner’s 34 networks atlas - dark blue, Spatial: the Spatially 
Unbiased Atlas Template - red, Shen: Shen’s functional parcellation - green). Symbols represent the mean and 
error bars indicate the standard deviation across subjects.
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Accuracy of functional connectivity representation.  We next examined how well the atlases could be used to 
identify and represent functional connectivity networks. We selected three seeds within the cerebellum based 
on group ICA results: two seeds are located in Crus I/II and one in HVIII/HIX regions. The accuracy of func-
tional connectivity representation is quantified by its similarity to the voxel-wise functional connectivity maps. As 
expected, as the number of clusters increases, functional connectivity maps based on our atlases are more accurate 
in representing the voxel-wise functional connectivity maps (Fig. 5a). Across all three seed-based networks, our 
functional atlases show significantly higher representation accuracy than the Buckner’s 17 networks (paired t-test, 
Bonferroni-corrected P < 0.05), Buckner’s 34 networks atlas (paired t-test, Bonferroni-corrected P < 5 × 10−8) 
and Shen’s functional parcellation (paired t-test, Bonferroni-corrected P < 5 × 10−9), when numbers of clus-
ter are equal. Our 28-cluster atlas has significantly higher representation accuracy than the Spatially Unbiased 
Atlas Template for functional connectivity map based on seed1 and seed2 (paired t-test, Bonferroni-corrected 
P < 5 × 10−8) (Fig. 5a). The representation accuracy is further improved when using higher cluster numbers such 
as 100 (Fig. 5b).

Individual identification.  Functional connectivity of the cerebral cortex has been recently shown to be unique 
to individual and can be used for individual identification, using a fingerprint identification analysis22. We here 
examined whether functional connectivity of the cerebellum, derived with cerebellar ROI atlases, also manifest 
unique patterns between individuals. We conducted fingerprint identification analyses using either functional 
connectivity within the cerebellum alone (cerebellar functional connectivity, Fig. 6a) or functional connectivity 
between the cerebellar and cerebral cortex (cerebro-cerebellar functional connectivity, Fig. 6b).

Both types of functional connectivity yield high individual identification accuracy when cluster number is 
greater than 100 (Fig. 6). Identification results based on the cerebellar functional connectivity are poor at low 
cluster number (Fig. 6a), suggesting parcellation is insufficient at this resolution. Furthermore, for both cerebellar 
and cerebro-cerebellar functional connectivity-based identification analyses, our functional atlases mostly show 
higher accuracy than Shen’s functional parcellation, the Buckner’s networks and the Spatially Unbiased Atlas 
Template with the same cluster numbers (Fig. 6c–f). Notably, the improvement over the Spatially Unbiased Atlas 
Template is especially substantial (Table 1, bold), further supporting that morphology-based atlas might fall short 
at mapping function or connectivity of the cerebellum.

Task fMRI analysis.  Finally, we evaluated how well our cerebellar atlas could support statistical analyses of 
task fMRI activations. We performed this evaluation on the task fMRI datasets from HCP, which contain seven 
tasks (working memory, gambling, motor, language, social cognitive, relational processing and emotion pro-
cessing) and 86 task contrasts (47 unique, 39 sign reversed)33. Comparing with voxel-wise analyses, functional 
activations based on our 100-cluster atlas reveal similar spatial patterns (Fig. 7a,b, Gambling punish contrast as an 
example), suggesting the average time series of each cluster can effectively represent all the voxels’ time series. We 
then correlated the average voxel-wise z statistics against the parcellated z statistics for all 86 task contrasts (100 
clusters × 86 task z statistics) and found parcellated time series improved statistics over voxel-wise time series 
(Fig. 7c). Therefore, our results demonstrated that analyses based on parcellations, by averaging fMRI time series 
within the parcels, can improve the signal-to-noise ratio and increase z statistics for task fMRI studies, consistent 

Figure 5.  Comparison of (a) accuracy of functional connectivity representation for our atlases (gray symbol) 
and other four commonly-used atlases (Buckner’s 17 networks atlas - light blue, Buckner’s 34 networks atlas 
- dark blue, Spatial: the Spatially Unbiased Atlas Template - red, Shen: Shen’s functional parcellation - green). 
Symbols represent the mean and error bars indicate the standard deviation; (b) functional connectivity maps for 
seed1: based on voxel-wise data, our 100 cluster atlas, Buckner’s 17 networks atlas, Buckner’s 34 networks atlas, 
the Spatially Unbiased Atlas Template and Shen’s functional parcellation. Colors represent z-scores.
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with the report on parcellation of the cerebral cortex1. Thus, this task fMRI analysis further reveals that our func-
tional atlas contains functionally homogenous clusters.

We next compared our functional atlas against four existing cerebellar atlases in terms of task fMRI analysis. 
The accuracy of z statistics maps is quantified by its similarity to the voxel-wise z statistics maps. Specifically, our 
functional atlases show significantly higher accuracy than the Buckner’s 17 networks (paired t-test, P < 5 × 10−17), 
Buckner’s 34 networks atlas (paired t-test, P < 5 × 10−33), and the Spatially Unbiased Atlas Template (paired t-test, 
P < 5 × 10−5), when numbers of cluster are equal (Fig. 8a). With 46 clusters, our atlas showed comparable per-
formance with Shen’s functional parcellation (Fig. 8a). In addition, comparing with existing atlases, functional 
activations based on our functional atlases reveal relatively similar spatial patterns with voxel-wise z statistics 
maps (Figs 7a and 8b, Gambling punish contrast as an example), suggesting the superiority of our cerebellar par-
cellation in detecting functional activations for task fMRI.

Figure 6.  Comparison of identification accuracy across two sessions in ‘validation’ group for our (gray symbol) 
and four existing atlases (Buckner’s 17 networks atlas - light blue, Buckner’s 34 networks atlas - dark blue, 
Spatial: the Spatially Unbiased Atlas Template - red, Shen: Shen’s functional parcellation - green) using (a) 
cerebellar functional connectivity or (b) cerebro-cerebellar functional connectivity for individual identification 
analyses. Symbols (circle or triangle) indicate when the first session or second session was used as the target set 
(with the other group serving as the database set).

Cerebellar Cerebro-cerebellar

(Session 1) (Session 2) (Session 1) (Session 2)

Buckner 17 0.4706 0.4706 0.6471 0.7059

Functional (17) 0.5294 0.5294 0.7059 0.7647

Improvement 5.88% 5.88% 5.88% 5.88%

Buckner 34 0.6471 0.7647 0.7059 0.7647

Functional (34) 0.7059 0.7647 0.7647 0.8235

Improvement 5.88% 0% 5.88% 5.88%

Shen 0.7059 0.8235 0.7647 0.8235

Functional (46) 0.7647 0.8235 0.8235 0.8824

Improvement 5.88% 0% 5.88% 5.88%

Spatial 0.5882 0.6471 0.6471 0.7059

Functional (28) 0.7059 0.7059 0.7059 0.8235

Improvement 11.77% 5.88% 5.88% 11.77%

Table 1.  Comparison of individual identification accuracy between existing atlases and our functional atlases 
with the same cluster number using either cerebellar connectivity or cerebro-cerebellar connectivity. The data 
group used for the target set is indicated in bracket. The most substantial improvement is highlighted in bold.
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Discussion
Neuroscientists are increasingly intrigued by the functional complexity and diversity of the cerebellum. 
Traditionally thought as a structure dedicated to motor function, the cerebellum is now known to be activated 
by a variety of non-motor tasks. To probe the diverse non-motor functions of cerebellum, it is essential to iden-
tify its functional subdivisions. While previous cerebellar atlases mostly parcellated the cerebellum based on its 
exceptionally regular morphology, assuming a direct mapping between morphology and function18,19, we here 
suggest that a connectivity-based parcellation could substantially improve functional representation of the cere-
bellum. Building upon the earlier works on functional connectivity networks in the cerebellum16, this atlas pro-
vides a more detailed parcellation of the cerebellar subdivisions that are spatially and functionally homogenous. 
Quantitative comparisons demonstrated our atlas is superior to existing cerebellar atlases in cluster homogeneity, 
accuracy of functional connectivity representation and individual identification. In addition, the value ranges of 
Dice coefficient, silhouette width, and other metrics are comparable to previous parcellation study of the cerebral 
cortex using functional connectivity, further supporting our application in the cerebellum37.

In our study, we employed a two-step clustering method to generate cerebellar parcellation, including generat-
ing subject specific similarity matrices and finalizing the clustering at the group level37. In our study, we generated 
the subject specific similarity matrices using rt metric to ensure the temporal homogeneity within a cluster. While 
rs metric was not used in the initial clustering, it still shows similar performance as rt in assessing cluster homo-
geneity (Figs 3b and 4), suggesting that atlases generated via rt similarity metric could support both temporal and 
spatial homogeneity37. We found that rs silhouette width has larger variability across subjects (Fig. 3b), consistent 
with previous study37. Furthermore, there are two available methods for group level clustering - group mean and 
two-level clustering methods. Although the two-level clustering might perform slightly better than the group 
mean clustering, it requires a greater computational expense37. As our study used a relatively large datasets of 
114 resting state fMRI datasets each with 1200 volumes, we chose the group mean clustering method to improve 
computational efficiency.

A key goal of parcellation scheme is to reduce the total number of parcels to improve the computational 
efficiency over voxel-wise calculation. However, as the cluster number decreases, the clusters become larger, and 
unavoidably less representative of the individual voxels. Therefore, a suitable parcellation solution has to balance 

Figure 7.  (a) Example voxel-wise and (b) parcellated z statistics maps derived from Gambling punish contrast. 
(c) The correlation between the averaged voxel-wise and parcellated z statistics (Points are 100 clusters × 86 
contrasts).

Figure 8.  (a) Comparison of similarity of z statistics maps for our atlases (gray symbol) and other four 
commonly-used atlases (Buckner’s 17 networks atlas - light blue, Buckner’s 34 networks atlas - dark blue, 
Spatial: the Spatially Unbiased Atlas Template - red, Shen: Shen’s functional parcellation - green). Symbols 
represent the mean and error bars indicate the standard deviation. (b) Example atlas-based z statistics maps 
derived from Gambling punish contrast.
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between computational efficiency and spatial resolution. In our results, atlases with 100 or less clusters have rel-
atively high Dice coefficients but also high standard deviation compared to atlases with more clusters (Fig. 3a). 
On the other hand, both rt and rs silhouette width metrics are poor for atlases with less clusters and increase 
with cluster number (Fig. 3b). Furthermore, results of cluster homogeneity, accuracy of functional connectiv-
ity representation and individual identification based on our atlases are poor at cluster number lower than 100 
(Figs 4–6), suggesting insufficient parcellation at this resolution. Overall, our study provides a multi-resolution 
set of atlases with robust performance in functional connectivity-based analyses (100–300). However, we suggest 
that researchers should choose the atlas resolution to use according to the specific research questions: high cluster 
number could be more useful when fine scale representation and homogeneity is desired, and lower cluster num-
ber could be used when computational efficiency is desired without substantial loss of information. Nonetheless, 
most existing parcellations with less than 50 regions might be suboptimal for representing the functional diversity 
of the cerebellum.

The understanding of the cerebellum function has been considerably advanced by functional neuroim-
aging studies of language processing, working memory, executive function and emotion processing func-
tions6,8,9,11,13,15,21,51. Interestingly, these studies often revealed functional activations covering a subportion of a 
lobule or sometimes across two lobules. In addition, the cerebellar components of functional connectivity net-
works do not appear to follow the morphological boundaries of the cerebellum16. This disconnection between 
function and morphology, however, has not been well recognized and addressed. Functional neuroimaging stud-
ies still reply on the gross anatomical nomenclature to define activations in the cerebellum and recent efforts to 
improve cerebellar atlas mostly focus on automated identification of the anatomical boundaries of cerebellar 
lobules18,19. Furthermore, our previous clinical study revealed that cerebellar subregions targeted by Alzheimer’s 
disease and behavioural variant frontotemporal dementia (bvFTD) are all within subportion of lobule, suggesting 
the necessity of functional parcellation of cerebellum of clinical study52. Thus, our study provided solid evidence 
that anatomical atlas does not well represent the function and connectivity of the cerebellum, and support the 
connectivity-based parcellation in future work (Figs 4–6). In addition, consistent with functional neuroimaging 
studies of cerebellum function, our functional parcellation does not fully match the morphology of cerebellum. 
For example, clusters in our 100-cluster atlas often cover across two lobules, while clusters in our 300-cluster atlas 
often cover a subportion of a lobule, further suggesting the disconnection between the function and morphology 
of cerebellum.

In addition to anatomical atlas of cerebellum, our functional parcellation also shows superiority to exist-
ing functional parcellations in regards to cluster homogeneity and functional connectivity-based analyses. 
Our data-driven method cooperates both spatial constraint and functional connectivity information together 
to generate functional cerebellar atlas. While the spatial constraint appears to dictate much of the size of the 
ROIs, functional information refines the boundaries of ROIs. Note that a key point is that our clusters are spa-
tially coherent and thus are different from those spatial distributed local network nodes or large-scale networks, 
such as Buckner’s network16. However, Buckner’s study used cerebellar-cortical functional connectivity as met-
ric to investigate the organization of cerebrocerebellar circuits and delineate the functional boundaries of the 
cerebellar-cortical network, resulting in gross networks in the parcellation and worse performance than our atlas 
in regards to cluster homogeneity and functional connectivity-based analyses. On the other hand, compared 
to Shen’s whole brain functional parcellation23, our method only focuses on whole cerebellar signals, where the 
similarity matrix is calculated within cerebellum, thus resulting in more functionally homogenous clusters within 
cerebellum. However, as Shen’s work aimed to identify the whole-brain parcellation, their weight matrix was cal-
culated among the whole-brain. Thus, the cerebellar clusters in their parcellation were determined and affected 
by the connections between cerebellum and cerebral cortex, probably resulting in the superiority of our cerebellar 
parcellation than this subpart of Shen’s whole brain parcellation in the comparison.

Several caveats of our results should be noted. First, the individual identification using cerebro-cerebellar 
functional connectivity outperforms that using cerebellar connectivity, suggesting that cerebro-cerebellar func-
tional connectivity could provide additional information about the function of individual brains. While our 
atlas is still superior in the specific goal of this current study, to characterize functionally homogeneous and 
spatially coherent clusters in the cerebellum, rather than to delineate the cerebellar-cortical network as in the 
Buckner study16, future work could further extend to incorporate cerebro-cerebellar connectivity into the par-
cellation. Second, our preprocessing pipeline includes several steps, which could introduce spatial smoothing, 
including motion correction, normalization to standard space and spatial smoothing filter. While these steps 
should improve the correspondence of cerebellum regions across subjects, smoothing could induce correlation 
and impact the clustering results. Nonetheless, to minimize the impact of smoothing for the cerebellum, a region 
with high neural density, we used only 2 mm FWHM Gaussian kernel in the spatial smoothing step. Future 
work could investigate the impact of preprocessing on clustering results. Third, recent work identified functional 
whole-brain parcellation constrained by AAL boundaries53, where each resulting cluster can be linked with an 
anatomical annotation from the AAL template. In the cerebellum, however, there is disconnection between func-
tion and morphology of cerebellum, as discussed above. Thus, we applied our functional parcellation without the 
constraint and potential bias by the anatomical boundaries. Further work is needed to determine the relationship 
between functional and anatomical divisions. Fourth, recent neuroimaging studies have demonstrated age and 
gender effects on brain connectivity. Thus, age and gender would potentially affect the functional connectivity in 
the cerebellum and functional connectivity-based parcellation54,55, which is a promising direction to investigate 
in the future.

In conclusion, the data-driven method based on normalized cut spectral clustering (NCUT) algorithm suc-
cessfully parcellated cerebellum into spatially and functionally homogeneous clusters using resting state func-
tional connectivity. While previous studies have defined functional connectivity-based cerebellar network or 
whole brain parcellation including cerebellum coverage16,22,23, our parcellation reveal superior performance in 
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cluster homogeneity, accuracy of functional connectivity representation and individual identification analyses. 
Hence our functional parcellation provides a valuable tool for dimensionality reduction in functional connectiv-
ity and activation analyses in basic and clinical research. While we controlled for potential biases introduced by 
cluster number, the optimal cluster number for specific analysis depends on the specific research questions. In 
addition, the current parcellation only incorporated resting state functional connectivity measures, and it could 
be further refined by including multimodal images of cerebellum in the future.

Data Availability
The resting state and task fMRI datasets are available from HCP (https://www.humanconnectome.org/study/
hcp-young-adult). The functional atlases with different cluster numbers are available on our website (www.neu-
roguo.com/resources/).
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