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ABSTRACT The objective of this study was to elucidate the genetic and evolution-
ary relatedness of blaCMY-2- and blaSHV-12-carrying IncI1-I� plasmids. Phylogenomic
analysis based on core genome alignments and gene presence/absence was per-
formed for different IncI1-I� sequence types (STs). Most IncI1-I�/ST12 and IncI1-I�/
ST231 plasmids had near-identical core genomes. The data suggest that widely oc-
curring blaCMY-2-carrying IncI1-I�/ST12 plasmids originate from a common ancestor.
In contrast, blaSHV-12 was inserted independently into different IncI1-I�/ST231-related
plasmids.
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Plasmid-encoded extended-spectrum and AmpC �-lactamases (ESBL/pAmpC) are
the dominant causes of resistance to extended-spectrum cephalosporins in Enter-

obacteriaceae (1–3). Poultry and poultry products have been considered reservoirs of
ESBL/pAmpC-producing Salmonella enterica and Escherichia coli (2–9). ESBL/pAmpC-
carrying plasmids can be classified in different incompatibility groups, including IncI1-I�
(10, 11). IncI1-I� plasmids harboring ESBL/pAmpC are dominant in S. enterica and E. coli
originating from poultry in multiple countries (4, 12–17). Using plasmid multilocus
sequence typing (pMLST) (18, 19), specific ESBL/pAmpC variants were found to be
associated with particular IncI1-I� STs (12, 13, 16, 17). blaCMY-2 carriage has been
associated with IncI1-I�/ST12 in isolates from poultry (12–14, 16, 17, 20). In contrast,
blaSHV-12 has been described in multiple IncI1/STs in isolates originating from
humans, animals (mainly poultry), and the environment (20–23). However, a reso-
lution higher than the nucleotide sequences of the five housekeeping genes in the
pMLST scheme is required to identify the evolutionary relatedness of plasmids
belonging to the same ST (4, 17, 24). The objective of the present study was to
elucidate the genetic and evolutionary relatedness of blaCMY-2- and blaSHV-12-
carrying IncI1-I� plasmids within the same pMLSTs using whole-genome sequence
(WGS)-based phylogenetic analysis.

Sequences of IncI1-I� plasmids originating from previous characterization of
ESBL/pAmpC-carrying strains from Colombian baseline studies in poultry were
selected. All sequences of blaCMY-2-carrying (n � 20) and blaSHV-12-carrying (n � 4)
IncI1-I� plasmids from Salmonella (17) and all available blaCMY-2-carrying (n � 15)
and blaSHV-12-carrying IncI1-I� plasmids (n � 4) from E. coli (16) were included.
Plasmid sequences from Salmonella were characterized using Illumina WGS and
electroporation of reference plasmids as previously described (17). For E. coli,
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previously transformed E. coli DH10B cells harboring blaCMY-2 and blaSHV-12 on
IncI1-I� plasmids were subjected to Illumina WGS for the present study (16).
Chromosomal contigs were detected and removed using BLAST as previously
described for Salmonella (17). In addition, the allele sequences of IncI1-I� STs
(https://pubmlst.org/plasmid/) encountered more than once in the selection of
plasmids described above were concatenated as separate sequences for each allele
in a single FASTA file and used as a query for the nucleotide database using BLAST
(last accessed 29 May 2018). E. coli-derived plasmid sequences of two publications
were used to include additional IncI1-I�/ST12 plasmids (n � 12) from Europe (see
Table S1C in the supplemental material) (12, 13). Overall, ESBL/pAmpC gene
variants and plasmids were characterized in silico with ResFinder 2.1 (25), Plasmid-
Finder 1.3, and pMLST 1.4 (19). A summary of all included plasmids is given in Table
1. The plasmid STs that were found repeatedly in Salmonella and E. coli from
Colombian poultry were IncI1-I�/ST12 and ST231. From GenBank, 28 plasmids
belonged to IncI1-I�/ST12 or ST12 single-locus variants (SLVs), and 5 plasmids
belonged to IncI1-I�/ST231 or ST231 SLVs. Plasmids from GenBank originated from
different S. enterica serovars and E. coli. Information regarding the source, isolation
year, and in silico characterization of all plasmids (19, 25) and strains (26, 27) is
shown in Table S1. The genome sequences of transformed E. coli DH10B strains
harboring plasmids from Salmonella and E. coli from Colombia, which were used for
reference, were submitted to the European Nucleotide Archive (ENA) under project
numbers PRJEB23610 and PRJEB29690, respectively.

Phylogenomic reconstruction was based on core plasmid genome alignments
using Parsnp v1.2 (28). Phylogenetic maximum-likelihood (midpoint-rooted) trees
were constructed using FastTree2 v2.1.8 (29). Gene presence/absence maximum-
likelihood trees were built by annotating the plasmid genomes using Prokka v.1.13
(30) followed by orthology predictions using Roary (31). The resulting gene pres-
ence/absence data were encoded as binary values, and trees were constructed
using RAxML v.8.2.4 (32) with the BINCAT model. Genome annotations were used to
describe the genetic environment of bla genes. Visualization of the trees was made
with FigTree (http://tree.bio.ed.ac.uk/software/figtree/). The core genome of the
resulting tree based on IncI1-I�/ST12-related plasmids was 40,056 bp (�40% of the
plasmid genome) (see Fig. S1 in the supplemental material). The sublineage of IncI1-
I�/ST12 and ST12 SLVs is shown in Fig. 1A. Most IncI1-I�/ST12 plasmids carried blaCMY-2

and originated from samples from poultry (Fig. 1A). Although frequently reported
(12–14, 24, 33, 34), detailed genomic relatedness of blaCMY-2-carrying IncI1-I�/ST12

TABLE 1 Inventory of sequenced IncI1-I� plasmids from Colombian poultry and previous
reports used for detailed phylogenetic comparisons and analysis of the genetic
environment

ESBL/pAmpC

n and pMLST of sequenced IncI1-I� plasmids from:

Colombian poultry GenBank or previously publishedd

blaCMY-2 32 ST12, 2 SLV ST12,c 1 ST231 29 ST12, 8 ST2,e 5 SLV ST12,c 3 ST23,e

1 ST20,e 1 ST265e

blaSHV-12 4 ST231, 1 ST12, 1 ST26, 1 SLV
ST26,c 1 ST230f

1 ST95,e 1 ST178,g 1 ST231

Other bla genesa 5 ST12, 1 ST107,f 1 ST131,f 1 ST270f

No bla genesb 1 ST12, 1 SLV ST12,c 1 ST230f

Total 43 61
abla genes other than blaCMY-2 and blaSHV-12.
bNo bla genes detected with ResFinder.
cSLV due to incomplete match or missing 1 allele from the pMLST scheme.
dSequences of plasmids listed in this column were obtained based on the allele sequences of the highly
prevalent IncI1-I�/ST12 and ST231 from GenBank and publications from Europe.

eSelected for analysis of the genetic environment of blaCMY-2/blaSHV-12.
fSLV of ST231.
gSLV of ST12.
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FIG 1 Phylogenetic tree based on core genome of closely related blaCMY-2-carrying IncI1-I�/ST12 plasmids
and its SLVs (A) and blaSHV-12-carrying IncI1-I�/ST231 and its SLVs (B). aSLVs of IncI1-I�/ST12. bSLVs of
IncI1-I�/ST231. cTransformed plasmids from Colombian Salmonella included as reference. dCarrying blaSHV-12.
eCarrying blaTEM1B-like. fCarrying blaCMY-2 together with blaCTX-M-1. gCarrying blaCMY-2-like. hCarrying blaCMY-2.
iCarrying blaTEM1A. jCarrying no bla genes. kThe patterns of the genetic environment (GE) with their
designated numbers can be found in Fig. S3 in the supplemental material. �, unique pattern; �, genetic
environment of CMY-2 was characterized by blaCMY-2-blc-sugE and for SHV-12 by blaSHV-12-deoR (Fig. S3); -,
carrying no blaCMY-2 or blaSHV-12 genes. lData from information accompanying the sequence submission in
GenBank but not specifically found in the metadata fields. mDetails of the source listed in this column are
available in Table S1 in the supplemental material. nN/A, data not available. oStrain MLST was added when
information or complete sequence of strains was available. pClusters I to X of plasmids referred to in the
manuscript are grouped in shaded boxes. Scale bars at the bottom of the phylogenetic trees represent
nucleotide substitutions per site.
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plasmids originating from multiple countries and sources has not been assessed. In this
study, several plasmids with an identical core genome were identified (clusters I to IX,
Fig. 1A). Cluster IX included plasmids from European and American countries, which
showed high similarity between Salmonella- and E. coli-derived plasmids. The gene
presence/absence phylogeny grouped most of the plasmids from ST12 and SLVs in a
sublineage within the tree (MG825376.1 to ERR915116) (see Fig. S2 in the supple-
mental material). blaCMY-2-carrying IncI1-I�/ST12 plasmids from nonpoultry sources,
such as other livestock species and humans, were also found (Fig. 1A). These
findings underscore the potential of IncI1-I� plasmids to be transferred in strains
from Salmonella and E. coli outside the poultry environment (13, 35–38). The
genetic environment of blaCMY-2 in most IncI1-I�/ST12 plasmids and ST12 SLVs was
similar and characterized upstream by insertion sequence ISEcp1 and downstream
by blc and sugE (Fig. 1A and Fig. S3A in the supplemental material). IS1294 (39) and
IS26 were found upstream of blaCMY-2 in non-ST12 plasmids (see Fig. S4 in the
supplemental material).

The core genome of the tree based on IncI1-I�/ST231-related plasmids was
32,789 bp (�32% of the plasmid genome) (see Fig. S5 in the supplemental
material). The sublineage of IncI1-I�/ST231 and related ST231 SLVs is shown in Fig.
1B. The phylogeny based on gene presence/absence of ST231-related plasmids
confirmed phylogenetic distance between the plasmids from Colombian Salmonella
and E. coli. Thus, no evidence of the exchange of blaSHV-12-carrying plasmids
between these bacterial species was observed (see Fig. S6 in the supplemental
material). In contrast, the plasmids from Colombian Salmonella and one from E. coli
from a human in the United States were found to be closely related, at both the
core genome and gene content levels. In this case, these plasmids may be derived
from a common ancestor. Despite differences in core genome and gene presence/
absence, the genetic environment of blaSHV-12 in all IncI1-I�/ST231 and SLVs was
characterized upstream by IS26 and downstream by deoR (see Fig. S7 in the
supplemental material). This pattern of genetic environment was found repeatedly
(Fig. 1B and Fig. S3B). However, the results of ST231-related plasmids have to be
interpreted with care, given the limited number of plasmids available for phyloge-
netic analysis.

In conclusion, WGS-based analysis supports the hypothesis that blaCMY-2-carrying
IncI1-I�/ST12 plasmids in Salmonella and E. coli likely originated from a common
ancestor. As previously suggested, the source of the contamination with these plasmids
may be related to similar practices in poultry trade and farming (40, 41). blaSHV-12 in
association with IS26 was likely introduced independently in different lineages within
IncI1-I�/ST231. More observations are needed to better understand the transmission of
blaSHV-12 in ST231 plasmids.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/AAC

.02546-18.
SUPPLEMENTAL FILE 1, PDF file, 11.2 MB.
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