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Extended-spectrum �-lactamases (ESBL) are spread worldwide in the order Entero-
bacterales (1, 2) but are less common in Pseudomonas aeruginosa; consequently,

little is known regarding the genetic environment and plasmid-carrying blaESBL genes
in this species (3). The predominant ESBL enzymes are those in the CTX-M family (1).
The GES family is a less common group of ESBL enzymes comprising 40 members,
which have been found in various Gram-negative bacilli (4).

One P. aeruginosa strain, clinical strain 1206/13 (here called Pa1206/13), isolated
from cerebrospinal fluid at a hospital in São Paulo State, Brazil, from 2007 to 2014 and
resistant to third- and fourth-generation cephalosporins, aztreonam, or carbapenems,
was studied. The antimicrobial resistance genes were investigated by PCR (5–9).
Plasmid incompatibility groups were investigated by the PCR-based replicon typing
(PBRT) (10, 11) and Acinetobacter baumannii PBRT (AB-PBRT) (12) methods. Pa1206/13,
displaying an extensively drug-resistant (XDR) phenotype (13) (Table 1), carried blaCTX-M-2

and blaGES-1 genes. S1 and I-Ceu-I nuclease digestion followed by pulsed-field gel
electrophoresis (PFGE) and Southern blot hybridization with specific probes was per-
formed to determine the locations of the bla genes. Based on S1-PFGE, Pa1206/13
possessed a single �340-kb plasmid (p1206/13), which was nontypeable by PBRT, IncU,
IncR, or AB-PBRT. Although these methodologies are not optimized for the typing of
Pseudomonas aeruginosa plasmids, they are the most commonly used plasmid-typing
methodologies. Southern blotting followed by hybridization with blaCTX-M-2- and
blaGES-1-specific probes revealed that both bla genes were carried by p1206/13. Hy-
bridization with probes for a Pseudomonas sp. 16S rRNA gene and the two bla genes
after I-Ceu-I-PFGE further excluded a chromosomal location. Whole-genome sequenc-
ing of Pa1206/13 was then performed using Illumina NextSeq 250-bp paired-end
sequencing. De novo assembly was carried out using CLC Genomics Workbench,
version 8.0 (CLC bio, Aarhus, Denmark), and generated 565 contigs, with a contig N50

of 125,375 bp, an average coverage of 84�, and an assembled genome of approxi-
mately 7.1 Mb (draft sequence). Gene prediction was performed for the draft sequence
using the RAST server (http://rast.nmpdr.org/).

According to multilocus sequence typing (http://pubmlst.org/paeruginosa/), Pa1206/13
belongs to sequence type 1602 (ST1602), which was recently characterized in two P.
aeruginosa clinical isolates from Brazil (14), and Pa1206/13 seems to be the first
reported ST1602 isolate producing ESBL. The sequencing data revealed blaGES-1 as a
gene cassette on a previously unreported class 1 integron, In1600 (http://integrall.bio
.ua.pt/) (Fig. 1). Furthermore, blaCTX-M-2 was found downstream of ISCR1 associated with
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In1600, resulting in a complex class 1 integron of �11,680 bp (15). Additional antimi-
crobial resistance genes were predicted using ResFinder, version 3.1 (https://cge.cbs
.dtu.dk/services/ResFinder/), which showed a resistome consisting of 15 resistance
genes [aadA2, aphA-6, aph(3=)-IIb, aacA4, blaOXA-395, blaCTX-M-2, blaPAO, blaOXA-2, blaGES-1,
crpP, fosA, cmlA4, catB7, sul1, dfrB5]. PlasmidFinder was also used to determine the type
of plasmid and, again, confirmed it as nontypeable. In silico analysis of the draft
sequence showed that the plasmid was closely related to IncP2 plasmids (GenBank
accession numbers KC543497.1 and KY494864.1). IncP2 plasmids have been found in
environmental bacteria and have been observed carrying a tellurite resistance deter-
minant (16). p1206/13 possessed conjugation (tra family; TraV, TraB, TraG) and parti-
tioning (par family; ParA and ParB) genes, showing that in vivo conjugation may occur.
Furthermore, p1206/13 carried diverse virulence determinants, including pil proteins
(PilT and PilG), which govern twitching motility, as well as type IV pili and biofilm
formation, and the che operon, which is known to be essential for flagellum chemotaxis
in P. aeruginosa (17). These virulence factors have also been detected in other IncP2
plasmids from P. aeruginosa (pBJ37 [18] and pOZ176 [16]). However, the mer operon
present in those plasmids was not detected in p1206/13.

blaCTX-M-2 inserted into the P. aeruginosa chromosome has been described previ-
ously; however, this is the first report of an IncP2 plasmid coharboring two ESBL genes,
blaCTX-M-2 and blaGES-1, in P. aeruginosa.

TABLE 1 In vitro evaluation of activities of antimicrobial drugs against P. aeruginosa
1206/13

Druga Susceptibility profileb MIC (�g/ml)c

TZP I
TIM R
CZA S
C/T R
CAZ R �256 (R)
CPM R �256 (R)
ATM R 16 (I)
IPM R �32 (R)
MER R �32 (R)
GEN R
TOB R
AMK R
CIP R
LVX R
aTZP, piperacillin-tazobactam; TIM, ticarcillin-clavulanate; CZA, ceftazidime-avibactam; C/T,
ceftolozane-tazobactam; CAZ, ceftazidime; CPM, cefepime; ATM, aztreonam; IPM, imipenem; MER,
meropenem; GEN, gentamicin; TOB, tobramycin; AMK, amikacin; CIP, ciprofloxacin; LVX, levofloxacin.

bS, susceptible; I, intermediate; R, resistant.
cMIC testing was performed by Etest (bioMérieux). MIC breakpoints were evaluated according to CLSI
guidelines (19).

FIG 1 Schematic representation of the complex class 1 integron characterized in the GES-1- and
CTX-M-2-producing Pseudomonas aeruginosa 1206/13 isolate. Arrows indicate the gene orientations. The
black arrow represents intI (the class I integron integrase gene); the red circle, attI (the integron-
associated recombination site). The four cassette genes/proteins that follow are blaGES-1/�-lactamase
(dark green arrow), aacA4/aminoglycoside-modifying enzyme (orange arrow), cmlA4/chloramphenicol
exporter (light blue arrow), and aadA2/aminoglycoside-modifying enzyme (dark blue arrow). The purple
triangle represents attC (the cassette-associated recombination sites). The 3= conserved segment consists
of fused genes for disinfectant and sulfonamide resistance (qacEΔ [dark gray arrow] and sul1 [light gray
arrow], respectively). Downstream of sul1 are ISCR1 (yellow arrow) associated with blaCTX-M-2 (light green
arrow) and duplicate qacEΔ/sul1 genes.

Letter to the Editor Antimicrobial Agents and Chemotherapy

July 2019 Volume 63 Issue 7 e00186-19 aac.asm.org 2

https://cge.cbs.dtu.dk/services/ResFinder/
https://cge.cbs.dtu.dk/services/ResFinder/
https://www.ncbi.nlm.nih.gov/nuccore/KC543497.1
https://www.ncbi.nlm.nih.gov/nuccore/KY494864.1
https://aac.asm.org


Accession number(s). This sequence has been deposited in the DDBJ/ENA/Gen-
Bank database under BioSample accession number SAMN08384001.
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