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ABSTRACT Borrelia burgdorferi is the etiological agent of Lyme disease. In the cur-
rent study, we used direct-detection PCR and electrospray ionization mass spectrom-
etry to monitor and genotype B. burgdorferi isolates from serially collected whole-
blood specimens from patients clinically diagnosed with early Lyme disease before
and during 21 days of antibiotic therapy. B. burgdorferi isolates were detected up to
3 weeks after the initiation of antibiotic treatment, with ratios of coinfecting B. burg-
dorferi genotypes changing over time.
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Lyme disease is caused by the bite of a tick infected with the spirochete Borrelia
burgdorferi. The CDC estimates �300,000 new cases of Lyme disease in the United

States per year (1). The near-pathognomonic skin rash erythema migrans (EM) is the
only specific clinical sign that uniquely points to Lyme disease. However, the EM lesion
is not seen in �30% of infected individuals (2), and even when present, it often does
not have the hallmark bull’s-eye appearance characteristic of infection with a Borrelia
species (3, 4). The current approved serological two-tier test for Lyme disease detects
the presence of host antibodies for B. burgdorferi antigens but cannot distinguish active
infection from prior exposure (5, 6), so there is no way to test for cure or measure
response to treatment. We previously used broad-range PCR electrospray ionization
mass spectrometry (PCR/ESI-MS) to directly detect and genotype B. burgdorferi isolates
from ticks and whole blood from patients with early Lyme disease (7–9). This assay can
also distinguish B. burgdorferi genotypes, even when present in mixtures (7, 8), which
is important because coinfecting genotypes are generally common in wild hosts (10)
and Ixodes scapularis ticks (7). Using our multilocus typing method, we have a much
higher genotype resolution than ospC typing alone (7), and we now have identified
nearly 90 unique B. burgdorferi genotypes (unpublished data). Our aim in this first-of-
its-kind study was to use our direct molecular assay for B. burgdorferi to monitor
microbiological response to treatment and to determine how long after initiating
antibiotic therapy B. burgdorferi isolates can be detected in blood from patients with
early Lyme disease. Furthermore, the present study was designed to identify geno-
type(s) of the infecting strain(s) of B. burgdorferi isolates in these serially collected
specimens.

The study was approved by the Johns Hopkins Medicine Institutional Review Board,
and written informed consent was obtained from all participants before enrollment.
Four patients from an area in Maryland where Lyme disease is endemic were enrolled
during the summer/fall of 2015 and 2016. All participants had a physician-documented
and diagnosed EM and were excluded for the presence of an immunosuppressive
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illness or medication, pregnancy, or a history of receiving the Lyme vaccine. Of the four
participants, two (patients A and D) self-reported a history of diagnosed and treated
Lyme disease. All participants were antibiotic naive at the time of enrollment, and a day
0 specimen was collected before initiating a 21-day course of doxycycline. Three of the
four participants said they missed no doses, and one of the four (patient A) missed one
dose. A total of 20 ml of whole blood was collected at days 0, 1, 2, 4, 8, and 21 into two
10-ml EDTA purple-cap blood collection tubes and frozen for analysis by PCR/ESI-MS.
Nucleic acids were extracted from four 5-ml aliquots of EDTA whole blood, and
PCR/ESI-MS was performed as previously described (11). Three of the primer pairs
(BCT6092, BCT6095, and BCT6101) were modified from our previous studies to improve
their performance in the presence of a high background of human DNA without
changing their targets (7, 8). The sequences of all primers used in this study are shown
in Table 1; when a core six of eight primers produced a signature, we assigned a
genotype to the detection as described previously (7).

B. burgdorferi isolates were detected and genotyped at day 0 and subsequent time
points by PCR/ESI-MS testing of whole blood collected from two of the four participants
(patients A and B); patients C and D tested negative in all specimens. For patient A,
eight of eight specific primer pairs detected our B. burgdorferi genotype 25 at day 0 (Fig.
1A, B, and D; Fig. 2). B. burgdorferi isolates were not detected at days 1 and 4 (blood was
not collected at day 2 for patient A) (Fig. 1A). However, B. burgdorferi isolates were
detected by six and seven of eight primer pairs at days 8 and 21, respectively (Fig. 1A),
and at each of these time points, two genotypes (6 and 25) were detected. At these
later visits, genotype 6 was determined as the major genotype and genotype 25 as the
minor genotype (Fig. 1C and E; Fig. 2). For patient B, coinfection with two B. burgdorferi
genotypes (major genotype 7 and minor genotype 77) was detected by PCR/ESI-MS
from blood collected at day 0 (Fig. 2; Fig. 3B and D). After the start of antibiotic
treatment, there was a genotypic shift, with genotype 77 becoming the major geno-
type detected at day 1 (Fig. 2). Evidence of both genotypes was observed through day
4, with genotype 7 becoming undetectable by day 8 (Fig. 2). Specifically, primer pair
BCT6101 generated base-count signatures corresponding to genotypes 7 and 77 at
days 0 and 1, but genotype 77 was the only genotype detected by primer pair BCT6101
at day 2 (Fig. 2; Fig. 3C). Base-count signatures corresponding to genotype 77 were last
detected at day 8 (Fig. 2; Fig. 3E). B. burgdorferi isolates were not detected (0 of 8 primer
pairs) at day 21 (Fig. 3A).

TABLE 1 PCR/ESI-MS primer sequences and gene targets

Primer pair ID Primer code Gene target Primer sequence (5=¡3=)
BCT3511 BCT8229F gyrB TGCATTTGAAAGCTTGGCATTGCC

BCT8230R TCATTTTAGCACTTCCTCCAGCAGAATC

BCT6092 BCT13037F rplB TCATCCACATGGTGGTGGTGAA
BCT13040R TGCGAGTCTTATAGCCTTTAGTAGGC

BCT6095 BCT13043F rpoC TACAAAGGAATGGGAATGTTATTGTGGT
BCT8236R TGCGAGCTCTATATGCCCCAT

BCT6101 BCT13044F leuS TCATGTTGGTCATCCGGAAGGATA
BCT13049R TGTATTGCATAACTTTCAGCAGGAAG

BCT3517 BCT8241F flaB TGCTGAAGAGCTTGGAATGCA
BCT8242R TACAGCAATTGCTTCATCTTGATTTGC

BCT3518 BCT8243F ospC TGACGGTATTTTTATTTATATCTTGTAATAATTCAGG
BCT8244R TTTGCTTATTTCTGTAAGATTAGGCCCTTT

BCT3519 BCT8245F hbb TCGAATAATGTTATTGAGTTTAGATCTTTTGGTAC
BCT8246R TGGACGAAAATACGCAACATGATGATC

BCT3520 BCT8247F hbb TGTCTTTTCCAAGAAGACCAAAGGTTACTAA
BCT8248R TACCCTTAAGCTCTTCAAAAAAAGCATC
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In addition to PCR/ESI-MS analysis, two-tier antibody testing for B. burgdorferi
infection was performed by Quest Diagnostics (Madison, NJ) from serum collected at
days 0 and 21, and results were interpreted according to CDC recommendations (12)
(Table 2). For all test specimens, the second-tier IgM/IgG Western blots were performed
regardless of the enzyme-linked immunosorbent assay (ELISA) result. Patient B tested
positive at day 0, whereas patients A and C seroconverted; however, the unusual
pattern of reactivity shown by patient C suggested prior exposure to B. burgdorferi.
Serological tests for patient D were negative at both day 0 and day 21 (Table 2).

Unexpectedly, both patients who tested positive by PCR/ESI-MS were coinfected
with more than one B. burgdorferi genotype. However, we have seen coinfecting

FIG 1 Borrelia burgdorferi primer pair detections and deconvolved spectral data of PCR amplicons derived from patient A. PCR/ESI-MS was performed on serial
whole blood from a patient with clinically diagnosed early Lyme disease with EM. Specific primer pairs detecting B. burgdorferi isolates are plotted over time
(A), displayed as cumulative detections from four 5-ml aliquots of 20 ml blood. Primer pairs BCT6101 (leuS) (B) and BCT3511 (gyrB) (D) simultaneously detected
a single genotype of Borrelia burgdorferi on day 0. (C and E) Detection of two genotypes of B. burgdorferi for these targets on day 21. Paired peaks correspond
to the forward and reverse strands of the PCR amplicons, which separate under the conditions of electrospray ionization.

FIG 2 Borrelia burgdorferi detections and genotypes with PCR amplicon base-count signatures from serial whole-blood collections. Base counts with the largest
amplitude are shown on the bottom for cells with multiple base counts. Each base-count signature per column is differentiated by color. ND, no detection; level,
relative intensity based on calibrant copies per reaction.
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genotypes in ticks (7, 13, 14). While unlikely, it cannot be ruled out that a second
infection occurred during these two patients’ antibiotic treatments, because the study
was carried out in an area where Lyme disease is endemic during tick-transmission
season. Interestingly, the present work suggests that the ratios of coinfecting B.
burgdorferi genotypes can change over time during antibiotic treatment. To date, few
studies have focused on the ratio of genotypes in coinfections. Recently, Rynkiewicz et
al. (15) showed that infection of mice with two strains of B. burgdorferi isolates resulted
in similar fitness in single infections of each strain and asymmetric competition in
coinfections. Moreover, two studies showed an apparent random founder effect, where
some B. burgdorferi isolates dominated over others in murine models of B. burgdorferi
infection (16, 17). As an alternative to the founder effect hypothesis, the host immune

FIG 3 Borrelia burgdorferi primer pair detections and deconvolved spectral data of PCR amplicons derived from patient B. PCR/ESI-MS was performed on serial
whole blood from a patient with clinically diagnosed early Lyme disease with EM. Specific primer pairs detecting B. burgdorferi isolates are plotted over time
(A), displayed as cumulative detections from the four 5-ml aliquots of 20 ml blood. Primer pairs BCT6101 (leuS) (B) and BCT3511 (gyrB) (D) simultaneously
detected two genotypes of Borrelia burgdorferi on day 0. (C and E) The last time points, days 2 and 8, where one genotype of B. burgdorferi was detected for
these targets. Paired peaks correspond to the forward and reverse strands of the PCR amplicons, which separate under the conditions of electrospray ionization.

TABLE 2 B. burgdorferi two-tier serology results from patients with clinically diagnosed
early Lyme disease with EM

Patient Day 2-Tier resulta ELISA IgM bands IgG bands

A 0b Neg 0.94 0/3 1/10
21 Pos �5.00 2/3 3/10

B 0 Pos �5.00 3/3 6/10
21 Pos �5.00 3/3 6/10

C 0 Neg �0.90 0/3 5/10
21 Pos 1.18 0/3 5/10

D 0 Neg �0.90 0/3 0/10
21 Neg 1.22 0/3 1/10

aNeg, negative; Pos, positive. Results reported according to CDC recommendations (12).
bDay 0, initial doctor’s visit.
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system or differential antibiotic susceptibility might have played a role in the observed
genotypic shift (18).

Our study does have limitations, most obviously that we relied on a small conve-
nience sample from four participants. However, our PCR/ESI-MS method used for
detection of B. burgdorferi isolates has been utilized to great extent (11, 19–23),
including genotyping B. burgdorferi and detecting other vector-borne pathogens from
ticks and clinical specimens (7, 8, 13, 14, 24–26). An additional limitation is that we did
not follow participants beyond the 21-day study period to systematically capture
longer-term clinical or microbiological outcomes. This would have been of particular
interest for patient A, who had detectible infection at the day 21 visit. Although not
followed beyond the 21-day study period, none of the participants self-reported
significant lingering subjective symptoms at the final study visit, nor did any of the
participants present to us for further clinical evaluation.

Direct diagnostic tests have the advantage of being able to measure response to
treatment by demonstrating clearance of the pathogen. Nucleic acids are an excellent
analyte for direct diagnostic tests and are the basis of all molecular diagnostics because
DNA/RNA is quickly cleared from the human body. A study measuring fetal DNA in the
bloodstream of mothers carrying male fetuses before and after giving birth has shown
that the mean half-life of circulating male fetal DNA in the bloodstream is 16.3 min (27).
Moreover, a study where heat-killed B. burgdorferi isolates were injected under the skin
of mice found that B. burgdorferi became virtually undetectable after 8 h (28). However,
only culture and not the presence of B. burgdorferi nucleic acids can confirm the
presence of viable organism (29). Other studies have shown that B. burgdorferi isolates
are detectable by PCR in synovial fluid or synovial membranes after antibiotic treatment
(30, 31), and one study found PCR positivity in plasma months after treatment (32).
These findings and ours may suggest that the bacteria reside in parts of the body that
are not readily cleared, and bacterial remnants may continue to leak into the circulatory
system after antibiotic treatment (33).

The present work demonstrates the utility of a direct molecular test that can both
detect and genotype B. burgdorferi isolates from serially collected specimens. Currently,
there is no FDA-approved direct diagnostic test for Lyme disease, due to challenging
low levels of B. burgdorferi isolates in clinical specimens (34). We previously demon-
strated direct molecular detection of B. burgdorferi isolates in 1.25 ml of whole blood
collected from patients with early Lyme disease by PCR/ESI-MS with a sensitivity of 62%
(13/21) (8). To further increase sensitivity, we recently increased the blood volume to
20 ml, similar to the typical volume of blood used for bacterial culture (20 to 30 ml) (35).
The continued development of a direct molecular test that can both detect and
genotype B. burgdorferi isolates is paramount, not only to promptly diagnose early
Lyme disease in patients, but to provide a tool for testing new antibiotics and to further
our understanding of infection by B. burgdorferi genotype(s) and their impact on the
human immune system and illness.
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