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Abstract

Background: Human metapneumovirus (HMPV) have similar symptoms to those caused by the respiratory syncytial
virus (RSV). The modes of transmission and dynamics of time series data still remain poorly understood. Climatic factors
have long been suspected to be implicated in impacting on the number of cases for these epidemics. Currently, only a
few models satisfactorily capture the dynamics of time series data of these two viruses. Our objective was to assess the
presence of influence of high incidences between the viruses and to ascertain whether higher incidences of one virus

are influenced by the other.

to account for the influence between these viruses.

Methods: In this study, we used a negative binomial model to investigate the relationship between RSV and HMPV
while adjusting for climatic factors. We specifically aimed at establishing the heterogeneity in the autoregressive effect

Results: In this study, our findings showed that RSV incidence contributed to the severity of HMPV incidence. This was
achieved through comparison of 12 models with different structures, including those with and without interaction
between climatic factors. The models with climatic factors out-performed those without.

Conclusions: The study has improved our understanding of the dynamics of RSV and HMPV in relation to climatic
cofactors thereby setting a platform to devise better intervention measures to combat the epidemics. We conclude
that preventing and controlling RSV infection subsequently reduces the incidence of HMPV.

Keywords: Non-Gaussian bivariate Bayesian model, RSV, HMPV, Epidemic, Time series, Climatic factors

Background

Epidemiological knowledge of the respiratory system has
been mostly related to developed countries, though the
burden of respiratory virus infections (RVIs) is more
manifested in developing countries with very high
hospitalization and mortality rates [1]. Higher mortality
is associated with increased displacement into over-
crowded refugee camps [2]. The burden of RVIs is con-
siderably high during crises times [3] and is more severe
in infants [4]. Recently, Pastula et al. [5] highlighted that
hospitalization for respiratory syncytial virus (RSV) is

* Correspondence: nyomus@gmail.com

'School of Mathematics, Statistics and Computer Science, University of
KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa

°Nairobi, Kenya

Full list of author information is available at the end of the article

K BMC

not limited to infants but also includes adults. In 2001,
HMPV was identified as a potential etiologic agent for
respiratory infections [6]. A study at Queen Mary Hos-
pital in Hong Kong showed that the peaks of HMPV and
that of RSV activity occurred in spring and the early
months of summer and viral diagnoses during the study
period showed that RSV and HMPV had similar season-
ality [7]. Guerrero et al. [8] indicate that RSV but not
HMPV induces a productive infection in human
monocyte-derived dendritic cells. Reinfection by RSV
has a great impact on human health and may cause
long-term effects on the host immune response [9].
Greensill et al. [10] detected HMPYV in 21 out of 30 in-
fants infected with severe RSV and were hospitalized re-
quiring intensive-care unit ventilator support. Konig et
al. [11] found out that 60% of the cases with HMPV had
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RSV. They also found that HMPV contributed to the se-
verity of Lower respiratory tract infections (LRTIs) at a
lower rate than RSV and coinfection was considered a
cause of severe lower respiratory tract disease. The
HMPV infections have similar symptoms to those
caused by RSV [12, 13], they share similar risk factors
[14] and simultaneous detection times [15]. The HMPV
and RSV may cross-react directly or indirectly because
they are both co-viruses to each other [16]. The correl-
ation between RSV and HMPV in the refugee settings
and even in the tropical region has not been studied. We
specifically aimed at establishing the heterogeneity in the
autoregressive effect to account for the influence be-
tween these viruses. The modelling of the time series
events of these viruses will not only help in the predic-
tion of their outbreaks but also in estimating which out-
breaks precede each other. The results could be used by
other countries in the tropical zone of Africa with simi-
lar settings to inform control measures to prevent
outbreaks.

In Section 2, we show the data source and the statis-
tical model fitting with and without climatic covariates
to a bivariate time series. In Section 3, we show the ap-
plicability of the models illustrated with a real-world ex-
ample and the results obtained. In Section 4, we discuss
the results and finally conclude in Section 5.

Methods

Data

A surveillance system for viral respiratory illnesses that
included RSV and HMPV was implemented in a refugee
camp in Dadaab located in northeastern province of
Kenya from September 2007 to August 2011. Both
paediatric and adult patients presenting to a medical
unit and who met the case definition for influenza-like
illness or severe acute respiratory infection were enrolled
in the surveillance. Laboratory confirmed test results for
RSV and HMPV were obtained after adults and guard-
ians of all minors filled a consent form. The number of
laboratory-confirmed cases was recorded every day. In
this analysis, only the monthly counts of RSV and
HMPV cases among children younger than 5 years were
considered. Local weather and climatic data from a
neighboring weather station were obtained from the
World Meteorological Organization’s (WMO’s), World
Weather Watch Program, according to WMO Reso-
lution 40 (Cg-XII) (available at http://www7.ncdc.noaa.
gov/CDO/cdo). The meteorological dataset was recorded
on a daily basis and aggregated monthly for the purpose
of this analysis. The variables included the mean
temperature, mean dew point for the day (both in °F),
the mean sea level pressure for the day in millibars, the
mean visibility for the day in miles, the mean wind speed
for the day in knots, the minimum and maximum
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temperature (°F) reported during the day and the total
precipitation (in inches).

Statistical modeling

In this paper, we used surveillance data aggregated by
month in a time series model and the negative binomial
distribution to address the issue of over-dispersion. We
model the relationship between the two viruses namely,
RSV and HMPV. Meteorological variables were included
in the model to help assess for serial correlation. Held et
al. [17] suggested that environmental factors can be in-
corporated into these models to improve model fit to
data and predictions. These models help to assess the
presence of influence of high incidences between the vi-
ruses and whether higher incidences of one virus are in-
fluenced by another. They also aid in evaluating if an
epidemic component can be isolated within or between
the viruses and how the autoregressive component cap-
tures the residual temporal dependence in the time
series after adjusting for seasonal effects. Modeling
count data is faced with many challenges since count
outcomes do not meet the usual normality assumption
required of many standard statistical tests. Typical log-
transformation to induce normality does not often work
or categorization of the outcome may lead to loss of in-
formation as described by O’Hara and Kotze [18]. The
most commonly used models to study the dynamics of
epidemics and predict future outbreaks using count data
are the Poisson [19] and the negative binomial distribu-
tions [20]. We modelled the time-evolution of two epi-
demics using a bivariate approach suggested by Held et
al. [17]. We assume that we have i=1,..., m ‘viruses’
and denote with y;, the number of cases in virus i at time
t. The general model for the multiple time series of
count events {y;,i=1, ...,m;t=1, ..., T} for virus type i
at time ¢ assumes a Poisson distribution with conditional
mean y;, given by

log( £ir) = Xig-19i0-1 + Pise1 Z WiYje-1 t MigVie

J#i
(1)

It holds VAR(Yy; (y: 1) =EW: o y: +-1) = psr- Hence,
in the case of a conditional Poisson response model the
conditional mean 4, is identical to the conditional vari-
ance ¢ of the observed process.

In model 1, A; ,_; is the autoregressive parameter
representing the proportion of epidemic cases from the
total number of cases for virus type i at time . When A;
+—1 21 (an outbreak occurs) there is an influx of the en-
demic cases and A; ;_; <1 means the process is stable
(no outbreak occurs). The ¢; ;1 quantifies the influence
of virus type j on i; #; , represents the monthly varying
population counts of virus type i at time ¢ (treated as an
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offset term in the model) and v, is the endemic compo-
nent that explains the baseline incidence rate of cases as
subsequently shown in eq. (5). The variable y; ,_; de-
notes the number of cases observed in virus type j at
time ¢ - 1. w;; is the weighting indicator and is equal to 1
if pathogens j and i have an autoregressive effect on each
other and 0 otherwise.

This model is aggregation consistent where the aggre-
gated counts y, = >, y,, have the mean,

log(py) = Aypoy + PpaZe + ’7th’
Where; Zt 1 —Z")l]y]t 1:’1: Z’Ln‘pt Zd);tavt

= ZV” So, the parameter 1 has the same mterpret—
i=1
ation for the aggregated counts similar to the counts y;,.
In the presence of over-dispersion, the Poisson model
is replaced by a negative binomial model where the con-
ditional mean remains unchanged but the variance J is
modified to p(1 + p,p) with over-dispersion parameter
> 0. The extent of over-dispersion is captured by how
far the term y deviates from zero. An extensive discus-
sion on handling over-dispersion can be found in the
work of Ver Hoef and Boveng [21]. We are interested in
two different types of viruses transmitted through the
same route, i.e. respiratory illness. Let x; ,_; denote cli-
matic covariates with 7; coefficients in the model and
k=1,..., K covariates. In the model, it is assumed that
the cases follow a negative binomial distribution, y, | y,_
1~NegBin(g,, ), with conditional mean

log(u,) = As1y, g + Txke-1 + Pr 121

+ exp(n,) (2)
and conditional variance
w1+ my). (3)

The incidence of the disease g, was additively decom-
posed into two parts. The first part,

& =M1y, g + Tk + ez, (4)

is the epidemic component explaining the outbreaks
or irregularities in the data including the interaction be-
tween the viruses. The second part is v; , which is
expressed in log-scale as

s
log(vi) = a; + Z{ys sin(wst) + 85 cos(wst)}.  (5)

s=1

The endemic and epidemic components of the time
series were explored and studied allowing for the separ-
ation of the regular pattern from irregular ones in esti-
mating the epidemic peaks. The parameter «; allows for
different incidence levels of the viruses and S is the virus
specific number of harmonic waves. The term in curly
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brackets captures seasonal variations. The y; and J; are
the seasonal parameters while w;=2ms/12 for monthly
data are the Fourier frequencies.

Likelihood and posterior distribution

The counts y,, conditional on the previous observation y,
_1 (Only lag one was applied in our case because more
than one lag did not fit the data well) are assumed to
follow a Negative binomial distribution with mean

wO=p, =&+, (6)

where 0 = (604, ..., 0, ¥1, ..., ¥,)" The log-likelihood
of the observation y;, is given as

= Z lt(ov 'I]) (7)

and the likelihood as,

f(9.10) = exp{zlt(e» :p)}, (8)

where,
1 1
+—|-1o F()
w) “\v
PR
4 1+ Wﬂt(e)

e )

and I'() is the gamma function and y and 7 are the dis-
persion parameters. The gamma priors are assumed for
¥ and 7,

Y ~ Ga (a.,,‘/i,,,),

T~ Ga(a.pB,).

The virus dependent effects a; are assumed to be inde-
pendent and normally distributed with a large variance,

(6, y)= log T (yt

©)

a = (a,...,ar) ~ N(0,02I),02 = 10°,

where I is an identity matrix. All model parameters are
non-negative and therefore we propose gamma prior
distributions for them. The rate parameters A, assumes
independent gamma priors with gamma hyperpriors on
the second parameter,

A~ Ga(myB,) and B, ~ Ga(a,b).

Where we use a; =1, 2 = 10 and b = 10, with values for
ay, a and b chosen arbitrarily.
Independent normal priors are assumed for y and &,

Yy = (Y17 "‘a)/]) ~ N(0,0'il),()’)z/ = 1067
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Table 1 Simulation results including Parameter estimates, Standard errors and measure of model Goodness of Fit

Parameter Model1 Model2 Model3 Model4
(¥=0 A =0) (=0 ) 0) (%0 X =0) (W£0 ) %0)
N - - 0.0000 (0.0000) 0.0000 (0.0000)
[0 - - 0.0000 (0.0000) 0.0000 (0.0001)
M - 0.1730 (0.3135) - 0.1743 (0.3072)
A - 04337 (0.2010) - 04482 (0.2115)
@, 04727 (0.2262) 0.4586 (0.2300) 04726 (0.3092) 04585 (0.2300)
@ 0.8123 (0.0420) 0.0963 (0.2204) 0.3034 (0.2204) 0.1485 (0.2424)
AlIC 1644.14 1626.58 1636.92 1630.33
= (81,...,8]) ~ N(O, a%l), 0% — 10°. .to compare di.fferent mosiels .based on varied s?enar—
ios. We considered a situation where there is the
The parameter ¢ assumes gamma priors, presence of overdispersion with the parameter ;=0

P~ GalagBy).
The posterior distribution is therefore given as,

S (Oly,)<f(5.10)f(8),

which can be expressed as,
S S

F(8ly,)= exP{thw, w>} x [ x [[e# x [t

=1 s=1 i=1

XH“‘ -1 ﬁ“/lﬂ b\, XHwaw—l Bl XH a1} Xﬁfia,L—le—ﬁ::'
i=1 i=1 i=1
(10)

Simulations

We investigated the proposed model performance on
simulated data. We simulated bivariate data using a
frequentist approach in R software using the package
“Surveillance” previously used by Held et al. [22, 23].
We used the function “hhh4” with the class “disprog”
to simulate two disease pathogen counts replicated
10,000 times. We then applied the Bayesian approach

assuming the negative binomial distribution and
where ;=0 assumes the Poisson distribution. We
also considered the presence and absence of the par-
ameter A; (the ‘epidemic’ component) to evaluate tem-
poral dependence. In this simulation, we disregarded
the linear trend. It is evident from Table 1 that the
simulation results show that y;=0 and therefore the
best performing model is the Poisson (model 2) with
the presence of the epidemic component having the
least AIC = 1626.58. This implies that in the simulated
data there was no overdispersion but rather temporal
dependence.

Application on data

Let {y;,i=1,2;t=1, 48} be the time series of virus
counts for RSV (y;,) and HMPV (y,,) over the 48 months
study time-frame. There were only two oscillations in a
year for each of the two viruses to complete a cycle
hence two harmonic waves (s = 2) were included in the
model. The bivariate model for the two time series is
therefore:

Table 2 Models of the epidemic part ¢; , with assumptions made on interactions between the viruses with and without the climatic

factors
Model & + (with climatic factors) &+ (without climatic factors)
1 Ni e+ T ok -1 A e
2 N + (PZ Wiy -1 T TikXk,e=1 N + (PZ Wiy j -1
JFi J#i

3 M =1+ T 1 1 AV e
4 Mo+ Z Wi@iyj -1t TikXk-1 Ay + Z WiiP j i1

# IS
5 A t=1Yi t=1 T Xk, -1 A t=1Yi =1
6 M1y + Z Wi®i i1 j -1t TikXk -1 Aje=tYor + Z Wi@i 1Y j i1

JFE

JFI




Nyoka et al. BVIC Public Health (2019) 19:807

Page 5 of 14

o
© L
— RSV counts 500 &
£ Q i Cumulative counts wemnnanllIIILIE — 400 3
(&}
S B
8 o | \ — 300 o
> ¥ s
- ©
2 o | 2 ), 200 E
N
R0k Lpertseutd beoee | 1903
o | e’ -0
1T 17T 1T T T T T 1T T T T T T T T T T T T T T°1
MO OODVDODODDDDDIDOOOOOO «— — — —
OO0 OO OO OO0 OO0 ™™™ T ™ ™ ™ ™ ™ v
OO0 0000000000000 O0000O000O
NNANANNNNNNNNNNNNNNNNNNNN
Q> ChEXTASCEXNTASCEXTA>C =T
DOl w® DOl m© DOl @ DO coclwm
NZD=ES NZD=2S "NDZD=2S NDZD=s
8 ]
—— HMPV counts - 500 &
L & . b : S
2 Q@ - Cumulative counts — 400 3
S o
8 o | 300 @
> ¥ =
a - 200 =
= g : 3 2
I e — 100 §
o — 0 o
rrrrrrrr1rr17 117 17117171717 1T 1T 17T T 1T T T°1
NN OOODODODDDDDINDOOOOOO — — — —
000000000000 T - = — «— «— — —
0600000000080 8000680000000 6
NNANANNNNNNNNNNNNNNNNNNNN
O >CE 2T A>CEXTASCEXTA>CE DS
VOGS T3 0o S TS 0O ETdS 0o TS
NZO=ES NDZDO=2S NDZH=2sS NZH=s 0
Fig. 1 The monthly counts of epidemics (a) RSV and (b) HMPV plotted against time. The cumulative counts of HMPV cases were approximately
2.5 times less than the RSV counts for the same time-frame

1 E,\ Mgt ¢1,t_1 Y11
og| = 1
E; Dap1 Aopr Vo1
X1,t-1
+ T11 712713 T14
721722723 124

X2.t-1
Vit
+7n, )
Vot
where

X3 ¢-1
X4t-1
Vi = @1 + vy sin(wqt) + 8;4c0s(wyt) + ;5 sin(w,t) + 81 pcos(w,t),

Vo =y + ¥y sin(wqt) + 85 1c08(wyt) + 15, sin(w,t) + 6, ,c08(w,t)

and x; ,_1, % ,_1, %3, ;1 and x4 ,_; are the climatic
factors representing rainfall, wind speed, mean dew
point and visibility respectively. The term 7, corresponds
to an offset term in the model (the monthly varying
population counts at time £).

The models were compared for their fit to the epi-
demic data. Naturally, models are compared for their

performance based on the ability to fit well on the
data and their reliability in predicting future epi-
demic outbreaks. Fundamentally, in our model fitting
to data we searched for the model that provided the
best trade-off between the fit to data and the model
structure complexity. Often, approaches such as the
Akaike information criterion (AIC) and Bayesian in-
formation criterion (BIC) are sufficient for ranking
and selecting the best performing models. However,
when the data is non-Gaussian and the model is
Bayesian, like in our case, then the deviance infor-
mation criterion (DIC) is more appropriate. For the
comparison of our models we used the DIC pro-
posed by Spiegelhalter et al. [24], specifically for
Bayesian-based models and it is a Bayesian
generalization of the AIC and BIC. The model with
the smallest DIC value gives the better trade-off be-
tween model fit and complexity; therefore, it is con-
sidered as the model that best predicts a replication
of a data set with a similar structure as that which
was observed currently [25].
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Fig. 2 The monthly counts of RSV and HMPV plotted against time. Overall, the epidemics coincide in timing of their occurrence peaks, especially

' '
2010 2011

To further assess the model performance with regards
to the parameters, sensitivity analysis to alternative prior
assumptions was performed because there are no true
priors in the Bayesian analysis. In order to ensure reli-
able and robust results from our best model, it was cru-
cial to verify how sensitive the resulting posteriors were
for each prior input for the epidemic parameter A;; and
¢;» the parameter that quantifies the influence of one
virus on the other. Therefore, we assumed independent
gamma priors with uniform hyper-priors on the second
parameter, 1,~Ga(a, ;) and B)~Beta(a, b) using a, =1,
a=0.5 and b =0.5. Similarly, for the influential param-
eter, we used the Beta distribution prior, ¢;~Beta(asfy).
To our understanding, this comparison of models has
not yet been done using RSV and HMPV time series
data. All the models in our work were run and tested in
the statistical software WinBUGS version 14. The
models differed on the epidemic part &; , by the assump-
tions made on the interactions between the viruses. We
used 6 models depending on the assumptions applied as
explained below with each model with a corresponding
inclusion of climatic factors giving rise to a total of 12
models (Table 2). In model 1, it is assumed that the inci-
dence rate is the same in every virus; hence, no

Table 3 Comparison DIC values for different models

interactions between the viruses. Model 2 assumes that
there is the interaction between viruses where the sum
of related viruses at the same time point has an equal
rate. Models 3 and 4 are generalizations of models 1 and
2 respectively with a different rate for each virus. Models
5 and 6 generalize model 3 and 4 respectively with a dif-
ferent rate for each virus per time point.

The best model was then evaluated on whether; there
were substantial interactions between cases of RSV and
HMPV (alternatively stated as ¢rsy # Prmpy # 0), the ex-
istence of the influence of RSV on HMPV (¢rsy =0,
¢umpy 2 0), the existence of the influence of HMPV on
RSV (¢mpv =0, ¢rsy = 0) or there were no interactions
at all (Prsv = Prmpy = 0).

Results

The monthly observed number of RSV and HMPV cases
in Dadaab from September 2007 to August 2011 that
were collected in the surveillance system was plotted
(Fig. 1). The HMPV data shows a strong seasonality pat-
tern as indicated by the four peaks during November of
the years 2007, 2008 and 2009 while a fourth peak ap-
pears in March 2011 (Fig. 2). These HMPV peaks coin-
cide with the RSV peaks.

Model 1 2 3 4 5 6
DIC (with climatic factors) 49043 55830 559.46 55845 502.17 173.52
DIC (without climatic factors) 549.82 541.11 548.44 536.09 571.72 744.22
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Table 4 Four sub-models from the best model. The symbols
and "y/" mean the absence and presence of interactions,
respectively. Model 6 (i) no interactions between HMPV and RSV
(Prmpy = @rsy = 0); Model 6 (i) influence of HMPV on RSV

(@rsy F 0, @wpy = 0), Model 6 (iii) influence of RSV on HMPV
(@rsy =0, @ympy ¥ 0) and Model 6 (iv) interactions between
HMPV and RSV ((pHMPV * Prsv * O)

uon
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We compared 12 models with various structures
(Table 2) and the results for the DIC values are given in
Table 3. Models 6 and 1 with climatic factors clearly
out-perform the other models since, overall, they have
lower DIC values. Model 6 with climatic factors had the
least DIC value (173.52) and provided the best fit and

oo WYy YRV C explanation for the variation observed in the data. The
oage . . . .
i - models showed that the inclusion of climatic factors play
6(i) - 54368 . le i h . . f th f
an important role in the estimation of the number o
6(ii) v 45761 cases for the two epidemics (RSV and HMPV). We fur-
6(iii) - V 11214  ther considered different scenarios on the best model
6(v) v N 17352  with four sub-models (results are shown in Table 4).
Model 6(i) in Table 4 does not allow for interactions
between HMPV and RSV (Pumpv = Prsy =0) and its
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Fig. 3 Posterior median and point-wise 95% credibility intervals for the best model. Plots showing the Posterior median and point-wise 95%
credibility interval of (@) Aspy and (b) @uvey for model 6(iii)
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Fig. 4 Posterior median values for the priors with Gamma and Beta distributions for the best model. Plots showing the Posterior median values
of (@) Agwpy and (b) @yuey for model 6(ii). Median_Beta and median_Gamma are the posterior medians from the Beta distribution and the
Gamma distribution priors respectively

Table 5 Posterior median and point-wise 95% credibility
intervals for the best model

Parameter 5.0% Median 95%
alphat —4.283 —-3.998 —3.683
alpha2 —3.765 —3.765 — 3481
deltal1 —2.564 —2.564 -1.979
delta21 —4.783 —4.783 —4.023
gammall -6.303 -5.653 -4.812
gamma21 -9.209 —7.965 -6.934
psil 0.238 7.762 116.1
psi2 0.090 4.688 97.33

DIC value is 543.68. Model 6(ii) includes the influence
of HMPV on RSV with the influence of RSV on HMPV
equal to zero. This model yielded a DIC value of 457.61.
Model 6(iii) includes the influence of RSV on HMPV
where the influence of HMPV on RSV is zero. Com-
pared to the others, this model yielded the smallest DIC
value of 112.14 (Table 4). This implies that the two vi-
ruses can present as a co-infection where HMPV inci-
dence is increased by increases in RSV. The results from
sensitivity analysis shown in Fig. 3, indicates that this
model is robust and insensitive to the prior distribution
since its posterior distribution did not dramatically
change upon altering the base prior parameter values.
Model 6(iv) has both the influence of RSV on HMPV
and the influence of HMPV on RSV which is the full
model with a DIC value of 173.52 (Table 4). This indi-
cates that the additional parameter (i.e., the influence of
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Fig. 5 Posterior median and point-wise 95% credibility intervals for the best model. Plots showing the Posterior median and point-wise 95%
credibility interval of (@) Trainfall_rsv @nd (b) Trainan_1mev for model 6(iii)

HMPYV on RSV) into model 6(iii) does not significantly
improve the model fit to data.

The epidemic parameter Aypy for model 6(iii) in
Fig. 4(a) does not exceed the value 1. This implies
that the time series is stable without a detection of
an outbreak of HMPV due to the influence of RSV.
Figure 4(b) shows the influence of RSV on HMPV
with biannual peaks noted over the study period. The
other parameters estimated in this model are shown
in Table 5 that includes the posterior median and
point-wise 95% credibility intervals. In particular, from

Table 5, the posterior median and the point-wise 95%
credibility intervals for the over-dispersion parameters
Yampy and  Yrsy were 7.762(0.238, 116.1) and
4.688(0.090, 97.33) respectively. This indicates the ex-
istence of over-dispersion because the values for the
parameters Yvpy and Ygsy are greater than zero
which relaxes our adoption of the negative-binomial
modelling, despite in the simulation data there was
over-dispersion detected. Figures 5, 6, 7 and 8 show
the posterior median and point-wise 95% credibility
intervals for the climatic factors.
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Discussions

The RSV data shows bi-annual peaks of different sever-
ity during the rainy seasons in the Dadaab refugee camp
(Kenya) [26, 27]. Wilkesmann et al. [28] showed that
both HMPV and RSV cause similar symptoms and clin-
ical severity with similar seasonality. A similar finding
was reached by Kim et al. [29] who investigated the clin-
ical and epidemiological assessment of HMPV and RSV
in Seoul, Korea, 2003-2008. In their paper, Cuevas et al.
[6] observed that HMPYV incidence had increased with
increases in RSV incidence. Another study in Yemen,
children younger than 2 years identified co-infections of
RSV and HMPV, and also showed that there were sea-
sonal variations of RSV and HMPV with a peak of RSV

in December and January and a peak of HMPV in Feb-
ruary and March [30].

From our previous work using the same dataset, we
noted a similar conclusion that the use of climatic fac-
tors explained the seasonality of RSV [27]. This implies
that having considered the different rate for each virus
at every time point, the models with the best fit to data
were those with climatic factors. In our study, we have
shown that the incidence of RSV influenced that of
HMPYV from the best model fit. It is therefore crucial to
establish good RSV surveillance systems in developing
countries to help understand the dynamics of the dis-
ease. This will aid in knowing when to put up an inter-
vention to control for RSV and HMPV outbreaks. Some
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of the interventions include washing hands with soap
and avoiding overcrowding. A similar observation was
made by Lazar et al. who noted that HMPV did not
contribute to the severity of RSV [31]. This is corrob-
orated in findings from a similar investigation of the
influence of RSV on HMPV by Greensill et al. [10] in
which 70% of children infected with RSV were co-
infected with HMPV. Elsewhere, Cuevas et al. [6] ob-
served that HMPV incidence increased with increas-
ing number of RSV cases suggesting the presence of a
strong association between the dynamics of the two
epidemics.

Some of the limitations of this study were that the
available time series data for the viruses was only for a
four-year time-frame which is short for time series ana-
lysis and that the climatic factors were from the neigh-
boring weather station which is about 100 km away from
the Dadaab camp. Nevertheless, the weather measure-
ments are a good representation of the actual weather
around Dadaab. There was no establishment of whether
patients were co-infected during virus testing. We used
the DIC which is an approximation of a penalized loss
function based on the deviance to evaluate the models.
The application is valid only when the number of
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parameters is much smaller than the number of inde-
pendent observations [32]. The classical model selection
was used that assumes that there is at least a best model
for deducing inferences from the data. The criterion
used to select the best model did not allow for the com-
putation of weights of each fitted model to quantify for
uncertainty, that is the model averaging techniques were
not used [33].

Conclusion

We provided a comprehensive comparison of RSV and
HMPV in a refugee camp setting by using a bivariate
non-Gaussian model to jointly model the epidemics. By
comparing various model structures, we identified a

model that satisfactorily fits the epidemic data, thereby
explaining most of the observed variation therein. The
models and estimated parameters also provided clues
into the dynamics and stability of the two epidemics.
Our results demonstrated the influence of RSV on
HMPV while adjusting for climatic factors. The climatic
factors played a significant role in explaining the influ-
ence of RSV incidence on HMPV incidence. These
models are important to the public health implication
since controlling the incidence of RSV would conse-
quently reduce the incidence of HMPV.
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