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ABSTRACT
The evolutionarily conserved Target of Rapamycin (TOR) complex-2 (TORC2) is an essential
regulator of plasma membrane homeostasis in budding yeast (Saccharomyces cerevisiae). In this
yeast, TORC2 phosphorylates and activates the effector protein kinase Ypk1 and its paralog Ypk2.
These protein kinases, in turn, carry out all the crucial functions of TORC2 by phosphorylating and
thereby controlling the activity of at least a dozen downstream substrates. A previously unchar-
acterized interplay between the Rab5 GTPases and TORC2 signaling was uncovered through
analysis of a newly suspected Ypk1 target. Muk1, one of two guanine nucleotide exchange factors
for the Rab5 GTPases, was found to be a physiologically relevant Ypk1 substrate; and, genetic
analysis indicates that Ypk1-mediated phosphorylation activates the guanine nucleotide exchange
activity of Muk1. Second, it was demonstrated both in vivo and in vitro that the GTP-bound state
of the Rab5 GTPase Vps21/Ypt51 physically associates with TORC2 and acts as a direct positive
effector required for full TORC2 activity. These interrelationships provide a self-reinforcing control
circuit for sustained up-regulation of TORC2-Ypk1 signaling. In this overview, we summarize the
experimental basis of these findings, their implications, and speculate as to the molecular basis for
Rab5-mediated TORC2 activation.
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Background and overview

In organisms from yeasts to humans, essential
aspects of cellular physiology are coordinated by
the actions of two, evolutionarily conserved, multi-
component protein kinase complexes in which the
catalytic subunit is the large Target of Rapamycin
(TOR) polypeptide [1–4]. These two TOR-
containing complexes – TOR complex 1 (TORC1)
and TOR complex 2 (TORC2) – are spatially and
functionally distinct. Active TORC1 resides on the
cytosolic surface of the lysosome in animal cells and
on the surface of its counterpart, the vacuole, in yeast
(Saccharomyces cerevisiae), whereas active TORC2
resides mainly on the plasma membrane (PM).
Animal cells express a single TOR protein that popu-
lates both complexes; in yeast, however, there are
two TOR paralogs, Tor1 and Tor2. TORC1 is func-
tional when it contains either Tor1 or Tor2 as its
catalytic subunit; but, to be functional, TORC2 must
contain Tor2 as its catalytic subunit [5,6]. Hence,
a tor1Δ mutant is viable, but a tor2Δ mutant is not
[7,8]. The activity of TORC1 can be acutely inhibited

by rapamycin and related compounds [9], whereas
TORC2 is largely immune to these inhibitors [10],
which made analysis of TORC1 function more read-
ily accessible than analysis of TORC2 function.
However, the demonstration that the primary essen-
tial function of TORC2 is to phosphorylate two,
paralogous, AGC-family protein kinases, Ypk1 and
Ypk2, which then execute all of the critical down-
stream functions, has dramatically increased our
understanding of the physiological roles of
TORC2 [11].

As with other AGC kinases, the basal activity of
Ypk1 requires phosphorylation of a conserved Thr
residue (T504) in its activation loop within its
catalytic domain. This modification is installed by
two paralogous protein kinases, Pkh1 and Pkh2
[12,13], which are stably-associated components
of the protein coats of PM invaginations called
eisosomes [14,15]. Basal activity and stability of
Ypk1 also requires its phosphorylation at S644,
which lies within a conserved sequence (dubbed
the “turn motif”) located downstream of its kinase
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homology domain within a C-terminal regulatory
domain [16]. This modification is installed by
TORC2, which is also largely PM-associated [17–
21]. Under certain stressful conditions that stimu-
late TORC2-mediated phosphorylation of Ypk1,
such as sphingolipid limitation [22], heat stress
[23], hypotonic conditions [24,25], and acetic
acid stress [26], TORC2 further elevates Ypk1
activity by phosphorylating four additional sites
in its C-terminal regulatory domain, paramount
among them is T662, which lies within another
conserved sequence (dubbed the “hydrophobic
motif”) in the C-terminal domain [13,16].
Phosphorylation of Ypk1 at these locations further
enhances both its activity and stability. Under
other stressful conditions, such as hypertonic
shock [27,28], treatments that damage the cell
wall [19], and treatments that decrease “membrane
tension” [29], TORC2-mediated phosphorylation
of Ypk1 is dramatically reduced.

S. cerevisiae TORC2 comprises four essential
core subunits (Avo1, Avo3, Lst8, and Tor2) [30],
two classes of non-essential peripherally-associated
subunits (Avo2 and Bit61 and its paralog Bit2)
[3,31,32], and two, essential ancillary subunits
(Slm1 and Slm2) that undergo dynamic shuttling
between the eisosomes and TORC2 [24,25]. The
tertiary fold of the kinase domain of the catalytic
subunit Tor2 is stabilized by its tight association
with the β-propeller protein Lst8 (which also binds
to Tor1). Tor2 is also intimately entwined with
Avo1 and Avo3 [33] to form a dimeric rhombohe-
dral complex [31], creating the scaffold onto which
the other TORC2 components dock.

Based on a cryo-EM-derived structure of
S. cerevisiae TORC2 [31], Avo1 appears to be
located in close proximity to the active site of the
Tor2-Lst8 complex. Furthermore, convincing bio-
chemical evidence shows that a sequence in Avo1
shared with its Schizosaccharomyces pombe ortho-
log Sin1 and its mammalian counterpart (mSIN1),
designated the “conserved region in the middle”
(CRIM), is the sequence element that binds the
corresponding Ypk1 orthologs in these organisms,
Gad8 [34] and both SGK1 [35] and AKT1 [36],
and presents them to the TOR kinase for phos-
phorylation. Therefore, by analogy, Ypk1 is likely
to be recognized as a substrate for TORC2 by its
binding to the CRIM element in Avo1. In this

regard, although slm1Δ slm2Δ cells are inviable,
fusion of the PtdIns4,5P2-binding PH domain of
Slm1 [37,38] to Ypk1 restores viability to slm1Δ
slm2Δ cells [24], suggesting that, normally, one
function of the Slm1 proteins is to promote, some-
how, the Avo1-mediated recognition of Ypk1 by
TORC2 at the PM.

Muk1 emerges as a substrate for Ypk1

Various approaches have been used to identify
physiologically relevant substrates of the TORC2-
Ypk1 signaling axis, including genetic methods
[12], biochemical analysis [22,39], chemogenetic
strategies [40–42], a genome-wide candidate
screen [43], and global phosphoproteomics [44].
As summarized in a recent comprehensive review
[11], among the thoroughly validated direct sub-
strates of Ypk1 identified from these studies are:
(a) two protein kinases (Fpk1 and Fpk2) whose
role is to phosphorylate and thereby stimulate
both PM- (Dnf1 and Dnf2) and trans-Golgi-
(Dnf3) localized aminoglycerophospholipid flip-
pases; Ypk1-mediated phosphorylation inhibits
Fpk1 and Fpk2; (b) one of two glycerol-3P dehy-
drogenase isoforms (Gpd1) whose role is to supply
sn-glycerol-3P for both glycerophospholipid
synthesis and glycerol production; Ypk1-mediated
phosphorylation inhibits Gpd1; (c) the major
aquaglycerolporin (Fps1), which is a channel
required for glycerol efflux; Ypk1-mediated phos-
phorylation of Fps1 is required to keep this chan-
nel in its open state; (d) two, endoplasmic
reticulum (ER)-localized tetraspanins (Orm1 and
Orm2) whose role is to inhibit the enzyme that
catalyzes the first-committed step in sphingolipid
biosynthesis; Ypk1-mediated phosphorylation
blocks the inhibitory functions of Orm1 and
Orm2, thereby stimulating metabolic flux into
the sphingolipid pathway; (e) the heterodimeric
ceramide synthase (Lac1-Lag1) required for gen-
eration of sphingolipids; Ypk1-mediated phos-
phorylation stimulates the activity of Lac1-Lag1,
thereby further promoting production of sphingo-
lipids; (f) at least two α-arrestins (Art3/Aly2 and
Art4/Rod1), which are adaptors necessary to target
the HECT domain ubiquitin ligase Rsp3 to specific
integral membrane protein clients to promote
their endocytosis; Ypk1-mediated phosphorylation
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inhibits the function of these proteins; and (g) two
paralogous StARkin domain–containing proteins
(Ysp2/Lam2/Ltc4 and its paralog Lam4/Ltc3)
located at PM-endoplasmic reticulum (ER) contact
sites, which participate in the retrograde move-
ment of ergosterol from the PM to the ER; Ypk1-
mediated phosphorylation inhibits the ability of
these proteins to promote this retrograde sterol
transport.

This cohort of substrates demonstrates that
TORC2-Ypk1 signaling is essential for growth and
viability because it controls virtually every aspect of
PM homeostasis – from sphingolipid and glycerolipid
production, to PM lipid asymmetry, to the concentra-
tion of an intracellular osmolyte (glycerol), to PM
protein composition, to sterol content. In a global
screen for candidate Ypk1 targets conducted by our
laboratory [43], we also identified Muk1, one of two
Rab5-specific guanine nucleotide exchange factors
(GEFs) encoded in the S. cerevisiae genome (the
other is Vps9), among potential targets of Ypk1. We
confirmed recently that Muk1 is indeed a bona fide
substrate of Ypk1 [45]. We demonstrated that Muk1
is phosphorylated in a Ypk1-dependent manner both
in vivo and in vitro and, under either condition, is
phosphorylated by Ypk1 at its two consensus Ypk1
phospho-acceptor motifs (RSRSSSG and RPRRSSS).
Moreover, using three different phenotypic screens
in vivo, we found that a corresponding Muk1(6A)
mutant was a total loss-of-function allele, whereas
the cognate phosphomimetic allele, Muk1(6E), was
somewhat hyperactive compared to wild-type Muk1.

These results predicted that stimulation of TORC2-
Ypk1 signaling should result in a Muk1-dependent
increase in the pool of active (GTP-bound) Rab5 in
the cells. In this regard, we were intrigued by the
possibility that one or more of the three Rab5
GTPases encoded in S. cerevisiae genome (Ypt51/
Vps21, Ypt52, and Ypt53) might serve as a direct
modulator of TORC2 function, based on two prece-
dents. First, the function of the other TOR-containing
complex, TORC1, requires its interaction with two
other classes of small GTPases, both RHEB [46,47]
and RAGs [48,49]. Second, it was reported, largely on
the basis of genetic findings, that GTP-bound Ryh1 (a
small GTPase that most closely resembles human
Rab6 and its S. cerevisiae ortholog Ypt6) stimulates
TORC2 in fission yeast [50].

Rab5 GTPases emerge as regulators of TORC2

For reasons explained just above, we examined
whether Rab5 function influenced TORC2 activity,
as assessed by monitoring the TORC2-mediated
phosphorylation and activation of Ypk1.
Strikingly, we found, first, that yeast lacking its
two Rab5 GEFs (Muk1 and Vps9) or its three
Rab5 paralogs (Vps21/Ypt51, Ypt52 and Ypt53)
or overexpressing Msb3, a Rab5-directed GTPase-
activating protein (GAP), all exhibited pronounced
reduction in TORC2-mediated phosphorylation
and activation of Ypk1 [45]. Second, we found
that cells lacking both Rab5 GEFs and cells lacking
all three Rab5 paralogs were much more sensitive
than otherwise isogenic WT control cells to the
growth-inhibitory action of aureobasidin A (AbA),
an antibiotic that blocks sphingolipid biosynthesis
[45]. We had demonstrated previously that upre-
gulation of Ypk1 activity via its TORC2-dependent
phosphorylation is required for cells to survive
inhibition of sphingolipid biosynthesis by another
antibiotic (myriocin) [16,22]. Collectively, these
results demonstrated that cells that cannot gener-
ate active Rab5 exhibit both biochemical and phy-
siological behavior consistent with inefficient
TORC2-mediated phosphorylation of Ypk1.

In further support of the conclusion that active
Rab5 stimulates TORC2 phosphorylation of
Ypk1, we found that expression of Vps21
(Q66L), a GTP hydrolysis-defective (so-called
“GTP-locked”) variant, restored readily detect-
able TORC2-mediated phosphorylation of Ypk1
in vps21Δ ypt52Δ ypt53Δ triple mutant cells,
whereas expression of Vps21(S21L), a variant (so-
called “GDP-locked”) that preferentially binds
GDP, did not [45]. We focused on Vps21 because
it is constitutively expressed, is the most abun-
dant yeast Rab5 isoform, has been shown to play
the major role in endocytic vesicle trafficking,
and, when absent, causes more pronounced phe-
notypes as compared to loss of either of the other
two Rab5 GTPases. Once loaded with GTP,
Vps21(Q66L) persists in its active state and has
been shown to block endocytosis in yeast cells
[51,52], suggesting that the ability of Vps21
(Q66L) to promote TORC2-dependent phosphor-
ylation of Ypk1 is distinct from its role in pro-
moting early endosome formation and recycling.
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To begin to explore themechanism by which GTP-
bound Rab5 supports robust-TORC2-mediated phos-
phorylation of Ypk1, we first examined whether there
might be some more indirect reason for the observed
impairment in TORC2-Ypk1 signaling in cells that
cannot generate active Rab5.

Given that Rab5 GTPases are important in
endocytic vesicle internalization, and have also
been implicated in recycling of endosomes back
to the PM, it seemed possible that cells deficient in
GTP-bound Rab5 might have decreased TORC2
activity simply due to altered TORC2 localization.
However, when we analyzed the subcellular distri-
bution of TORC2 by fluorescence microscopy, we
saw no marked change in the amount of TORC2
located at the cell cortex between wild-type cells
and muk1Δ vps9Δ double mutant cells. Thus,
TORC2 did not appear to be grossly mislocalized
in the absence of active Rab5. It also seemed pos-
sible that, in cells deficient in GTP-bound Rab5,
Ypk1 might not be accessible to the cell cortex at
all. However, in contrast to its poor phosphoryla-
tion by TORC2, there was no difference in activa-
tion loop phosphorylation of Ypk1 by eisosome-
associated Pkh1 in WT and muk1Δ vps9Δ double
mutant cells. Also, using pull-down assays, there
was no difference in the amount of Ypk1 asso-
ciated with Avo1 between wild-type and muk1Δ
vps9Δ double mutant cells, indicating that the lack
of efficient phosphorylation by TORC2 in cells
deficient in GTP-Rab5 could not be attributed to
lack of encounter between TORC2 and Ypk1.
Another possibility, given that phosphorylation
and activation of certain other AGC family protein
kinases requires association of their regulatory
domains with other classes of small GTPases
[53,54], it seemed possible that a conformation
change induced in Ypk1 by its binding of GTP-
loaded Rab5 might be necessary for it to be com-
petent for phosphorylation by TORC2. However,
as judged by co-immunoprecipitation, we could
detect no interaction between Ypk1 and GTP-
bound Vps21. Taken together, these findings led
us to test whether there is a direct physical inter-
action between Vps21 and TORC2.

Indeed, in marked contrast to the lack of inter-
action between Vps21 and Ypk1, association of
Vps21 with Tor2 was readily detectable by co-
immunoprecipitation under a variety of different

expression conditions and strain backgrounds.
Moreover, consistent with our in vivo results, in
in vitro kinase assays using a purified recombinant
substrate [E. coli MalE (maltose-binding protein)-
Ypk1(603–680)] that contains all of the TORC2
sites in Ypk1, we found that the specific activity
of TORC2 isolated from vsp21Δ ypt52Δ double
mutant cells was reproducibly lower than that of
an equivalent amount of TORC2 purified from
wild-type cells. Most strikingly, the ability of
TORC2 isolated from vsp21Δ ypt52Δ cells to phos-
phorylate MalE-Ypk1(603–680) could be markedly
stimulated by the addition of purified recombinant
Vps21 loaded with GTPγS, but not by yeast Rab7
(Ypt7) loaded with GTPγS. Thus, a GTP-bound
Rab5 appears to be a direct activator of TORC2
kinase function.

Given our evidence that GTP-bound Rab5 sti-
mulates TORC2 function, and given that we
showed that the Rab5-specific GEF Muk1 is acti-
vated in a TORC2-dependent and Ypk1-mediated
manner, one expected outcome of these interrela-
tionships is that, once TORC2-Ypk1 signaling has
been initiated, more GTP-bound Rab5 should be
generated. In essence, therefore, this control cir-
cuit imposes self-reinforcing positive feedback to
sustain TORC2-Ypk1 signaling. Our unexpected
discovery that Rab5 function is necessary to sup-
port maximal TORC2 function reveals
a previously unappreciated new connection
between the vesicle trafficking machinery and the
control of PM homeostasis by TORC2-Ypk1
signaling.

Implications of Rab5-dependent regulation of
TORC2

Demonstration of the link between Rab5 GTPases
and TORC2 raises numerous important mechan-
istic questions about how and where Rab5
GTPases influence TORC2 function.

How?
One intriguing possibility for how Vps21

GTPase could serve as a direct positive activator
of the kinase activity of Tor2 in yeast TORC2 is
that it could act in a manner analogous to how the
RHEB GTPase activates mTOR in mTORC1 [47].
Structural analysis [46] has revealed that, in its
GTP-bound state, RHEB occupies a pocket
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constituted by the M- and N-HEAT repeats and
FAT domain of mTOR, thereby inducing rearran-
gements of key elements important for stabilizing
the catalytically-competent state of mTOR. As one
means to assess whether yeast Tor2 in TORC2
might contain a similar binding pocket, we used
SWISS-MODEL [55] to build a homology map
(Figure 1) in which we threaded the sequence of
yeast Tor2 onto that of mTOR in the structure of
RHEB-activated mTORC1 (PDB: 6BCU).
Superimposition of our homology model of Tor2
onto mTOR in RHEB-bound mTORC1 structure
reveals a very similar cavity that could readily
accommodate a small GTPase. Additionally,
many of the residues in mTOR that make contact
with RHEB are conserved in Tor2 and adopt
a similar orientation in the binding pocket in our
model (Figure 1).

To further explore this possibility, we compared
the crystal structure of GTP-bound Vps21 to the
structure of GTP-bound RHEB. Despite the

divergence in the amino acid sequences between
these two Ras super-family members, we found
that their GTPase folds adopt a nearly identical
shape (Figure 2). Hence, GTP-bound Vps21 is
clearly sufficiently compact that it could occupy
the analogous pocket in Tor2 in TORC2 as GTP-
bound RHEB occupies in mTOR in mTORC1.
However, how could Tor2 in TORC2 distinguish
GTP-bound Rab5 from any other small GTPase?
In this regard, and as with other effectors modu-
lated by small GTPases, it is primarily residues in
the Switch I and Switch II loops of RHEB that
make contact with the RHEB-binding pocket in
mTOR in mTORC1. Notably, the superimposition
of Vps21 and RHEB reveals that the most major
structural differences between these two GTPases
lie in their respective Switch II regions (Figure 2).
It is not hard to imagine, therefore, that the dis-
tinct subunits that define TORC2 force Tor2 into
a conformation that is optimal for making specific
contacts with the unique geometry of the Switch II

Figure 1. Saccharomyces cerevisiae Tor2 modeled onto human mTOR in the RHEB-binding pocket in mTORC1.
A homology model of ScTor2 (tan) built with SWISS-MODEL [55] based on the confirmation of mTOR (blue) in the cryo-EM-derived
structure of mTORC1 occupied by GTPγS-bound RHEB (faint fuschia) (PDB: 6BCU) [46]. Side chains in human mTOR that make
intermolecular contacts with RHEB (blue) and the corresponding side chains in yeast Tor2 (tan) are shown in stick representation.
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residues in Vps21, thereby stabilizing Tor2 in its
most catalytically-competent state.

In this same regard, in a screen of Drosophila
small GTPases [56], it was found that overexpres-
sion of activated Rab5 strongly inhibited amino
acid- or Rag GTPase-stimulated mTORC1 activity,
a process that requires RHEB [57], but did not
inhibit mTORC1 stimulation by activated RHEB
itself [56]. At the time, it was not known how to
interpret these observations. In light of our find-
ings, however, a likely explanation for these prior
results is that Rab5, if overexpressed, can associate
with the RHEB-binding pocket in mTOR in
mTORC1, but does so non-productively (i.e. it
cannot stimulate mTOR in this context), and
thus under these conditions Rab5 serves, in
essence, as a simple competitive inhibitor of
RHEB-mediated mTORC1 activation. By contrast,
when activated RHEB is overexpressed, it is able to
out-compete Rab5.

Where?
Localization of TORC2 in S. cerevisiae to dis-

crete puncta residing at the cell cortex has been
well documented, based on analysis of fixed cells
by indirect immunofluorescence [20] or immuno-
gold EM [6], or examination of live cells expres-
sing fluorescently-tagged derivatives of Tor2
[18,19,21] or TORC2-specific subunits that associ-
ate tightly with Tor2 [17,19,21]. In addition, the
effector protein kinases (Ypk1 and Ypk2) directly
phosphorylated by TORC2 are, as mentioned

earlier, also obligatorily phosphorylated by other
protein kinases (Pkh1 and Pkh2) that are tightly
associated with the PM-anchored eisosomes.
Moreover, the PM in yeast is highly enriched in
PtdIns4,5P2 compared to any other cellular mem-
brane [29,58] and both the core TORC2 subunit
Avo1 [17,59,60] and the more dynamically asso-
ciated TORC2 subunits Slm1 and Slm2 [24,37,38]
contain PtdIns4,5P2-binding PH domains.
Furthermore, maintenance of an adequate
PtdIns4,5P2 level is necessary for TORC2 activity
[61]. These observations are at least consistent
with the conclusion that, in the main, the
TORC2 cortical puncta are docked on the PM.

The three yeast Rab5 GTPases (Vps21/Ypt51,
Ypt52, and Ypt53) [62] are involved at an early
stage of the endocytic pathway and, akin to their
mammalian Rab5 counterparts [63,64], are there-
fore located primarly on intracellular endosomal
vesicles prior to their fusion and delivery to the
multivesicular body [65–67]. Correspondingly,
fluorescently-tagged derivatives of the three yeast
Rab5 members exhibit punctate staining on vesi-
cular structures within the cell that co-localize
with well-documented endocytic cargo [68,69].
Interestingly, however, for GFP-Vps21,
a significant fraction of the fluorescent structures
are found at the cell periphery on, or in very close
apposition to, the PM, whereas GFP-Ypt52 and
GFP-Ypt53 generally occupy more interior loca-
tions [70].

Figure 2. Comparison of Saccharomyces cerevisiae Vps21 to Homo sapiens RHEB.
Crystal structure (1.48 Å resolution) of yeast Vps21 (green) bound to the non-hydrolyzable GTP analog GppNHp (PDB: 1EK0) [83] was
aligned with the crystal structure (2.65 Å resolution) of GppNHp-bound RHEB (fuschia) (PDB: 1XTR) [84] by superimposing the GTP-
binding fold in each of these two GTPase, revealing the distinct conformation of the Switch II regions (top) in these proteins. Side
chains in the Switch I and Switch II loops in both GTPases are shown in stick representation.
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There is additional evidence that Rab5 GTPases
can be associated with the PM. For example,
experiments to localize Rab5 in mammalian cells
also exhibited some staining on the PM [71].
When heterologously expressed in animal cells,
Vps21 colocalizes with the endogenous Rab5 and
can stimulate Rab5-specific endocytic events [72],
indicating that, in addition to their C-terminal
prenylation [73], the yeast and vertebrate proteins
must share other conserved localization determi-
nants. In addition, using a bimolecular fluores-
cence complementation assay, interaction
between Vps21 and its specific GAP Msb3 was
detected only at patches on the PM [74], indicating
again that at least a fraction of the GTP-bound
pool of Vps21 resides at the PM. In this context, it
is important to note that the phenotypes of cells
devoid of each of the three yeast Rab5 isoforms
differ significantly. In addition to severe defects in
endocytic vesicle trafficking, cells lacking Vps21
also exhibit an obvious defect in growth rate,
whereas cells lacking either Ypt52 or Ypt53 (or
both) have much milder phenotypes. Although
the relative levels of each of these proteins may
contribute to the differential effects observed in
their absence [62], these results are also consistent
with Vps21 having a role in promoting the func-
tion of TORC2, a central growth regulator, distinct
from its function in vesicle trafficking. In agree-
ment with that proposal, in our study [45], we
observed that in cells devoid of all three Rab5
paralogs TORC2-mediated phosphorylation of
Ypk1 could be stimulated by expression of a GTP-
locked Vps21 mutant, which (as already men-
tioned above) is unable to support vesicle traffick-
ing. It will be important to test GTP-locked
variants of Ypt52 and Ypt53 in the same way to
determine whether it is exclusively Vps21 that
associates with and acts to activate TORC2.

It is also possible that TORC2 association with
and activation by Vps21 might occur on endo-
somes. In subcellular fractionation studies showing
that TORC2 is a protein complex peripherally asso-
ciated with membranes, Tor2 co-fractionated with
PM markers, but also with a second fraction that
appeared to represent vesicular structures [20].
Similarly, localization of endogenous Tor2 at the
ultrastructural level using immuno-gold EM label-
ing revealed gold particle clusters at the PM, but

also gold particles associated with internal membra-
nous structures that resembled vesicles of the endo-
cytic pathway and were distinct from the vacuole
[6]. In this regard, we found that in cells lacking the
two Rab5 GEFs (Vps9 and Muk1) that the amount
of TORC2 localized at the PM, as judged by mon-
itoring a core TORC2 subunit (Avo3-GFP), is not
reduced compared to otherwise isogenic wild-type
cells. We reached a similar conclusion using Tor2-
mNeonGreen in cells lacking all three Rab5
GTPases (FM Roelants, this laboratory, unpub-
lished data). These observations indicate that PM
association of TORC2 does not require Rab5 func-
tion. However, we have not carefully analyzed
whether the absence of the Rab5 GEFs or the
Rab5 GTPases themselves markedly diminishes
the minor pool of TORC2 that appears to be asso-
ciated with internal vesicles. In this regard, there is
other evidence that TORC2 may be distributed
among spatially distinct populations.

It has been inferred from recent studies in
mammalian cells of mTORC2-mediated phos-
phorylation of one of its effector protein kinases,
AKT/PKB, that mTORC2 can act at discrete sub-
cellular locations. AKT has a PH domain specific
for binding PtdIns(3,4,5)P3 generated by growth
factor-activated PtdIns 3-kinase (PI3K); however,
there is some controversy about where and
whether lipid binding is necessary to induce
a conformational change in AKT that makes it
competent to be phosphorylated on its activation
loop by the upstream activating kinase PDK1
before it is competent to be subject to further
stimulation via its mTORC2-mediated phosphor-
ylation [75–77]. In any event, using a chemically-
inducible dimerization system to recruit Akt to
endosomes, it was observed that AKT becomes
phosphorylated at its mTORC2 sites when teth-
ered in this fashion, arguing that there must be
mTORC2 present on the same endosomes [78].
Further, it was purported that mTORC2-
dependent activation of Akt at the PM can be
uncoupled from the need for PI3K-generated
PtdIns(3,4,5)P3, whereas the endosomally-
associated mTORC2, it is claimed, requires PI3K
generation of PtdIns(3,4,5)P3 [79], suggesting, if
true, that these spatially distinct pools may be
differentially regulated. However, in none of
these studies was the role of Rab5 in this putative
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endosomal pool of mTORC2 examined. However,
in a recent study of mouse hippocampal pyramidal
neurons, AKT was found in association with Rab5-
positive endosomes, but whether TORC2 was also
present was not addressed [80]. To further com-
plicate matters as to which GTPase(s) may regulate
TORC2, and where, it was recently reported that,
in mammalian cells, oncogenic variants of RAS,
a PM-anchored GTPase [81], associate with
mTORC2, as assessed by proximity-dependent
biotin labeling [82].

Hypothetically, if there are distinct pools of
TORC2 with differing requirements for activa-
tion, such a scenario could provide a means to
adjust the level of TORC2 activity to meet the
physiological needs of the cell in the most effec-
tive manner. In yeast, for Ypk1 that has been
phosphorylated by Pkh1 on its activation loop,
all that is required for cell survival under steady-
state growth conditions in rich medium with
glucose as the carbon source is TORC2-
dependent phosphorylation of Ypk1 on a single
site (S644 in the turn motif). However, if the
cells are subjected to any significant stress, espe-
cially limitation for sphingolipids, TORC2-
mediated phosphorylation of T662 and addi-
tional residues in the carboxy-terminal tail of
Ypk1 occurs and modification of these residues
is essential for yeast cell survival under these
stressful conditions [13,16,22]. That phosphory-
lation at these additional resides is not required
under basal conditions, suggests that TORC2
activity provides a graded mechanism to fine-
tune the level of Ypk1 activation. Furthermore,
C-terminal phosphorylation of Ypk1 by TORC2
not only enhances its specific activity [22], but
also stabilizes Ypk1 against degradation [16],
thereby maintaining both its active conformation
and prolonging the duration of its activated state.
Thus, our demonstration [45] that TORC2-Ypk1
signaling also stimulates the generation of GTP-
bound Vps21 and that this Rab5 is, in turn,
a direct activator of TORC2, provides a positive
feedback mechanism to further sustain TORC2-
Ypk1 signaling, once initiated. This control cir-
cuit also provides a means for TORC2 to serve as
both a sensor and a regulator of the rate of
endocytic vesicle trafficking. Moreover, this
Rab5-mediated stimulation could exist to up-

regulate TORC2 activity and hence Ypk1 signal-
ing at the PM or, potentially, to provide the
means for localized TORC2-dependent Ypk1-
mediated phosphorylation of specific substrates
located on or nearby early endosomes.
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