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ABSTRACT

CT-based radiotherapy workflow is limited by poor soft tissue definition in the pelvis and reliance on rigid registra-
tion methods. Current image-guided radiotherapy and adaptive radiotherapy models therefore have limited ability to
improve clinical outcomes. The advent of MRI-guided radiotherapy solutions provides the opportunity to overcome
these limitations with the potential to deliver online real-time MRI-based plan adaptation on a daily basis, a true “plan
of the day.” This review describes the application of MRI guided radiotherapy in two pelvic tumour sites likely to benefit

from this approach.

INTRODUCTION

Multiple challenges exist in radiotherapy (RT) delivery
for gynaecological and rectal targets. The target consists
of volumes encompassing the primary tumour and elec-
tive nodal regions, which are difficult to visualize on CT
and move independently of each other. Tumour targets are
highly mobile deformable structures and are influenced
by adjacent rectal and bladder filling, which is difficult to
standardize throughout treatment. Substantial tumour
regression can occur, which results in normal tissue falling
into high dose regions, and extended field treatments are
susceptible to rotational setup error." Intensity modulated
radiotherapy (IMRT) reduces dose to normal tissue in
gynaecological and rectal RT,>* but tight conformity and
sharp dose gradients mean that adequate planning target
volume (PTV) safety margins to account for geometric
uncertainty are essential to avoid a geographical miss.

The current PTV margins applied to targets are based on
margin recipes that aim to ensure 95% of the prescribed
dose is delivered to 99% of the target volume,* or 95% of the
prescribed dose is delivered to 100% of the target volume
in 90% of patients.” Significant interpatient variability in
target motion results in population-based margins that

are much larger than necessary in most patients and still
miss the target in a small number of cases. The alternative
to large margins and increased normal tissue dose is to
individualize margins and implement adaptive treatment
strategies.

RT is currently planned on a single CT data set obtained at
treatment simulation. This may not reflect target and organ
at risk (OAR) geometry at the time of treatment delivery.
Adaptive radiotherapy (ART) uses information from imaging
acquired before or during treatment delivery to modify the
treatment plan based on changes in individual target and
OAR geometry and biology. Adaptive strategies are classi-
fied based on their timescale relative to patient treatment.®
Offline strategies occur between treatment fractions and typi-
cally involve a single or multiple replans. Online adaptation
is based on imaging acquired immediately prior to treatment
and can be used daily or intermittently. In online adaptation,
tumour target and OAR interfraction changes are accounted
for, which means that PTV margins can be significantly
reduced.” Adaptive strategies can also use information from
previous treatment imaging to track the actual dose delivered
to the tumour target and OARs and correct for any discrep-
ancy between the planned and delivered dose distributions.®
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Implementation of online adaptive strategies is limited by technical
challenges, which include image quality, image registration, target
and OAR segmentation, and plan reoptimization. All of which,
must be performed whilst the patient remains on the treatment
couch in treatment position.

Currently, image-guided RT with cone beam CT (CBCT) is limited
by its ability to visualize the target and OARs and by artefact from
moving gas. MRI is the gold-standard imaging modality for diag-
nosis and staging in gynaecological and rectal cancer and transition
from CT-based to MR-based workflow in these tumour sites offers
immediate advantages. MRI-guided RT (MRIgRT) will provide
superior image quality at treatment planning and treatment
delivery for image registration and target and OAR localization and
segmentation. This will facilitate implementation of online adap-
tive strategies to reduce normal tissue irradiation, whilst improving
target coverage. The purpose of this article is to review the advan-
tages and challenges in the clinical application of MRIgRT in RT
treatment planning and treatment adaptation using rectal and
gynaecological cancers as illustrative examples.

SEARCH/ SELECTION STRATEGY

PubMed was searched using terms “Rectal Neoplasms/radiother-
apy”’[Mesh] or “Uterine Cervical Neoplasms/radiotherapy”[Mesh]
or “Endometrial Neoplasms/radiotherapy”’[Mesh] and “motion”
or “adaptive” or “MR-guided” or “auto segmentation” or “auto
contouring”. Search included meeting abstracts and was limited to
English language. Further references were identified by cross-refer-
ence of articles. Identified studies were first screened by title and/
or abstract, with further full paper screening to generate the final
list of studies relevant to the scope of the present review. The last
PubMed search was performed on 5 April 2018.

RATIONALE FOR MRI-GUIDED ADAPTIVE
RADIOTHERAPY (MRIGART) IN
GYNAECOLOGICAL AND RECTAL CANCER

MRI is the imaging modality of choice for diagnosis and staging
in gynaecological and rectal cancer where it characterizes tumour
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and local macroscopic extent to inform treatment decisions,
assess treatment response and detect recurrent disease.” ! It is
essential in identifying patients for radiation treatment, deter-
mining the radiation treatment field extent and accurate defini-
tion of the tumour target from bladder, sigmoid and small bowel.

1. MRI improves target localization

Target volume delineation on the planning CT in both gynaeco-
logical and rectal tumours is difficult because it is not possible
to discriminate between tumour and normal tissue. Figures 1
and 2 illustrate improved soft tissue contrast seen on MRI
compared to CT for RT treatment planning in rectal and cervix
cancer. Compared to CT, target volume delineation on MRI
results in significantly smaller rectal and cervix volumes'>'?
and low interobserver variability'®' .Studies evaluating inter-
and intraobserver variability in contour delineation on MRI
in gynaecological and rectal RT are illustrated in Tables 1 and
2.2 In rectal RT, MRI delineation results in significantly
reduced tumour length, width and distance of the proximal
tumour edge to the anal verge p < 0.05.> When gross tumour
volume (GTV) is subdivided into tumour located in the sigmoid,
rectal and anal sub regions, coverage of the CT contoured GTV
was inadequate for tumours with MRI evidence of sigmoid or

anal invasion.”!

In cervix cancer, geometric studies show that agreement between
target volumes delineated on transverse and para-transverse
planes of MRI is good with conformity index 0.71-0.72."° In
dosimetric studies, overestimation of tumour width on CT
results in significant differences in the volume treated to the
prescription dose or higher.!>** Compared to the CT-based
imaging RT workflow, MRIgRT will provide superior visu-
alization of the target and normal tissue immediately before
and during treatment delivery. Table 1 and 2 summarizes the
published data for contour delineation on MRI in cervix and
rectal cancer.

Figure 1. Radiotherapy planning imaging in a male patient with T3N1 rectal cancer; (a) CT and (b) MRI. On MRI, the tumour (arrow)
is easily differentiated from normal rectum, which is not possible on CT.
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Figure 2. Radiotherapy planning imaging in Stage 2B cervix cancer (a) CT and (b) MRI. On MR, the cervix tumour (arrow) is easily
differentiated from normal bladder and rectum, which is not possible on CT.

2. MRI for motion assessment

Extensive target motion occurs in gynaecological and rectal RT
and has been reviewed previously.”>*® With RT for cervix cancer,
the primary clinical target volume (CTV) includes any visible
tumour, cervix, uterus, upper vagina and parametrium. The
elective nodal CTV includes the pelvic and common iliac lymph
nodes (LN) and the para-aortic LN in high-risk disease. Motion
is largest at the uterine fundus and studies report maximum
interfraction motion of over 30 mm.?’” In one study, margins of
15 mm to the primary and nodal CTV failed in 32% of patients
and margins of up to 30 mm were required to ensure coverage in
95% of fractions.””

With RT for rectal cancer the primary target volume includes the
tumour and mesorectum, and the elective nodal volume includes
the pelvic LN. The entire circumference of the rectum at the level
of the tumour is included, because it is not possible to distinguish
tumour from normal rectal tissue on CT. The anterior and lateral
rectal wall move more than the posterior wall and motion is
larger in the middle and upper rectum compared with the lower
rectum.”® Maximum motion occurs anteriorly, particularly in the
upper mesorectum, and anterior PTV margins of 24 mm in the
upper mesorectum and 15 mm in the lower mesorectum have
been recommended.?** Tables 3 and 4 summarize the published
data for cervix and rectal interfraction target motion.?-*%3143

Bladder and rectal filling influence target motion in gynaeco-
logical and rectal RT. With cervix treatment, bladder volume
is correlated with superior/inferior uterine motion and rectal
volume is correlated with cervix and vaginal anterior/posterior
motion.”® With rectal RT, deformation of the mesorectum is
largely driven by changes in rectal volume.?® In both cervix and
rectal RT, there is significant interpatient variation in bladder
volume despite bladder filling protocols, and both bladder and
rectal volumes reduce during treatment.””-*****! Laxatives may
not significantly reduce target anterior/posterior motion from
rectal volume variation, because passage of gas can still cause
significant target displacement.”” Figure 3 illustrates CTV

positional changes related to bladder volume as seen on CBCT
during cervix RT. MRIgART will facilitate implementation of
margin reduction through adaptive strategies that account for
these geometric changes.

3. MRI for anatomical response assessment and
dose escalation

Significant tumour regression is observed during cervix and
rectal RT.>?*#54 In 20 cervix patients having weekly MRI
during chemoradiotherapy (CRT), average tumour volume
reductions of 59.6% at week 4 were observed, which resulted in
increased uterine motion, substantial changes in tumour posi-
tion and movement of normal tissue, particularly small bowel,
into the high dose region.*” Repeat MRI and planning after
delivery of 30 Gy found that a second IMRT plan significantly
reduced the volume of bowel irradiated if the primary GTV
decreased >30 cc.”

In a study of 15 rectal cancer patients, mean tumour regression
of 46.3% was seen on MRI by week 5 of CRT and regression
was fastest in the first 3 weeks of treatment.* A further study in
13 patients found that the majority of patients who had a good
response to treatment had volume reduction and fibrotic changes
during weeks 1-3.%® There is a move towards organ preservation
in rectal patients with a complete radiological response to spare
morbidity from surgery.*® Patients who respond to CRT are
more likely to benefit from dose escalation to increase the rate
of pathological complete response (pCR)* and early assessment
to identify these patients is therefore important. Response to
neo-adjuvant CRT is dose-dependent with dose escalation of >60
Gy resulting in increased rates of pCR and acceptable toxicity.*’
Tumour boost volume delineation on the initial RT planning CT
does not take account of tumour regression during treatment.
Repeat imaging during treatment could help select patients who
would benefit from radiation dose escalation and would produce
more accurate and smaller boost volumes, facilitating increased
tumour dose without increased OAR dose and toxicity. ™
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Figures 4 and 5 illustrate changes in cervix and rectal tumour
volume as seen on weekly MRI during RT.

4. MR for biological response prediction and dose
delivery assessment

Functional MRI with diffusion-weighted imaging (DWI) and
dynamic contrast enhancement (DCE) may predict biological
response in rectal and cervix RT and identify patients for dose
escalation, !

MRI has potential to act as a biomarker, identifying good and
poorly responding tumours to select patients for dose adaptation
in order to improve treatment outcomes.”*° Studies suggest that
DWI can predict pathological complete response early in rectal
RT,>**%%7 but there are limitations to the current evidence
preventing its routine implementation in patient selection for
dose escalation. Most studies were small and did not prospec-
tively determine MRI criteria to differentiate between complete
and non-complete response to treatment. Retrospective identifi-
cation of these parameters introduces selection bias. There was
variability in the time points at which imaging was acquired
and surgery was performed. For example, patients classified as
achieving a non-pCR at 6 weeks following CRT may have been
classified as a pCR if surgery was performed at a later date and
meta-analysis reports 6% increase rate of pCR with an interval of
greater than 6 weeks from the end of preoperative CRT.”®

In cervix RT, DCE and DWI MRI may predict response to CRT
and identify patients for dose escalation.”® Increasing apparent
diffusion coefficient (ADC) values from DWI acquired during
treatment can detect early signs of treatment response.”> DCE
MRI during treatment detects tumour perfusion.” Persistently
low perfusion during CRT is correlated with treatment failure
and patients with increases in perfusion during CRT have better
outcomes.” This could identify patients for dose escalation to
hypoxic regions, which should increase tumour shrinkage prior
to brachytherapy, which we know improves local control.® There
was however, no technical standardization in these studies,
which limits assessment of reproducibility and generalizability.
The optimal time to assess biological response and adapt treat-
ment based on these finding has yet to be determined.

MRIgRT will also provide quantitative knowledge of the actual
delivered dose and the impact of radiation dose on tumour and
normal tissue. This would enable dose compensation strategies
and tumour and normal tissue radiobiological modelling.

ADAPTIVE RADIOTHERAPY (ART) STRATEGIES

1. Target volume modification based on individual
internal motion

PTV modification based on data from setup and internal target
motion acquired from planning or previous treatment, allows
safe reduction of generic population based margins. This is also
referred to as a composite volume technique. The range of target
motion is modelled during the planning stage or first treatments
to generate an internal target volume (ITV). The treatment plan
is optimized offline and applied to subsequent treatments. Indi-
vidualized ITVs in cervix RT account for the range of cervix and
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Figure 3. Changes in clinical target volume position during cervix radiotherapy as seen on MRI at (a) week O, (b) week 2, (c) week

3 and (d) week 4.

uterine motion with variable bladder volume and may be based
on variable bladder filling CT scans acquired at simulation, or
using bladder geometry as a predictive tool.*** Compared to
population-based margins, individualized margins reduce CTV-
PTV margins by 48% (£6%), and bladder and rectal volume
within the PTV is reduced by 5-45% and 26-74% respectively.®*

For rectal cancer, an average CTV can be acquired from the
radiotherapy planning (RTP) CT and repeat CTs during the first
week of treatment.*® Adaptation after day 4 resulted in a 7 mm
reduction in the maximum required PTV margin from 24 to 17
mm and a significant reduction in PTV and dose to the small
bowel.*

2. Online plan selection strategy

Online plan selection uses imaging acquired at treatment to select
a plan from a library of treatment plans generated from multiple
PTVs. In cervix RT, evaluated strategies include a plan library
using individualized PTVs based on CTV position at different
bladder volumes, or PTVs created by the application of incre-
mental margins to the CTV as seen on RTP CT acquired with a full
bladder.>%* Compared to a standard population margin approach,
plan selection results in significantly better target coverage and OAR
sparing.**** Adaptation based on variable bladder filling CTVs
enables reductions in PTV margins from 38 to 7 mm and better
CTV D98% > 95% in comparison to the non-ART approach where
17% of treatment fractions have inadequate target coverage.®>®*
When using an incremental margin approach, a 5 mm margin of
the day plan could be used in 25% of fractions.*® Libraries based
on variable bladder filling do not account for rectal filling variation

or the passage of gas, which are difficult to predict and can signifi-

cantly influence cervix motion.*®

In rectal cancer, target motion is influenced more by rectal than
bladder filling, so a library of plans strategy based on variable
bladder volumes is not appropriate. Instead plan selection has
been based on plans with variable PTV margins between —-25
and +25 mm applied to the anterior CTV, which is where largest
variation is seen.% This reduced dose to the bladder and small
bowel OARs, although the absolute reductions were small.”” Plan
selection in rectal RT is feasible with good plan selection consis-
tency between observers of 75%.% Plan selection in both cervix
and rectal radiotherapy is being implemented clinically, but is
limited by the image quality of CBCT. MRIgRT would facilitate
target and OAR localization for online plan selection.

3. Plan reoptimization

The optimal strategy to account for target and OAR motion and
deformation, anatomical and biological response, is to generate
a new plan with full reoptimization. This determines the dose
distribution based on target and OAR geometry and/or physi-
ology at the time of treatment delivery.®

A number of planning studies in cervix RT have simulated the
benefit of online replanning.”***® One study of 33 patients
compared a 3 mm PTV margin plan without replanning, with an
automated weekly replan on real-time patient geometry as seen
on MRIL%% Pre-treatment optimization criteria were automati-
cally reapplied to replans without any physics planner interven-
tion. Without replanning, there was a significant reduction in

Figure 4. Changes in cervix tumour volume (arrow), as seen on weekly MRI during treatment at (a) week 0, (b) week 2, (c) week
3 and (d) week 4.
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Figure 5. Changes in rectal tumour volume (arrow), as seen on weekly MRI during treatment at (a) week O, (b) week 2, (c) week

3 and (d) week 4.

a)

"

accumulated dose to the primary CTV, with nine patients failing
D98% > 95%.%% In patients who were replanned, there was a
reduction in CTV between 8 and 68% (median 39%) and the D98
CTV constraint was met in all patients.%® There was no difference
in dose to OARs, which might move with the target and remain
in the high dose region. This may lead to increased OAR dose in
patients where OAR movement is related to the target compared
to patients where the OARs move independently.®**’

A study in 14 cervix patients used 15 mm PTV margins and
replanning based on target and OAR geometry on MRI after
30 Gy.*” There was a reduction in OAR dose with replanning,
but in this study the replans were interactively optimized to
reflect new anatomy.*” A planning study to simulate the benefit
of online MRIGRT replanned using weekly MRI in 11 patients
receiving IMRT for cervix cancer with 4 mm PTV margins.” This
was compared to plans based on the pre-treatment MRI with
primary and nodal PTV margins of 15 and 10 mm.” There was a
significant reduction in the dose to the bladder, rectum, sigmoid,
and small bowel with online replanning,”

4. Dose compensation

Adaptation using dose tracking allows reduction in PTV margins
because variations in the dose delivered to the CTV compared to
the planned dose, can be compensated for in subsequent frac-
tions. The pre-treatment imaging, together with any setup correc-
tion applied, is used to determine target and OAR position and
the dose delivered at each treatment fraction. This is non-rigidly
registered to the planning CT to model anatomical motion and
deformation and allows calculation of the accumulated delivered
dose. The treatment plan can then be reoptimized to compensate
for any problems with dose coverage or to account for adaptation
of treatment goals.

Lim et al looked at pre-treatment and weekly MRI in 30 cervix
IMRT patients using a 3 mm PTV margin and dose accumu-
lation.”® They modelled an anatomical driven approach with
a single offline replan mid-treatment to account for tumour
regression, and a dosimetrically triggered approach if the esti-
mated accumulated D98 to the GTV or primary CTV was low.
Without replanning, there was insufficient target coverage in 27%
of patients. The anatomical approach improved target coverage
and reduced OAR dose, but there were still three patients with
insufficient target coverage. Dosimetrically triggered replanning

resulted in target coverage in all patients, but no difference in the
accumulated OAR dose.”” Deformable registration is not consis-
tently accurate and validation is difficult. In deformable regis-
tration for dose accumulation, particular caution must be taken
when tumours have undergone mass change and in areas with
sharp dose gradients.

INTEGRATION OF MRI INTO RADIOTHERAPY AND
ITS CHALLENGES

MRI can be integrated into RT workflow in a variety of ways. In a
CT-MRI simulation workflow, the MRI is used for contour delinea-
tion at radiotherapy treatment planning (RTP) and the CT provides
arobust geometric representation of the patient, an electron density
map required for dose calculation and a reference image for patient
set up during standard treatment. Any error in image registra-
tion will however lead to a systematic geometric error throughout
patient treatment.” MRI-only simulation reduces potential for
image registration error at RTP, but the challenges of geometric
distortion and lack of electron density information and material
properties inherent to MRI need to be addressed. MRI for RT treat-
ment localization, planning and verification have different demands
to those acquired for diagnosis and staging. Specific solutions are
required. The main differences relate to patient positioning, image
acquisition and sequence parameters and the need for geometric
accuracy (Table 5).

A number of MRIgRT technologies are in active development, inte-
grating MRI with external beam RT delivery, providing MRI data
immediately before and after treatment, and simultaneously with
treatment delivery.””””> They differ in their imaging and treatment
adaptation capabilities and their approach to tackling the technical
challenges of magnetic and radiofrequency interference and treat-
ment beam transmission through the magnet. Table 6 summarizes
the different systems, each presenting advantages and disadvan-
tages.””””” The MRIdian system (ViewRay Inc, Oakwood Village,
OH) has treated over 300 patients since 2014 and integrates a 0.35
Tesla (T) magnet with either three multileaf collimator (MLC)-
equipped Cobolt-60 heads, or a 6 MV linac.”*’® The Elekta Unity
MR-linac solution (Elekta AB, Stockholm, Sweden) started treating
patients in 2017 under pre-CE mark clinical trial protocol. It inte-
grates a7 MV linac with a high field 1.5 T MRI system from Philips,
which uses technology similar to the Philips Ingenia diagnostic
systems.”> Lower magnetic field solutions benefit from a reduction
in image artefacts and patient related geometric distortion, and
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Table 5. Different demands of MRI acquired for diagnostic and radiotherapy purposes in cervix and rectal cancer

MRI for diagnosis

MRI for radiotherapy

Couch Soft, often concave
Maximized for patient comfort

Needs to be flat, the same as in RT delivery

Anterior abdominal wall compression
Saturation bands

Patient positioning Comfortable As for RT delivery
Supine Supine
Immobilization devices None Combifix knee support to stabilize pelvis
Bowel artefact management IM Buscopan IM Buscopan may be used in MRI simulation but may not be

acceptable during daily treatment within MRI treatment workflow

Bladder status Empty

Full

Coil placement Pelvic coil centred on tumour

Anterior coil supports prevent distortion of external body contour
Customized MR simulators may incorporate posterior coils into a

flat couch
Field strength Increasing strength improves signal to noise, but is more Increasing field strength increases geometric distortion
expensive and requires more room
Coverage High resolution FOV limited to tumour High resolution FOV must encompass entire tumour target
Sequences including external body contour required for dose
calculation
Preferred 2d T,W high resolution at tumour with <3 mm slice T,W 3d < 1 mm isotropic voxel size for target delineation
sequence thickness, and voxel size <1 mm Imaging plane true axial acquired perpendicular to the system
Imaging plane perpendicular to the rectum or cervical canal
Geometric accuracy Less important Essential to localize the target

Electron density/ material
composition information

Not required

Not required in a CT/ MRI combined workflow, but essential in MR-
only simulation and MR treatment workflow

FOV, field of view;RT, radiotherapy.

lower energy deposition by the radiofrequency pulses. Higher field
solutions benefit from enhanced signal to noise, which improves
spatial and temporal resolution and functional imaging capabilities.

TECHNICAL CHALLENGES IN THE REALIZATION
OF REAL-TIME MRIGART

Generation of a new treatment plan based on target and OAR
geometry or biology at the time of treatment delivery is the ulti-
mate goal of MRIGART. The main challenge is achieving this in a
short amount of time with the patient on the treatment couch. Its
clinical implementation is limited by;

(1) Requirement for robust automated real-time registration of
the newly acquired MRI with the images used for treatment
planning.

(2) Requirement for electron density data necessary for dose
calculation.

(3) Target and OAR segmentation on the new MRI.

(4) Plan reoptimization and dose calculation.

(5) Quality assurance of the newly generated plan.

In the first clinical applications of MRIGART using the Elekta
Unity MR-Linac (Elekta AB, Stockholm, Sweden) and the
MRIdian system (ViewRay, Oakwood Village, OH), MRI are
acquired immediately before treatment and registered to the
reference planning MRI and planning CT using deformable
registration.””*" Electron density information from the reference
planning CT is then transferred to the MRI of the day using the
deformation map.”**

The standard treatment-planning process requires segmented
contours and generates the desired dose distribution from scratch.

This is achieved through iterative optimization, driven by defined
objective functions set by the planner, which specify the dose-
volume constraints for tumour targets and OARs. The planner
then fine-tunes the objective functions and repeats the optimi-
zation process to further improve the treatment plan by trial and
error. This takes too long to be feasibly implemented in real-time
MRIgART and faster automated replanning strategies are required.

Segmentation of target and OARs on the daily image is a major
challenge in online replanning. Manual segmentation is time
consuming and susceptible to inter- and intraobserver variability.
Mean time required to manually delineate the pelvic nodal CTV
alone is over 30 min, and automated strategies are necessary to
reduce segmentation time and improve structure definition.®
Autosegmentation without prior knowledge uses imaging prop-
erties such as voxel intensities and gradients.*” Alternative strat-
egies incorporate prior knowledge into the segmentation process
to improve accuracy and reproducibility and include atlas-based
segmentation, statistical shape models, machine learning and
hybrid strategies.*>

In atlas-based autosegmentation, an atlas of manually contoured
structures is used to propagate structures onto a new data set
using deformable registration voxels transformations.*™*> Use
of multiple atlases further improves accuracy.*® Cervix target
segmentation on MRI using machine learning results in mean
sensitivity and specificity of 85-93%" and is faster than atlas
based strategies.*® Accuracy of autosegmentation is not perfect
and visual verification is still required. In MRIGART using both
the Elekta Unity MR-Linac and the ViewRay MRIdian systems,
target and OAR contours are transferred to the online MRI from
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the reference image using deformable registration and are then
checked and manually edited if necessary by a clinician.”®#*%

Daily plan reoptimization does not need to start from scratch
and many components of the new plan can be extrapolated from
the original fully optimized plan. Plan modification with aper-
ture morphing reduces the number of steps in reoptimization.”
Segment aperture morphing adjusts the beam segment shape of
the MLC, based on the new target position and shape, as seen in
the projection from the beam’s eye view of each treatment beam.
Segment weight optimization can then be applied to improve
dosimetry.”® More complex aperture morphing methods rely on
deformable registration.”"*>

Plan adaptation based on previous knowledge from the original
plan can also speed up the process. Gradient maintenance strate-
gies maintain the same dose gradient around the target, towards the
OARs, as in the original treatment plan.”® This requires segmenta-
tion of the new target but not segmentation of OARS. It may not
be suitable for the larger target volumes seen in gynaecological and
rectal RT. Interactive dose shaping is based on contoured structures
and enables direct manipulation of the initial plan isodose surface
shape or the dose to individual voxels.”** Advances in computer
power, both graphical processing units and modified central core
processing units, can now reduce the time of plan optimization and
dose calculation from minutes to seconds.”**” Commercial treat-
ment planning systems incorporating advances in adaptive plan-
ning are now becoming available.

Plan approval and quality assurance (QA) in real-time MRIgART
is challenging. Automation of image acquisition and registration,
target and OAR segmentation, treatment dose calculation and
adaptive planning optimization is essential in implementing
online MRIgART, but creates additional problems. The detailed
plan reviews and QA process that occur at pre-treatment during
standard RT are not appropriate. Limiting physician plan
approval to when plan quality is less than the original treatment
plan would improve efficiency. Conventional patient specific QA
approaches insert physical phantoms in the treatment beam,
which cannot be used with the patient on the treatment couch.
An alternative solution is to send the treatment plan to an inde-
pendent dose calculation engine to verify that the dose distribu-
tions agree.98

Delivery of MRIgRT with the ViewRay MRIdian Cobalt 60 was
feasible in 11 rectal patients receiving neoadjuvant chemoradia-
tion with IMRT and simultaneous integrated boost.” Daily MRI
were acquired for patient setup and verification, and all patients

White et a/

completed treatment. The ViewRay MRIdian has also been
used for imaging and RT planning in brachytherapy for cervical
cancer.'® No studies have yet been published for MRIgRT
delivery in cervix external beam RT.

CONCLUSIONS

MRIgRT in rectal and gynaecological RT will improve all
aspects of the treatment workflow. Its most exciting application
in gynaecological and rectal RT will be to refine GTV to CTV
definition, increased accuracy and precision of target localiza-
tion for treatment verification and implementation of adaptive
strategies to personalize the therapeutic approach. This will facil-
itate reduced PTV margins and normal tissue irradiation whilst
maintaining target coverage. Together with dose adaptation, this
will translate into improved tumour control and reduced toxicity
for patients. Optimal adaptive strategies need to be determined
and challenges remain for the implementation of MRIgART clin-
ical workflow. But technology is exponentially increasing and the
ability to personalize and intensify treatment with MRIGART at
these tumour sites is no longer an improbable blue-sky ideology
but is now within reach.
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